View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Commun. Math. Phys. 301, 517–562 (2011) Communications in Digital Object Identifier (DOI) 10.1007/s00220-010-1153-1 Mathematical Physics Wall-Crossing, Free Fermions and Crystal Melting Piotr Sułkowski1,2, 1 California Institute of Technology, Pasadena, CA 91125, USA. E-mail:
[email protected] 2 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA Received: 15 December 2009 / Accepted: 10 June 2010 Published online: 26 October 2010 – © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract: We describe wall-crossing for local, toric Calabi-Yaumanifolds without com- pact four-cycles, in terms of free fermions, vertex operators, and crystal melting. Firstly, to each such manifold we associate two states in the free fermion Hilbert space. The overlap of these states reproduces the BPS partition function corresponding to the non- commutative Donaldson-Thomas invariants, given by the modulus square of the topolog- ical string partition function. Secondly, we introduce the wall-crossing operators which represent crossing the walls of marginal stability associated to changes of the B-field through each two-cycle in the manifold. BPS partition functions in non-trivial chambers are given by the expectation values of these operators. Thirdly, we discuss crystal inter- pretation of such correlators for this whole class of manifolds. We describe evolution of these crystals upon a change of the moduli, and find crystal interpretation of the flop transition and the DT/PT transition. The crystals which we find generalize and unify various other Calabi-Yau crystal models which appeared in literature in recent years.