Fung. Sci. 16(3, 4), 39–46, 2001 Parmelioid biodiversity and distributional ecology in Taiwan

Ming-Jou Lai

P. O. Box 834, Tunghai University, Taichung, Taiwan 407 (Accepted August 14, 2001)

ABSTRACT

In total, 19 genera and 97 species are so far known to represent the Taiwanese and related genera. In the present study, the correlation of temperature-related habitat preference with the maximum floristic di- versity of parmelioid is analyzed. The coefficient of community (C.C.) is used to compare the floris- tic similarity of parmelioid lichens between the different elevational forest vegetation zones. The boreal or northern temperate elements such as Parmelia, Punctelia, Melanelia, , and are common in Tsuga-Picea or Abies forests at higher elevations; whereas Parmotrema, Bulbothrix, Hy- potrachyna, Myelochroa, , , Relicina, Rimelia, Canomaculina, and Xantho- parmelia are characteristic of the meridional or pantropical elements which predominate the lowland to montane forests of Quercus, Machilus-Castanopsis, or Ficus-Machilus types. This major distributional differentiation is discussed in terms of the divergent morphogenetic lines based on the cortical struc- tures which differentiate the pseudocyphellate and the epicorticate genera and species (Hale, 1981). Genera having a pored epicortex show the highest biodiversity at submontane-montane elevations (500– 2,500 m), where the forest vegetation is dominated by Machilus-Castanopsis and Quercus (the evergreen broadleaf Lauro-Fagaceae association) communities, and the altitudinal temperature-related climatic zone approximate the meridional (=subtropical-warm orotemperate).

Key words: Parmelioid lichens, biodiversity, distributional ecology, Taiwan

Introduction chens in Kenya, East Africa (Krog, 1987), the distributional ecology of the Cladoniaceae in In total, 97 species in 19 genera are so far temperate and boreal western North America known to represent the Taiwanese parmelioid (Goward and Ahti, 1997), and the lichen bio- lichens (Kurokawa, 1966; Kurokawa & Lai, diversity in Papua New Guinea (Aptroot, 2001). They form the largest and most impor- 1997). tant portion of the lichen flora of Taiwan. The distribution of lichens is determined primarily Method by temperature and humidity whereas other in- teracting factors such as light conditions and The coefficient of community (C.C.) availability of suitable substrates may be lo- (Sørensen, 1948) is used to compare the floris- cally delimiting (Krog, 1987). Similar case tic similarity of parmelioid lichens between studies have been discussed previously and in- the different elevational forest vegetation clude the elevational zonation of tropical li- zones:

40 Fung. Sci. 16(3, 4), 2001

2a exterior. It is noteworthy that lichens with cc = b + c pseudocyphellae never form a pored epicortex, and consequently lichen species with a pored a: number of common species between two epicortex never form pseudocyphellae. In the communities, humid warm submontane-montane forests of b, c: number of species in each individual Taiwan, parmelioid genera with a pored epi- community. cortex have perforations in the polysaccharide layer exposing the underlying cortical hyphae Forest Vegetation Types and providing passageways to the algal layer (Zones) in Taiwan for gas exchange. By contrast, pseudocyphel- late parmelioid genera and species and the The vegetation of Taiwan exhibits marked cetrarioid lichen groups occur in dry cold vertical zonation which can be summarized in higher elevations (cf. Lai, 2000b). Tempera- terms of climatic factors along an elevational ture and humidity appear to be correlated with gradient as illustrated in Table 1 (Su, 1984). these upper cortical gas exchange structures The elevational vegetation types (zones) are and may play a role as a major distributional recognized by the forest physiognomy as well barrier. as by elevational temperature-related climatic Hale (1981) concluded that pseudocyphellae zones. Some forest vegetation types present in and the pored epicortex in the re- the extreme northern or southern parts of the flect two different morphogenetic or phyletic island usually occur at a higher elevation in lines. Genera with a pored epicortex are essen- central Taiwan (cf. Lai, 2000a). tially tropical to subtemperate in distribution, being normally rare or absent in boreal re- Correlation Between Thalline gions, whereas the foliose pseudocyphellate Upper Cortical Structure and genera are very strongly temperate, boreal, or Distributional Ecology even arctic in distribution (see Fig. 1). These two morphological structures represent differ- Among the Taiwanese parmelioid genera, ent mechanisms for achieving gas exchange, the upper cortex of Melanelia, Parmelia, and and in so doing represent biologically isolated Punctelia is perforated by pseudocyphellae lines. which appear as large gaps in the paraplecten- chymatous cortex. The remaining 16 genera Elevational Patterns of (see Table 2, cf. Elix, 1993) have a special Parmelioid Lichens of Taiwan cortical structure, an epicortex, which is a pored polysaccharide sheet overlaying a more The elevational profiles summarized in Ta- or less loosely packed, continuous palisade ble 3 reveal that the majority of the parmelioid parenchymatous layer. The pores can be seen genera and species of Taiwan are distributed only with SEM and range in size from 15 to 40 primarily in submontane-montane elevations µm in diameter (Hale 1973, 1976, 1987). (500–2,500 m) located in the meridional (= These two structures potentially function in warm temperate-subtropical) climatic zone gas exchange between the algal layer and the (Hämet-Ahti et al., 1974). Almost 77 of 97 Parmelioid lichen biodiversity and distribution 41 species and 13 of 19 genera regularly occur Sørensen's (1948) coefficient of community here, as compared with 21 species of 8 genera shows that: C.C. between lowland and sub- at lowland elevations, 27 species of 7 genera at montane elevations equals 35%, between upper montane elevations, 16 species of 5 submontane and montane is 59%, between genera at subalpine elevations, and 3 species montane and upper montane is 45%, between of 1 at alpine elevations. upper montane and subalpine is 60%, and be- Floristic similarity of the parmelioid lichen tween subalpine and alpine is 21%. The high species between different elevational forest C.C. value between upper montane and subal- vegetation zones (types) calculated using pine elevations manifests the influence of the

Table 1. Temperature ranges of elevational forest vegetation types (zones) in central Taiwan (modified from Su 1984). Tm: annual mean temperature; WI: warmth index. Forest vegetation Equivalent climatic Elevation profile Elevation (m) Tm °C WI °C type zone* Alpine Alpine Krummholz > 3600 < 5 < 12 Oroboreal Subalpine Abies 3100–3600 5–8 12–36 Cold orotemperate Upper montane Tsuga-Picea 2500–3100 8–11 36–72 Cool orotemperate Quercus (upper) 2000–2500 11–14 72–108 Orotemperate Montane Quercus (lower) 1500–2000 14–17 108–144 Warm orotemperate Machilus- Submontane 500–1500 17–23 144–216 Subtropical Castanopsis Lowland Ficus-Machilus < 500 > 23 > 216 Tropical * Climatic zonal nomenclature proposed by Hämet-Ahti et al. (1974). The terms arctic, boreal, meridional (=warm tem- perate-subtropical, 500–2000 m), and tropical also refer to the corresponding thermal zones in the southern hemisphere and in the mountains.

Table 2. Upper cortical structure of Taiwanese parmeliod genera Parmelioid genera Pored epicortex Pseudocyphellae Bulbothrix • Canomaculina • • Certrariastrum • Flavoparmelia • Hypotrachyna • Imshaugia • Karoowia • Melanelia • Myelochroa • Parmelia • Parmelinella • Parmelinopsis • Parmeliopsis • Parmotrema • Punctelia • Relicina • Rimelia • Xanthoparmelia • 42 Fung. Sci. 16(3, 4), 2001

4000 Parmelia

3600 3600 Hypotrachyna Parmelia Imshaugia Parmotrema Melanelia Punctelia 3100 3100 Flavoparmelia Parmotrema Hypotrachyna Punctelia Parmelia Parmeliopsis Rimelia 2500 2500 Certrariastrum Flavoparmelia Hypotrachyna Myelochroa Parmelia Parmelinella Parmelinopsis Parmotrema Punctelia Rimelia 1500 1500

Bulbothrix Canomaculina Canoparmelia Certrariastrum Flavoparmelia Hypotrachyna Myelochroa Parmelinella Parmelinopsis Parmotrema Relicina Rimelia

700 500 Bulbothrix Canomaculina Canoparmelia Karoowia Parmotrema Relicina Rimelia Xanthoparmelia N S Fig. 1. Parmelioid genera in different altitudinal zones.

Table 3. Elevation profiles of parmelioid lichens of Taiwan upper mon- Elevation Profile lowland submontane montane subalpine alpine tane cool cold Climate Profile tropical ≒meridional orotemper- orotemper- oroboreal ate ate Bulbothrix goebelii • • Bulbothrix isidiza • • Bulbothrix tabacina • Canomaculina leucosemotheta • Canomaculina subsumpta • Canomaculina subtinctoria • Canoparmelia amazonica • Canoparmelia texana • Cetrariastrum cirrhatum • • • Cetrariastrum nepalense • Cetrariastrum sorocheilum • • • Cetrariastrum subplanum • Cetrariastrum vexans • • Flavoparmelia caperata • • • Hypotrachyna adducta • • Hypotrachyna consimilis • Hypotrachyna crenata • • Hypotrachyna endochlora • • • Parmelioid lichen biodiversity and distribution 43

upper mon- Elevation Profile lowland submontane montane subalpine alpine tane cool cold Climate Profile tropical ≒meridional orotemper- orotemper- oroboreal ate ate Hypotrachyna exsecta • • • Hypotrachyna exsplendens • • Hypotrachyna flexilis • Hypotrachyna imbricatula • Hypotrachyna immaculata • • Hypotrachyna infirma • Hypotrachyna keitauensis • • Hypotrachyna kingii • Hypotrachyna koyaensis • • Hypotrachyna majoris • Hypotrachyna osseoalba • • Hypotrachyna pseudosinuosa • • • Hypotrachyna revoluta • • • Hypotrachyna sinuosa • • Hypotrachyna sublaevigata • Imshaugia aleurites • Karoowia saxeti • Melanelia panniformis • Myelochroa aurulenta • • • Myelochroa denegans • • Myelochroa irrugans • • • Myelochroa xantholepis • • Parmelia adaugescens • • • • Parmelia erumpens • Parmelia isidioclada • Parmelia laevior • • Parmelia masonii • Parmelia meiophora • • Parmelia niitakana • • • Parmelia praesquarrosa • • Parmelia subdivaricata • Parmelia submutata • • • Parmelinella wallichiana • • Parmelinopsis expallida • Parmelinopsis horrescens • • Parmelinopsis minarum • Parmelinopsis spumosa • • Parmeliopsis ambigua • Parmotrema argentinum • Parmotrema austrosinense • • Parmotrema chinense • • Parmotrema corniculans • Parmotrema crinitum • • • • 44 Fung. Sci. 16(3, 4), 2001

upper mon- Elevation Profile lowland submontane montane subalpine alpine tane cool cold Climate Profile tropical ≒meridional orotemper- orotemper- oroboreal ate ate Parmotrema cristiferum • • • Parmotrema dilatatum • • • Parmotrema eciliatum • • • Parmotrema eurysacum • Parmotrema exquisitum • Parmotrema lobulascens • • Parmotrema mellissii • • Parmotrema merrillii • Parmotrema nanfongense • Parmotrema overeemii • • Pamotrema parahypotropum • • Parmotrema permutatum • Parmotrema praesorediosum • • Parmotrema rampoddense • • • Parmotrema robustum • • Parmotrema saccatilobum • Parmotrema sancti-angelii • • Parmotrema subcorallinum • • Parmotrema subrugatum • Parmotrema tinctorum • • • Parmotrema ultralucens • • • Punctelia borreri • • Punctelia neutralis • Punctelia rudecta • • Punctelia subrudecta • Relicina abstrusa • • Relicina malesiana • Relicina schizospatha • Relicina subabstrusa • • Relicina sydneyensis • Rimelia cetrata • • • Rimelia clavulifera • • • Rimelia reticulata • • • Xanthoparmelia claviculata • Xanthoparmelia formosana • Xanthoparmelia orientalis • Total 21 60 49 27 16 3 Common species 14 32 17 13 2 Coefficent of community (C.C.) 35% 59% 45% 60% 21%

orotemperate bioclimate. Similar C.C. values vations can be explained by the warmer tropi- among the lowland-submontane-montane ele- cal-meridional bioclimate. Parmelioid lichen biodiversity and distribution 45

Conclusions with the scanning electron microscope. Smiths. Contr. Bot. 10: 1–92. Among the parmelioid genera of Taiwan, Hale, M.E. 1976. Lichen structure viewed with only 3, viz., Melanelia, Parmelia, and Puncte- the scanning electron microscope. Pp. 1–15. lia, have pseudocyphellae in the upper cortex. In: Lichenology: Progress and Problems It is noteworthy that these genera are restricted (D.H. Brown, D.L. Hawksworth, and R.H. to higher elevations (above 2,500 m) equiva- Bailey, Eds), London, New York & San lent to orotemperate-oroboreal bioclimatic Francisco: Academic Press. zones. The remaining 17 genera which appar- Hale, M.E. 1981. Pseudocyphellae and pored ently favor a warmer climate, uniformly have epicortex in the Parmeliaceae: their delimita- a pored epicortex over the upper cortex of the tion and evolutionary significance. Lichen- thallus. They constitute the greatest biodiver- ologist 13: 1–10. sity at submontane-montane elevations (500– Hale, M.E. 1987. A monograph of the lichen 2500 m) where the forest vegetation is domi- genus Parmelia Acharius sensu stricto (As- nated by Machilus-Castanopsis and Quercus comycotina: Parmeliaceae). Smiths. Contr. (the evergreen broadleaf Lauro-Fagaceae as- Bot. 66: 1–51. sociation), and the elevational temperature- Hämet-Ahti, L., Ahti, T., and Koponen, T. related climatic zone is ca. meridional (=sub- 1974. A scheme of vegeation zones for Ja- tropical-warm orotemperate). pan and adjacent regions. Ann. Bot. Fenn. 11: 59–88. References Krog, H. 1987. Altitudinal zonation of tropical lichens. In Progress and Problems in Aptroot, A. 1997. Lichen biodiversity in Papua Lichenology in the Eighties. Bibl. Lichenol. New Guinea, with the report of 173 species 25: 379–384. J. Cramer in der Gebr. Born- on one tree. In: Progress and Problems in traeger Verlagsbuchhandlung., Berlin- Lichenology in the Nineties. Bibl. Lichenol. Stuttgart. 68: 203–213. J. Cramer in der Gebr. Born- Kurokawa, S. 1966. On distribution patterns of traeger Verlagsbuchhandlung, Berlin- Formosan Parmelias. Misc. Bryol. Lich. 4: Stuttgart. 19–20. Elix, J. A. 1993. Progress in the generic de- Kurokawa, S. and M.J. Lai. 2001. Parmelioid limitation of Parmelia sensu lato lichens lichen genera and species in Taiwan. Myco- (Asomycotiona: Parmeliaceae) and a synop- taxon 77: 225–284. tic key to the Parmeliaceac. The Bryologist Lai, M.J. 2000a. Vegetation types, vegetation 96: 359–383. zonation and floristics of Taiwan, review Goward, T., and T. Ahti 1997. Notes on the and prospect. 103 pp. (in Chinese). Paper distributional ecology of the Cladoniaceae presented in “Symposium on Vegetation (lichenized ascomycetes) in temperate and Ecology and Biodiversity”, January 18–19, boreal western North America. J. Hattori 2000. Hwalien, Taiwan. Bot. Lab. 82: 143–155. Lai, M.J. 2000b. Cetrarioid lichens (Parmeli- Hale, M.E. 1973. Fine structure of the cortex aceae, Ascomycotina) of Taiwan. Endemic in the lichen family Parmeliaceae viewed Species Research 3: 49–66. (in Chinese) 46 Fung. Sci. 16(3, 4), 2001

Sørensen, T. 1948. A method of establishing Su, H.J. 1984. Studies on the climate and groups of equal amplitude in plant sociol- vegetation type of the natural forest in Tai- ogy based on similarity of species content. wan (II). Altitudinal vegetation zones in re- K. Danske Vidensk. Selsk. Biol. Skr. 5(4): lation to temperature gradient. Quart. Journ. 1–34. Chin. Forest. 17: 57–73.

臺灣梅衣類地衣的生物多樣性與分佈

賴 明 洲

東海大學景觀學系 摘 要

本文探討臺灣地區 19 屬 97 種梅衣類地衣的棲地分佈特性。不同山地垂直帶所分佈的種屬以群落 係數 (coefficient of community, C.C.) 比較其相似性。具孔皮上層 (pored epicortex) 類型的種屬通常 分佈於海拔500–2,500公尺的低山至中山地帶 (submontane-montane),是梅衣類地衣生物多樣性最高 的分佈範圍,其主要森林植被為樟櫟群叢。

關鍵詞:分佈、生物多樣性、梅衣類、臺灣