Evaluation of a New Carbon Dioxide System for Autonomous Surface Vehicles

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of a New Carbon Dioxide System for Autonomous Surface Vehicles VOLUME 37 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY AUGUST 2020 Evaluation of a New Carbon Dioxide System for Autonomous Surface Vehicles a b c b CHRISTOPHER SABINE, ADRIENNE SUTTON, KELLY MCCABE, NOAH LAWRENCE-SLAVAS, b b d b b SIMONE ALIN, RICHARD FEELY, RICHARD JENKINS, STACY MAENNER, CHRISTIAN MEINIG, e f f f JESSE THOMAS, ERIK VAN OOIJEN, ABE PASSMORE, AND BRONTE TILBROOK a University of Hawai‘i at Manoa, Honolulu, Hawaii b NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington c University of South Carolina, Columbia, South Carolina d Saildrone, Inc., Alameda, California e Liquid Robotics, Inc., Sunnyvale, California f Commonwealth Scientific and Industrial Research Organisation, Hobart, Tasmania, Australia (Manuscript received 29 January 2020, in final form 29 May 2020) ABSTRACT Current carbon measurement strategies leave spatiotemporal gaps that hinder the scientific understanding of the oceanic carbon biogeochemical cycle. Data products and models are subject to bias because they rely on data that inadequately capture mesoscale spatiotemporal (kilometers and days to weeks) changes. High- resolution measurement strategies need to be implemented to adequately evaluate the global ocean carbon cycle. To augment the spatial and temporal coverage of ocean–atmosphere carbon measurements, an Autonomous Surface Vehicle CO2 (ASVCO2) system was developed. From 2011 to 2018, ASVCO2 systems were deployed on seven Wave Glider and Saildrone missions along the U.S. Pacific and Australia’s Tasmanian coastlines and in the tropical Pacific Ocean to evaluate the viability of the sensors and their applicability to carbon cycle research. Here we illustrate that the ASVCO2 systems are capable of long-term oceanic deployment and robust collection of air and seawater pCO2 within 62 matm based on comparisons with established shipboard underway systems, with previously described Moored Autonomous pCO2 (MAPCO2) systems, and with companion ASVCO2 systems deployed side by side. 1. Introduction reducing the effects of climate change but in turn it is acidifying surface seawater. As a carbon sink, the oceans have helped buffer The ocean removes carbon from the atmosphere via climate change during the Anthropocene by absorb- gas equilibration and moves it into the ocean interior at ing approximately one-quarter of the carbon dioxide deep and intermediate water formation regions, in a (CO ) emitted to the atmosphere from human activity 2 process known as the solubility pump. Atmospheric (Friedlingstein et al. 2019; Gruber et al. 2019; Sabine carbon dioxide is also moved into the ocean interior via et al. 2004). Indeed, measurements of surface waters the biological pump, when the carbon that is taken up are documenting the fact that although much more by phytoplankton during photosynthesis is transported variable than the atmosphere, over long time and down as organisms die or are eaten and repackaged into space scales the ocean CO levels are increasing at 2 fecal pellets. Much of this biologically fixed organic about the same rate as the atmospheric CO concen- 2 carbon sinks to the subsurface ocean, where it is rap- trations (Bates et al. 2014; Landschützer et al. 2014; idly remineralized or respired back to dissolved CO . Takahashi et al. 2009; Wanninkhof et al. 2013a). The 2 Because both of the solubility and biological pumps vary oceanic removal of CO from the atmosphere is 2 by region and season, there is tremendous spatial and temporal variations in surface ocean CO2 concentra- Denotes content that is immediately available upon publica- tions (Bates et al. 2014; Landschützer et al. 2014; tion as open access. Takahashi et al. 2009; Wanninkhof et al. 2013a). Coastal regions are particularly vulnerable to changes Corresponding author: Christopher Sabine; [email protected] in ocean carbon chemistry and its biological impacts. DOI: 10.1175/JTECH-D-20-0010.1 Ó 2020 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses). 1305 Unauthenticated | Downloaded 09/26/21 01:52 PM UTC 1306 JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY VOLUME 37 Changes in tides, temperature, salinity, and primary subject to regional bias because they rely on data that in- production expose coastal regions to seasonal and spatial adequately capture mesoscale spatiotemporal (kilometers variations in surface ocean dissolved CO2 concentrations and days to weeks) changes. High-resolution spatiotem- (Bauer et al. 2013; Damm et al. 2010; Fassbender et al. poral measurement strategies need to be implemented in 2018). For example, along the Pacific coast of the United order to adequately evaluate the regional aspects of the States, seasonal (late spring to early fall) strengthening of global ocean carbon cycle. the northwesterly winds transport dense, CO2-rich water To augment the spatial and temporal coverage of from the subsurface up onto the continental shelf, ex- ocean–atmosphere carbon measurements, the National posing coastal ecosystems to potential acidification from Oceanic and Atmospheric Administration (NOAA) both natural and anthropogenic sources (Fassbender Pacific Marine Environmental Laboratory (PMEL) de- et al. 2018; Feely et al. 2016). Changes in the frequency, veloped an Autonomous Surface Vehicle CO2 (ASVCO2) duration, and intensity of acidified conditions will affect system for deployment on remotely operated autonomous marine ecosystems in ways that we are only starting to platforms. In collaboration with Liquid Robotics Inc. understand (Barton et al. 2012; Bednarsek et al. 2012, (liquid-robotics.com) and Saildrone Inc. (saildrone.com), 2014a,b, 2017; Fabry et al. 2008; Kleypas et al. 2006; PMEL integrated ASVCO2 systems (Fig. 1)ontwotypes Reum et al. 2015). The fate of these economically im- of autonomous surface vehicles, a Wave Glider and portant regions is still largely unknown due to the limi- Saildrone. Similar pCO2 instruments have been deployed tations of applying results of laboratory experiments to on Wave Gliders recently (Chavez et al. 2018; Northcott the complexity of real-world ecosystems, as well as a et al. 2019), but the ASVCO2 system has the advantage of paucity in current biological and carbon system moni- being directly comparable to a network of moored CO2 toring approaches. systems deployed in all the major ocean basins. The Underway systems on research ships and commercial ASVCO2 systems described here were deployed on four volunteer observing ships as well as autonomous sys- Wave Glider and three Saildrone missions along the U.S. tems on mooring platforms have documented substan- Pacific coast, Australia’s Tasmanian coastline, and in the tial variations in the oceanic partial pressure of CO2 tropical Pacific between 2011 and 2018 in order to eval- (pCO2) and subsequent carbonate chemistry of coastal uate the performance of the sensors, and the utility of waters (Fassbender et al. 2018; Feely et al. 2016; Sutton these systems in carbon cycle research. et al. 2019; Wanninkhof et al. 2015). While research expeditions can gather data over vast spatial scales, 2. Methods large-scale coastal expeditions occur infrequently. This a. ASVCO system fails to capture mesoscale temporal (days to weeks) 2 variations in the carbon cycle. Mooring deployments The ASVCO2 system is a modified version of the compensate for the temporal gaps by capturing high- Moored Autonomous pCO2 (MAPCO2) system devel- frequency time series, but the sparsity of moorings that oped by PMEL and Monterey Bay Aquarium Research measure CO2 leaves large spatial gaps. Spatiotemporal Institute, which has been used for over a decade on gaps left by current measurement strategies hinder the dozens of moored surface buoys around the world scientific understanding of the oceanic carbon cycle, (Sutton et al. 2014). The details of the ASVCO2 design, especially in coastal regions that are exposed to meso- components (including equilibrator design), gas flow scale physical and biogeochemical forcing. paths, and analysis sequences/timing are all identical to Much of the carbon data collected from ships (bottle the MAPCO2 except as noted here, so they will not be measurements and underway pCO2 systems) and moored repeated. The modifications primarily involved a re- platforms have been synthesized into data products. Data packaging of the components and the development of products such as the Lamont Doherty Earth Observatory small, high pressure gas bottles for the reference gas surface ocean pCO2 database (Takahashi et al. 2009), the (Luxfer M22A high pressure carbon wrapped, aluminum- Surface Ocean CO2 Atlas (SOCAT) (Bakker et al. 2016) lined cylinder) for deployment on the Liquid Robotics, and the Global Data Analysis Project (GLODAP) Inc., Wave Glider (Willcox et al. 2010) and Saildrone, Inc. (Olsen et al. 2019) provide the basis for ocean uptake (Meinig et al. 2015), surface vehicles. The new cylinders calculations and validation of model simulations (Gruber were extensively tested at NOAA’s Earth System et al. 2019; Wanninkhof et al. 2013b). Together, large- Research Laboratory for more than a year to ensure scale carbon data products and modeling efforts have the concentrations did not significantly drift (,0.1 ppm improved our understanding of oceanic carbon cycling over six months) before they were implemented. A and allowed for better climate predictions. Unfortunately, manifold linking three small bottles together along large-scale and global data products
Recommended publications
  • When the Air Turns the Oceans Sour
    2200 pH value 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 Unfavorable prognosis: According to simulations of researchers at the Max Planck Institute in Hamburg, the pH value of the oceanic surface layer will be considerably lower in 2200 than in 1950, visible in the color shift within the area shown in red (left). The oceans are becoming more acidic. FOCUS_Geosciences When the Air Turns the Oceans Sour Human society has begun an ominous large-scale experiment, the full consequences of which will not be foreseeable for some time yet. Massive emissions of man-made carbon dioxide are heating up the Earth. But that’s not all: the increased concentration of this greenhouse gas in the atmosphere is also acidifying the oceans. Tatiana Ilyina and her staff at the Max Planck Institute for Meteorology in Hamburg are researching the consequences this could have. TEXT TIM SCHRÖDER hey’re called “sea butterflies” are warming the Earth like a green- because they float in the house. Less well known is the fact that ocean like a small winged the rising concentration of carbon diox- creature. However, pteropods ide in the atmosphere also leads to the belong to the gastropod class oceans slowly becoming more acidic. T of mollusks. They paddle through the This is because the oceans absorb a large water with shells as small as a baby’s portion of the carbon dioxide from the fingernail, and strangely transparent atmosphere. Put simply, the gas forms skin.
    [Show full text]
  • Marine Biogeochemical Cycling and Climate-Carbon Cycle Feedback
    Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2018-68 Manuscript under review for journal Geosci. Model Dev. Discussion started: 2 May 2018 c Author(s) 2018. CC BY 4.0 License. Marine biogeochemical cycling and climate-carbon cycle feedback simulated by the NUIST Earth System Model: NESM-2.0.1 Yifei Dai1, Long Cao2, Bin Wang1, 3 1 Earth System Modeling Center, and Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing 5 University of Information Science and technology, Nanjing 210044, China 2 Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China 3 Department of Atmospheric Sciences and Atmosphere-Ocean Research Center, University of Hawaii, Honolulu HI 96822, USA *Correspondence: [email protected] 10 Abstract. In this study, we evaluate the performance of Nanjing University of Information Science & Technology Earth System Model, version 2.0.1 (hereafter NESM-2.0.1). We focus on model simulated historical and future oceanic CO2 uptake, and analyze the effect of global warming on model-simulated oceanic CO2 uptake. Compared with available observations and data-based estimates, NESM-2.0.1 reproduces reasonably well large-scale ocean carbon-related fields, including nutrients (phosphate, nitrite and silicate), chlorophyll, and net primary production. However, some noticeable discrepancies between 15 model simulations and observations are found in the deep ocean and coastal regions. Model-simulated current-day oceanic CO2 uptake compares well with data-based estimate. From pre-industrial time to 2011, modeled cumulative CO2 uptake is 144 PgC, compared with data-based estimates of 155 ± 30 PgC.
    [Show full text]
  • Interaction of the Oceans with Greenhouse Gases and Atmospheric Aerosols
    Interaction of the oceans with greenhouse gases and atmospheric aerosols UNEP Regional Seas Reports and Studies No.94 Prepared in co-operation with BIIR IT UNESCO UNEP 1988 I Note; This docianent is an extract from the report entitled Pollutant Modification of Atmospheric and Oceanic Processes and Climate' prepared for the Joint Group of Experts on the Scientific Aspects of F4arine Pollution (GESAIiP) sponsored by the United 1ations, United Nations €nviromnt Progrinne (UNEP). Food and Agriculture Organization of the United Nations (FM)). United Nations Educational. Scientific and Cultural Organization (UNESCO) 1 World Health Organization (I1O), World Meteorological Organization (0), International Maritime Organization (1110) and International Atcmic Energy Agency (IAEA). The report was prepard by the $lO-1ed GESAI4P Working Group No. 14 on the Interchange of Pollutants between the Atisphere and the Oceans 1 which is also supported by UNEP and UNESCO. The eighteenth session of GESRIIP (Paris 11-15 April 1988) approved the report of the Working Group and decided that it should be published by 1140 as GESAMP Reports and Studies Mo. 36. The designations en1oyed and the presentation of the material in this document do not iui1ly the expression of any opinion whatsoever on the part of the organizations co-sponsoring GESAMP concerning the legal status of any State 1 Territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The docianent contains the views expressed by experts acting in their individual capacities 1 and may not necessarily correspond with the views of the sponsoring organizations. For bibliographic purposes, this docwnent may be cited as: J4O/UNEP/UNESCO: Interaction of the oceans with greenhouse gases and atmospheric aerosols: UNEP Regional Seas Reports and Studies No.
    [Show full text]
  • Water and Carbon Cycling
    Water and carbon cycling New A Level Subject Content Overview Author: Martin Evans, Professor of Geomorphology, School of Environment, Education and Development, University of Manchester. Professor Evans was chair of the ALCAB Geography panel. 1. Water and Carbon Cycles Cycling of carbon and water are central to supporting life on earth and an understanding of these cycles underpins some of the most difficult international challenges of our times. Both these cycles are included in the core content elements of the specifications for A Level geography to be first taught from 20161. Whether we consider climate change, water security or flood risk hazard an understanding of physical process is central to analysis of the geographical consequences of environmental change. Both cycles are typically understood within the framework of a systems approach which is a central concept to much physical geographical enquiry. The concept of a global cycle integrates across scales. Systems theory allows us to conceptualise the main stores and pathways at a global scale. The systems framework also allows for more detailed (process detail) and local knowledge to be nested within the wider conceptual framework. Local studies on aspects of hydrology or carbon cycling can be understood as part of a broader attempt to understand in detail the nature of water and carbon cycling. Global environmental challenges frequently excite student interest in physical geography but it can be difficult for students to see how they can conduct relevant investigations of fieldwork given the large scale and complexity of the issues. By embedding their knowledge within systems framework students can understand how measurements and understanding derived from their own fieldwork and local studies contribute to the wider project of elucidating the cycling of water and carbon at the global scale.
    [Show full text]
  • The Effects of Decomposing Invasive Jellyfish on Biogeochemical Fluxes and Microbial Dynamics in an Ultraoligotrophic
    https://doi.org/10.5194/bg-2020-226 Preprint. Discussion started: 26 June 2020 c Author(s) 2020. CC BY 4.0 License. The effects of decomposing invasive jellyfish on biogeochemical fluxes and microbial dynamics in an ultraoligotrophic sea Tamar Guy-Haim1, Maxim Rubin-Blum1, Eyal Rahav1, Natalia Belkin1, Jacob Silverman1, Guy Sisma- Ventura1 5 1Israel Oceanographic and Limnological Research, National Oceanography Institute, Haifa, 3108000, Israel Correspondence to: Tamar Guy-Haim ([email protected]) Abstract. Over the past several decades, jellyfish blooms have intensified spatially and temporally, affecting functions and services of ecosystems worldwide. At the demise of a bloom, an enormous amount of jellyfish biomass sinks to the seabed and decomposes. This process entails reciprocal microbial and biogeochemical changes, typically enriching the water column 10 and seabed with large amounts of organic and inorganic nutrients. Jellyfish decomposition was hypothesized to be particularly important in nutrient-impoverished ecosystems, such as the Eastern Mediterranean Sea — one of the most oligotrophic marine regions in the world. Since the 1970s, this region is experiencing the proliferation of a notorious invasive scyphozoan jellyfish, Rhopilema nomadica. In this study, we estimated the short-term decomposition effects of R. nomadica on nutrient dynamics at the sediment-water interface. Our results show that the degradation of R. nomadica has led to increased oxygen demand and 15 acidification of overlying water as well as high rates of dissolved organic nitrogen and phosphate production. These conditions favored heterotrophic microbial activity, bacterial biomass accumulation, and triggered a shift towards heterotrophic bio- degrading bacterial communities, whereas autotrophic pico-phytoplankton abundance was moderately affected or reduced.
    [Show full text]
  • The Carbon Cycle and Atmospheric Carbon Dioxide
    3 The Carbon Cycle and Atmospheric Carbon Dioxide Co-ordinating Lead Author I.C. Prentice Lead Authors G.D. Farquhar, M.J.R. Fasham, M.L. Goulden, M. Heimann, V.J. Jaramillo, H.S. Kheshgi, C. Le Quéré, R.J. Scholes, D.W.R. Wallace Contributing Authors D. Archer, M.R. Ashmore, O. Aumont, D. Baker, M. Battle, M. Bender, L.P. Bopp, P. Bousquet, K. Caldeira, P. Ciais, P.M. Cox, W. Cramer, F. Dentener, I.G. Enting, C.B. Field, P. Friedlingstein, E.A. Holland, R.A. Houghton, J.I. House, A. Ishida, A.K. Jain, I.A. Janssens, F. Joos, T. Kaminski, C.D. Keeling, R.F. Keeling, D.W. Kicklighter, K.E. Kohfeld, W. Knorr, R. Law, T. Lenton, K. Lindsay, E. Maier-Reimer, A.C. Manning, R.J. Matear, A.D. McGuire, J.M. Melillo, R. Meyer, M. Mund, J.C. Orr, S. Piper, K. Plattner, P.J. Rayner, S. Sitch, R. Slater, S. Taguchi, P.P. Tans, H.Q. Tian, M.F. Weirig, T. Whorf, A. Yool Review Editors L. Pitelka, A. Ramirez Rojas Contents Executive Summary 185 3.5.2 Interannual Variability in the Rate of Atmospheric CO2 Increase 208 3.1 Introduction 187 3.5.3 Inverse Modelling of Carbon Sources and Sinks 210 3.2 Terrestrial and Ocean Biogeochemistry: 3.5.4 Terrestrial Biomass Inventories 212 Update on Processes 191 3.2.1 Overview of the Carbon Cycle 191 3.6 Carbon Cycle Model Evaluation 213 3.2.2 Terrestrial Carbon Processes 191 3.6.1 Terrestrial and Ocean Biogeochemistry 3.2.2.1 Background 191 Models 213 3.2.2.2 Effects of changes in land use and 3.6.2 Evaluation of Terrestrial Models 214 land management 193 3.6.2.1 Natural carbon cycling on land 214 3.2.2.3 Effects
    [Show full text]
  • A Three-Dimensional Ocean-Seaice
    MIT Joint Program on the Science and Policy of Global Change A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies Stephanie Dutkiewicz, Andrei Sokolov, Jeff Scott and Peter Stone Report No. 122 May [revised November] 2005 The MIT Joint Program on the Science and Policy of Global Change is an organization for research, independentpolicy analysis, and public education in global environmental change. It seeks to provide leadership inunderstanding scientific, economic, and ecological aspects of this difficult issue, and combining them into policy assessments that serve the needs of ongoing national and international discussions. To this end, the Program brings together an interdisciplinary group from two established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy and Environmental Policy Research (CEEPR). These two centers bridgemany key areas ofthe needed intellectual work, and additional essential areas are covered by other MIT departments, by collaboration with the Ecosystems Center of the Marine Biology Laboratory (MBL) at Woods Hole, and by short- and long-term visitors to the Program. The Program involves sponsorship and active participation by industry, government, and non-profit organizations. To inform processes of policy development and implementation, climate change research needs to focus on improving the prediction of those variables that are most relevant to economic, social, and environmental effects. Inturn, the greenhouse gas and atmospheric aerosol assumptions underlying climate analysis need to be related to the economic, technological, and political forces that drive emissions, and to the results of international agreements and mitigation.
    [Show full text]
  • Effects of CO2 Enrichment on Marine Phytoplankton
    Journal of Oceanography, Vol. 60, pp. 719 to 729, 2004 Review Effects of CO2 Enrichment on Marine Phytoplankton ULF RIEBESELL* Leibniz Institut für Meereswissenschaften, IFM-GEOMAR, Kiel, Germany (Received 14 October 2003; in revised form 5 May 2004; accepted 5 May 2004) Rising atmospheric CO2 and deliberate CO2 sequestration in the ocean change Keywords: ⋅ seawater carbonate chemistry in a similar way, lowering seawater pH, carbonate ion CO2 effects, ⋅ carbonate chemis- concentration and carbonate saturation state and increasing dissolved CO2 concen- tration. These changes affect marine plankton in various ways. On the organismal try, ⋅ level, a moderate increase in CO facilitates photosynthetic carbon fixation of some phytoplankton, 2 ⋅ biocalcification, phytoplankton groups. It also enhances the release of dissolved carbohydrates, most ⋅ photosynthesis, notably during the decline of nutrient-limited phytoplankton blooms. A decrease in ⋅ ecosystem re- the carbonate saturation state represses biogenic calcification of the predominant sponses, marine calcifying organisms, foraminifera and coccolithophorids. On the ecosystem ⋅ biological carbon level these responses influence phytoplankton species composition and succession, pump, ⋅ favouring algal species which predominantly rely on CO2 utilization. Increased biogeochemical phytoplankton exudation promotes particle aggregation and marine snow formation, feedbacks. enhancing the vertical flux of biogenic material. A decrease in calcification may af- fect the competitive advantage of calcifying organisms, with possible impacts on their distribution and abundance. On the biogeochemical level, biological responses to CO2 enrichment and the related changes in carbonate chemistry can strongly alter the cycling of carbon and other bio-active elements in the ocean. Both decreasing calcifi- cation and enhanced carbon overproduction due to release of extracellular carbohy- drates have the potential to increase the CO2 storage capacity of the ocean.
    [Show full text]
  • Major Role of Marine Vegetation on the Oceanic Carbon Cycle
    Biogeosciences, 2, 1–8, 2005 www.biogeosciences.net/bg/2/1/ Biogeosciences SRef-ID: 1726-4189/bg/2005-2-1 European Geosciences Union Major role of marine vegetation on the oceanic carbon cycle C. M. Duarte1, J. J. Middelburg2, and N. Caraco3 1IMEDEA (CSIC-UIB), Grupo de Oceanograf´ıa Interdisciplinar, C/Miquel Marques´ 21, 07190 Esporles (Islas Baleares), Spain 2Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 140, 4400 AC Yerseke, The Netherlands 3Institute of Ecosystem Studies, Box AB, Millbrook, NY12545, USA Received: 10 September 2004 – Published in Biogeosciences Discussions: 7 October 2004 Revised: 14 January 2005 – Accepted: 27 January 2005 – Published: 1 February 2005 Abstract. The carbon burial in vegetated sediments, ignored these ecosystems as an important loss of CO2 sink capacity in past assessments of carbon burial in the ocean, was eval- in the biosphere. uated using a bottom-up approach derived from upscaling a compilation of published individual estimates of carbon burial in vegetated habitats (seagrass meadows, salt marshes and mangrove forests) to the global level and a top-down ap- 1 Introduction proach derived from considerations of global sediment bal- ance and a compilation of the organic carbon content of veg- Oceanic carbon fluxes are believed to be dominated by mi- eatated sediments. Up-scaling of individual burial estimates croorganismal activity, as bacteria and microalgae are the values yielded a total carbon burial in vegetated habitats of dominant source of primary production and respiration in 111 Tmol C y−1. The total burial in unvegetated sediments the ocean (e.g. Duarte and Cebrian,´ 1996; del Giorgio and was estimated to be 126 Tg C y−1, resulting in a bottom-up Duarte, 2002).
    [Show full text]
  • Ocean Biogeochemistry and the Global Carbon Cycle: an Introduction to the U.S
    SPECIAL ISSUE – JGOFS Ocean Biogeochemistry and the Global Carbon Cycle: An Introduction to the U.S. Joint Global Ocean Flux Study Ken O. Buesseler Woods Hole Oceanographic Institution • Woods Hole, Massachusetts USA In the early 1980s, ocean scientists were increasingly led to some key breakthroughs in our ability to understand aware of the importance of biologically active elements, the dynamics of the dissolved organic carbon pools and such as carbon, nitrogen and oxygen, in the regulation of particulate fluxes from the upper ocean to the depths. climate and its effects on the habitability of the planet. As Common protocols and new chemical standards have scientists reviewed details of the processes that control allowed for accurate comparisons among studies. Within ocean carbon cycling and the links among oceanic, atmos- JGOFS and in the future, new technologies will lead to a bet- pheric and sedimentary carbon pools, it was clear that it ter understanding of episodic and short-term shifts in ocean was “hard to make the numbers add up” (Brewer et al., biogeochemistry and links among physical forcing, biologi- 1986). Fluxes of carbon into and out of the ocean were only cal responses and chemical fluxes on a range of spatial crudely constrained, and little detail existed on the season- scales. al, regional and global patterns of carbon uptake and As we think about the remaining challenges in ocean export or the flux of carbon between the ocean and its biogeochemistry, it is easy to forget how far we have come. boundaries. After eight years' worth of days at sea, covering almost The U.S.
    [Show full text]
  • Global Change – the IGBP Series 3
    Global Change – The IGBP Series 3 Berlin Heidelberg New York Hong Kong London Milan Paris Tokyo Michael J. R. Fasham (Ed.) Ocean Biogeochemistry The Role of the Ocean Carbon Cycle in Global Change With 130 Figures 123 Editor Michael J. R. Fasham Southampton Oceanography Centre Waterfront Campus, Southampton, SO14 3ZH, UK [email protected] ISSN 1619-2435 ISBN 3-540-42398-2 Springer-Verlag Berlin Heidelberg New York Library of Congress Cataloging-in-Publication Data Ocean biogeochemistry : a synthesis of the Joint Global Ocean Flux Study (JGOFS) / Michael J.R. Fasham (ed.). p.cm. -- (Global change--the IGBP series, ISSN 1619-2435) Includes bibliographical references. ISBN 3-540-42398-2 (alk. pagper) 1. Carbon cycle (Biogeochemistry) 2. Chemical oceanography. I. Fasham, M. J. R. II. Joint Global Ocean Flux Study. III. Series. QH344.025 2003 551.46'01--dc21 2002044503 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http://dnb.ddb.de Photos courtesy of U.S. JGOFS Planning Office. RVIB Nathaniel B. Palmer docks at McMurdo Station, Antarctica, at start of final U.S. JGOFS cruise. Photo by Mardi Bowles. Launching moored instruments from RV Atlantis II. Photo by Craig Dickson. El Niño-Southern Oscillation effects on equatorial Pacific chlorophyll a concentrations during January (El Niño, left) and July (La Niña, right) of 1998. (Image courtesy of the SeaWiFS Project, NASA Goddard Space Flight Center and ORBIMAGE.) The copepod photo is courtesy of Southampton Oceanography Centre. This work is subject to copyright.
    [Show full text]
  • Overview of the Global Carbon Cycle
    Overview of the 1 Global Carbon Cycle Lead Authors Lori Bruhwiler, NOAA Earth System Research Laboratory; Anna M. Michalak, Carnegie Institution for Science and Stanford University Contributing Authors Richard Birdsey, Woods Hole Research Center; Joshua B. Fisher, NASA Jet Propulsion Laboratory and Cali- fornia Institute of Technology; Richard A. Houghton, Woods Hole Research Center; Deborah N. Huntzinger, Northern Arizona University; John B. Miller, NOAA Earth System Research Laboratory Acknowledgments Richard Birdsey (Science Lead), Woods Hole Research Center; Gil Bohrer (Review Editor), Ohio State University; James H. Butler (Federal Liaison), NOAA Earth System Research Laboratory Recommended Citation for Chapter Bruhwiler, L., A. M. Michalak, R. Birdsey, J. B. Fisher, R. A. Houghton, D. N. Huntzinger, and J. B. Miller, 2018: Chapter 1: Overview of the global carbon cycle. In Second State of the Carbon Cycle Report (SOCCR2): A Sustained Assessment Report [Cavallaro, N., G. Shrestha, R. Birdsey, M. A. Mayes, R. G. Najjar, S. C. Reed, P. Romero-Lankao, and Z. Zhu (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, pp. 42-70, https://doi.org/10.7930/SOCCR2.2018.Ch1. 42 Chapter 1 | Overview of the Global Carbon Cycle KEY FINDINGS 1. Atmospheric carbon dioxide (CO2) has increased from a preindustrial abundance of 280 parts per mil- lion (ppm) of dry air to over 400 ppm in recent years—an increase of over 40%. As of July 2017, global average CO2 was 406 ppm. Methane (CH4) has increased from a preindustrial abundance of about 700 parts per billion (ppb) of dry air to more than 1,850 ppb as of 2017—an increase of over 160%.
    [Show full text]