Nonaqueous Syntheses of Metal Oxide and Metal Nitride Nanoparticles

Total Page:16

File Type:pdf, Size:1020Kb

Nonaqueous Syntheses of Metal Oxide and Metal Nitride Nanoparticles Max-Planck Institut für Kolloid and Grenzflächenforschung Nonaqueous Syntheses of Metal Oxide and Metal Nitride Nanoparticles Dissertation zur Erlangung des akademischen Grades “doctor rerum naturalium” (Dr. rer. nat.) in der Wissenschaftsdisziplin “Kolloidchemie” eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Universität Potsdam von Jelena Buha Potsdam, im Januar 2008 Dieses Werk ist unter einem Creative Commons Lizenzvertrag lizenziert: Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 2.0 Deutschland Um die Lizenz anzusehen, gehen Sie bitte zu: http://creativecommons.org/licenses/by-nc-sa/2.0/de/ Elektronisch veröffentlicht auf dem Publikationsserver der Universität Potsdam: http://opus.kobv.de/ubp/volltexte/2008/1836/ urn:nbn:de:kobv:517-opus-18368 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18368] С’ вером у Богa Abstract Nanostructured materials are materials consisting of nanoparticulate building blocks on the scale of nanometers (i.e. 10-9 m). Composition, crystallinity and morphology can enhance or even induce new properties of the materials, which are desirable for todays and future technological applications. In this work, we have shown new strategies to synthesise metal oxide and metal nitride nanomaterials. The first part of the work deals with the study of nonaqueous synthesis of metal oxide nanoparticles. We succeeded in the synthesis of In2O3 nanopartcles where we could clearly influence the morphology by varying the type of the precursors and the solvents; of ZnO mesocrystals by using acetonitrile as a solvent; of transition metal oxides (Nb2O5, Ta2O5 and HfO2) that are particularly hard to obtain on the nanoscale and other technologically important materials. Solvothermal synthesis however is not restricted to formation of oxide materials only. In the second part we show examples of nonaqueous, solvothermal reactions of metal nitrides, but the main focus lies on the investigation of the influence of different morphologies of metal oxide precursors on the formation of the metal nitride nanoparticles. In spite of various reports, the number and variety of nanocrystalline metal nitrides is marginally small by comparison to metal oxides; hence preformed metal oxides as precursors for the preparation of metal nitrides are a logical choice. By reacting oxide nanoparticles with cyanamide, urea or melamine, at temperatures of 800 to 900 °C under nitrogen flow metal nitrides could be obtained. We studied in detail the influence of the starting material and realized that size, crystallinity, type of nitrogen source and temperature play the most important role. We have managed to propose and verify a dissolution-recrystallisation model as the formation mechanism. Furthermore we could show that the initial morphology of the oxides could be retained when ammonia flow was used instead. Table of Contents 1 INTRODUCTION................................................................................1 REFERENCES .............................................................................................................7 2 ANALYSIS AND CHARACTERIZATION ..........................................9 2.1 METHODS ............................................................................................................9 2.1.1 Wide Angle X-ray Scattering (WAXS) ..................................................................9 2.1.1.1 The Powder X-ray Diffraction Method ...................................................................... 11 2.1.1.2 Distinctive Aspects of Nanoparticles’ Diffraction................................................... 12 2.1.2 Transmission Electron Microscopy...................................................................14 2.1.2.1 Basics about the Transmission Electron Microscope............................................ 15 2.1.2.2 High-Resolution TEM Lattice Imaging...................................................................... 17 2.1.3 Scanning Electron Microscopy (SEM)...............................................................21 2.2 CHARACTERIZATION ...........................................................................................22 2.2.1 Powder X-ray Diffraction (XRD) Measurements ...............................................22 2.2.2 Transmission Electron Microscopy (TEM)........................................................22 2.2.3 High-Resolution Transmission Electron Microscopy (HRTEM)......................23 2.2.4 Scanning Electron Microscopy (SEM)...............................................................23 2.2.5 Elemental Analysis (EA) .....................................................................................23 2.3 REFERENCES .....................................................................................................23 3 NONAQUEOUS SYNTHESES OF METAL OXIDE NANOPARTICLES ................................................................................25 3.1 INTRODUCTION ...................................................................................................25 3.2 SYNTHESIS OF INDIUM OXIDE AS A CASE STUDY FOR THE DEPENDENCE OF PARTICLE MORPHOLOGY ON PRECURSORS AND SOLVENTS ........................................................27 3.2.1 Introduction..........................................................................................................27 3.2.2 Experimental ........................................................................................................27 3.2.3 Results and Discussion ......................................................................................28 3.2.4 Conclusions .........................................................................................................29 3.3 NONAQUEOUS SYNTHESIS OF NANOCRYSTALINE INDIUM AND ZINC OXIDE IN THE OXYGEN-FREE SOLVENT ACETONITRILE ....................................................................30 3.3.1 Introduction..........................................................................................................30 3.3.2 Experimental ........................................................................................................30 3.3.3 Results and Discussion ......................................................................................31 3.3.4 Conclusions .........................................................................................................38 3.4 SYNTHESIS OF TITANIA NANOPARTICLES IN AROMATIC SOLVENTS .........................38 3.4.1 Introduction..........................................................................................................38 3.4.2 Experimental ........................................................................................................39 3.4.3 Results and Discussion ......................................................................................39 3.4.4 Conclusions .........................................................................................................41 3.5 SOLVOTHERMAL AND SURFACTANT FREE SYNTHESIS OF CRYSTALLINE NIOBIUM OXIDE, HAFNIUM OXIDE AND TANTALUM OXIDE NANOPARTICLES ................................42 3.5.1 Introduction..........................................................................................................42 3.5.2 Experimental ........................................................................................................43 3.5.3 Results and Discussion ......................................................................................43 3.5.4 Conclusions .........................................................................................................50 3.6 REFERENCES .....................................................................................................50 4 SYNTHESES OF METAL NITRIDE NANOPARTICLES.................55 4.1 INTRODUCTION ...................................................................................................55 4.2 NONAQUEOUS SYNTHESIS OF INDIUM NITRIDE AS A CASE STUDY FOR THE DEPENDENCE OF PARTICLE SIZE ON PRECURSORS AND SOLVENTS .............................56 4.2.1 Introduction..........................................................................................................56 4.2.2 Experimental ........................................................................................................57 4.2.3 Results and Discussion ......................................................................................57 4.2.4 Conlusions ...........................................................................................................64 4.3 THERMAL TRANSFORMATION OF METAL OXIDES INTO METAL NITRIDES USING CYANAMIDE, UREA AND MELAMINE AS NITROGEN SOURCES .......................................65 4.3.1 Introduction..........................................................................................................65 4.3.2 Experimental ........................................................................................................66 4.3.3 Results and Discussion ......................................................................................71 4.3.3.1 Binary oxides as precursors ..................................................................................... 71 4.3.3.2 Ternary oxides as precursors ................................................................................... 83 4.3.3.3 Mixed oxides as precursors ...................................................................................... 85 4.3.4 Conclusions .........................................................................................................87
Recommended publications
  • 1 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Wi
    © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Understanding Continuous Lithium-Mediated Electrochemical Nitrogen Reduction Nikifar Lazouski,1 Zachary J Schiffer,1 Kindle Williams,1 and Karthish Manthiram1* 1Department of Chemical Engineering; Massachusetts Institute of Technology; Cambridge, MA 02139, USA *Corresponding Author: [email protected] 1 © 2019 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ doi: 10.1016/j.joule.2019.02.003 Summary Ammonia is a large-scale commodity chemical that is crucial for producing nitrogen- containing fertilizers. Electrochemical methods have been proposed as renewable and distributed alternatives to the incumbent Haber-Bosch process, which utilizes fossils for ammonia production. Herein, we report a mechanistic study of lithium-mediated electrochemical nitrogen reduction to ammonia in a non-aqueous system. The rate laws of the main reactions in the system were determined. At high current densities, nitrogen transport limitations begin to affect the nitrogen reduction process. Based on these observations, we developed a coupled kinetic-transport model of the process, which we used to optimize operating conditions for ammonia production. The highest Faradaic efficiency observed was 18.5 ± 2.9%, while the highest production rate obtained was (7.9 ± 1.6) × 10-9 mol cm-2 s-1. Our understanding of the reaction network and the influence of transport provides foundational knowledge for future improvements in continuous lithium- mediated ammonia synthesis.
    [Show full text]
  • Crystal Structure of Hexabarium Mononitride Pentaindide,(Ba6n)[In5]
    Z. Kristallogr. NCS 219 (2004) 349-350 349 © by Oldenbourg Wissenschaftsverlag, München Crystal structure of hexabarium mononitride pentaindide, (Ba6N)[In5] A. Schlechte, Yu. Prots and R. Niewa* Max-Planck-Institut für Chemische Physik fester Stoffe, Nöthnitzer Str. 40, 01187 Dresden, Germany Received October 1, 2004, accepted and available on-line November 12, 2004; CSD no. 409805 Discussion Indium, when combined with alkaline-earth elements forms a va- riety of ternary nitrides. The compounds known so far may be de- scribed as built from indium clusters and octahedra of alkaline- earth cations surrounding nitride ions. In the latter cationic sub- structure the polyhedra might be isolated, vertex-, and/or edge- sharing. The variety of In arrangements extends from isolated In species in (Ca7N4)Ini.o4 [1], isolated tetrahedral units in (AI9N7)[ID4]2 (A = Ca, Sr, Ba) [2,3], trigonal bipyramidal [Ins] clusters next to [Ins] ions of more complicated geometry in (Ba38Ni8)[In5]2[In8] [4], and infinite chains in (A4N)[In2] (A = Ca, Sr) [5] and (Ca2N)In [6]. None of these metallic compounds follows Zintl-like counting. The new compound (Ba6N)[Ins] is an isotype of (¿6N)[Ga5] (A = Sr, Ba) [7]. The crystal structure of (Ba6N)tIns] is characterized as rocksalt type motif of N-centred octahedra (BaiN) and trigonal bi- pyramidal clusters [Ins]. The trigonal bipyramidal units [Ins] might be described as [Ins]7- ions, quite the same according to Zintl-type electronic counting and using the Wade-rules for closo-cluster. The isotypes (AeN)[Gas] were previously de- scribed by the formula (A2+)6(N3-)[Ga5]7~ • 2e_ based on elec- tronic structure calculations.
    [Show full text]
  • Synthesis and Photoelectrochemical Characterization of Tantalum Oxide Nanoparticles and Their Nitrogen Derivatives
    University of Nevada, Reno Synthesis and Photoelectrochemical Characterization of Tantalum Oxide Nanoparticles and their Nitrogen Derivatives A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical engineering by Vijay Khanal Dr. Vaidyanathan (Ravi) Subramanian – Advisor August 2019 The Graduate School We recommend that the dissertation prepared under our supervision by VIJAY KHANAL Entitled Synthesis and Photoelectrochemical Characterization of Tantalum Oxide Nanoparticles and their nitrogen Derivatives Be accepted in partial fulfillment of the Requirements for the degree of DOCTOR OF PHILOSOPHY Vaidyanathan (Ravi) Subramanian, Ph.D., Advisor Dhanesh Chandra, Ph.D., Committee Member Alan Fuchs, Ph.D., Committee Member Victor Vasquez, Ph.D., Committee Member Mario A. Alpuche, Ph.D. Graduate School Representative David W. Zeh, Ph.D., Dean, Graduate School August 2019 i ABSTRACT This work presents a surfactant-mediated approach for the synthesis of Ta2O5 nanopar- 2 1 2 1 ticles with a very high surface area (41 m g− vs. 1.6 m g− for commercial equivalent), and their subsequent nitridation to yield two distinct nitrogen derivatives: TaON and Ta3N5. Excellent photocatalytic efficiency of Ta2O5 toward photodegradation of methy- lene blue and NOx removal is reported. Ta3N5 shows significant photoconversion of methylene blue attributable to its lowered bandgap and high adsorption capability of MB molecules on its surface. A new method for simplifying the existing synthesis protocols of single phase Tantalum oxynitride (TaON) was devised. Series of photoelectrochemical characterization shows that the newly synthesized TaON can significantly enhance the photoassisted charge generation, separation, and transportation compared to the parent oxide (Ta2O5).
    [Show full text]
  • This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
    This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Development of a High Temperature Sensor Suitable for Post-Processed Integration with Electronics Aleksandr Tabasnikov A thesis submitted for the degree of Doctor of Philosophy The University of Edinburgh 2016 Declaration of originality I declare that this thesis has been composed by me, the work is my own, and it has not been submitted for any other degree or professional qualification. Research recorded was carried out by me except as specified below: X-ray diffraction measurement results obtained using X-ray diffractometer Siemens D5000 were collected by Richard Yongqing Fu and his students Jimmy Zhou and Chao Zhao at the University of West of Scotland. Measurement results are analysed in section 4.4.6 of Chapter 4 and have been jointly published in 2014 (DOIs: 10.1109/ICMTS.2014.6841491).
    [Show full text]
  • Surface Modification of G-C3N4 by Hydrazine: Simple Way for Noble-Metal Free Hydrogen Evolution Catalysts
    Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts Item Type Article Authors Chen, Yin; Lin, Bin; Wang, Hong; Yang, Yong; Zhu, Haibo; Yu, Weili; Basset, Jean-Marie Citation Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts 2015 Chemical Engineering Journal Eprint version Post-print DOI 10.1016/j.cej.2015.10.080 Publisher Elsevier BV Journal Chemical Engineering Journal Rights NOTICE: this is the author’s version of a work that was accepted for publication in Chemical Engineering Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Chemical Engineering Journal, 2 November 2015. DOI: 10.1016/ j.cej.2015.10.080 Download date 03/10/2021 23:51:44 Link to Item http://hdl.handle.net/10754/581797 Accepted Manuscript Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts Yin Chen, Bin Lin, Hong Wang, Yong Yang, Haibo Zhu, Weili Yu, Jean-marie Basset PII: S1385-8947(15)01491-6 DOI: http://dx.doi.org/10.1016/j.cej.2015.10.080 Reference: CEJ 14356 To appear in: Chemical Engineering Journal Received Date: 18 June 2015 Revised Date: 9 October 2015 Accepted Date: 26 October 2015 Please cite this article as: Y. Chen, B. Lin, H. Wang, Y.
    [Show full text]
  • Structural and Electronic Properties of Indium Rich Nitride Nanostructures
    francesco ivaldi STRUCTURALANDELECTRONICPROPERTIESOF INDIUMRICHNITRIDENANOSTRUCTURES STRUCTURALANDELECTRONICPROPERTIESOFINDIUM RICHNITRIDENANOSTRUCTURES francesco ivaldi Institute of Physics Polish Academy of Science Laboratory of X-Ray and electron microscopy research Group of electron microscopy Promotor: Prof. nzw. dr hab. Piotr Dłuzewski˙ Warsaw, September 2015 Francesco Ivaldi: Structural and electronic properties of indium rich ni- tride nanostructures, III-V heterostructures investigated by TEM and connected methods, c September 2015 ABSTRACT New materials such as III-N ternary alloys are object of increasing interest in the field of micro- and nanotechnology due to their rel- evant optical and electronical properties. Those alloys are especially appealing to be used to form quantum nanostructures for various de- vice applications such as laser emitting diodes, high electron mobility transistors and solar cells. This thesis investigates the properties of InGaN and AlInN alloys with high indium content (> 25 %). TEM and STEM combined with EELS and EDX investigations have been used to correlate the struc- tural changes with the local electronic and optical properties of In- GaN quantum wells and InN quantum dots as a consequence of ther- mal processes. Annealing of InGaN quantum wells and capping of both InN quan- tum dots and quantum wells under different conditions have been investigated. Image processing techniques such as geometric phase analysis of HR-TEM images were used to reveal significant fluctua- tions in the indium distribution on a nanometric scale inside the wells. The growth parameters leading to improved photoemission proper- ties have been determined. MBE and MOCVD grown samples have been used to analyze the influence of the temperature of the quantum barrier growth on the structural and electronic properties of the samples.
    [Show full text]
  • Tantalum Nitride Nanotube Photoanodes: Establishing a Beneficial Back-Contact by Lift-Off and Transfer to Titanium Nitride Layer
    Tantalum nitride nanotube photoanodes: establishing a beneficial back-contact by lift-off and transfer to titanium nitride layer Lei Wang, a Anca Mazare, a Imgon Hwang, a and Patrik Schmuki a,b,* a Department of Materials Science and Engineering, WW4-LKO, University of Erlangen- Nuremburg, Martensstrasse 7, D-91058 Erlangen, Germany. b Department of Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia * E-mail: [email protected] Abstract In this work we introduce the use of TiN/Ti2 N layers as a back contact for lifted-off membranes of anodic Ta3N5 nanotube layers. In photoelectrochemical H2 generation experiments under simulated AM 1.5G light, shift of the onset potential for anodic photocurrents to lower potentials is observed, as well as a higher magnitude of the photocurrents compared to conventional Ta3N5 nanotubes (~0.5 V RHE ). We ascribe this beneficial effect to the improved conductive properties of the TiNx -based back contact layer that enables a facilitated electron-transport for tantalum-nitride based materials to the conductive substrate. Key words: tantalum nitride; nanotube membranes; titanium nitride; water splitting Link to the published article: http://dx.doi.org/10.1016/j.elecom.2016.08.012 1. Introduction Ta3N5 is considered to be one of the most important semiconductor materials for photoelectrochemical (PEC) water splitting. It has a visible-light active band gap of ~2.1 eV that embraces the H2O H2/O2 reduction-oxidation potentials, and thus may yield a 15.9% theoretical maximum solar-to-hydrogen (STH) conversion efficiency [1-9]. Extensive research has focused on nanostructuring the Ta3N5 photoelectrodes, in the form of nanoparticles, nanorods, or nanotubes [10-15].
    [Show full text]
  • Indium Nitride Growth by Metal-Organic Vapor Phase Epitaxy
    INDIUM NITRIDE GROWTH BY METAL-ORGANIC VAPOR PHASE EPITAXY By TAEWOONG KIM A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2006 Copyright 2006 by Taewoong Kim ACKNOWLEDGMENTS The author wishes first to thank his advisor, Dr. Timothy J. Anderson, for providing five years of valuable advice and guidance. Dr. Anderson always encouraged the author to approach his research from the highest scientific level. He is deeply thankful to his co-advisor, Dr. Olga Kryliouk, for her valuable guidance, sincere advice, and consistent support for the past five years. Secondly, the author wishes to thank the remaining committee members of Dr. Steve Pearton and Dr. Fan Ren for their advice and guidance The author is grateful to Scott Gapinski, the staff at Microfabritech, and Eric Lambers, the staff at the Major Analytical Instrumentation Center, especially for Auger characterization. Acknowledgement needs to be given to Sangwon Kang who worked with the author for the past year and provided valuable assistance. Thanks go to Youngsun Won for his useful discussion of quantum calculation and SEM characterization, and to Dr. Jianyun Shen for her assistance about how to use the ThermoCalc. The author wishes to thank Hyunjong Park for useful discussion and Youngseok Kim for his kindness and friendship. Most importantly, the author is grateful to Moonhee Choi, his beloved wife, for her endless support, trust, love, sacrifice and encouragement. Without her help, he would have not finished the Ph.D. course. iii The author is grateful to his mother, father, mother-in-law, father-in-law, sisters, and brother for providing love, support and guidance throughout his life.
    [Show full text]
  • Tanねlum Penねchlorid』E with Ammo血血the Vapor Pkase An《量properties of the Tan.Tal㎜ N’Itride Forme通
    676 DENKI KAGAKU Fomation Process of Tanね1㎜Nitri-e by the Reaction of Tanねlum Penねchlorid』e with Ammo血血the VaPor Pkase an《量Properties of the Tan.tal㎜ N’itride Forme通 Akimasa YAJIMA*,Ryoko MATsuzAKI*and Yuzo SAEKI* The reaction products of gaseous TaC15with ammonia were TaCl5・5NH3at2QO。CラTaC15・5 NH3,Ta3N5,NH4Cl at250~600℃,Ta3N5and NH4Cl at650~950。C,Ta3N5,Ta4N5・and NH4Cl at 10000C,and Ta4N5シTa2N,θ一TaN,ε一TaN,NH4Cl,and HCl at1100~1400。C.In the vapor、phase reaction of gaseous TaCl5with ammonia,the reaction of gaseous TaC15with ammonia to form TaCI5・5NH3㏄curs丘rst.Above6α.235。C,the TaC15・5NH3reacts with ammonia to form Ta3N5. Above侃.1000。C,the Ta3N5decomposes to Ta4N5.Above侃。1100。C,in addition to these reactiolls, the nitriding of tantalum,formed by the reduction of gaseous TaCI5with hydrogen resulting from the thermal dissociation of ammonia,also o㏄urs to form Ta2Nシθ一TaN,andε一TaN.On heating the Ta3N5,formed by the vapor-phase reaction,in an argon atmosphere,it changed to Ta4N5at6α・ 9000C,to Ta5N6,θ一TaN,andε一TaN at6α.1100。C,and then toθ一TaN andε一TaN at1300~1400。C. The tantalum nitrides formed above1200。C were uniform,ultra丘ne powders with the particle diametersoftheorderof1/100粋m. 11ntroduction 2 Experimental The vapor-phase reaction of transition metal 2.1Materials chlorides with ammonia has recently become The TaCl,used was prepared by the reaction important for the preparation of6ne powders of tantalum powder(Ta99.8形,Hermann C. or thin丘lms of transition metal nitrides,which Starck Berlin)with chlorine at350℃and puri一 are aquiring importance
    [Show full text]
  • Gases in Metals: Iii. the Determination of Nitrogen in Metals by Fusion in Vacuum
    S563 GASES IN METALS: III. THE DETERMINATION OF NITROGEN IN METALS BY FUSION IN VACUUM By Louis Jordan and James R. Eckman ABSTRACT A method has been developed for the determination of nitrogen in the gases evolved from metals fused in vacuum. As in a previously described method for the determination of oxygen and hydrogen by vacuum fusion, the metal sample is melted in a graphite crucible in a high-frequency vacuum furnace. The nitrogen, together with the other gases evolved except the noble gases, is absorbed in calcium vapor. The calcium nitride thus formed is dissolved in dilute hydrochloric acid with the formation of an ammonium salt, and the resulting ammonia is determined by distillation into a standard acid. The efficiency of the determination of nitrogen by absorption in calcium vapor was determined by tests with known gas mixtures. The complete vacuum-fusion procedure was applied to the analysis of several synthetic nitrides (silicon, aluminum, titanium, zirconium, chromium, vanadium) and a few irons and steels. The results ob- tained were compared with the nitrogen values given by the usual acid-solution method for nitrogen in metals. The fusion method has a precision equal to that of .the solution method and gives higher values for nitrogen than the solution method in the analysis of nitrides of silicon, titanium, and vanadium and in certain iron and steel samples. The fusion method should determine also any "uncombined" nitrogen present in a metal. CONTENTS Page I. Introduction 468 II. Review of methods for determining nitrogen in gas mixtures 470 III. Calcium as an absorbent for nitrogen 471 IV.
    [Show full text]
  • Graphitic Carbon Nitride “
    Chem Soc Rev View Article Online REVIEW ARTICLE View Journal | View Issue Graphitic carbon nitride ‘‘reloaded’’: emerging applications beyond (photo)catalysis Cite this: Chem. Soc. Rev., 2016, 45,2308 Jian Liu,*ab Hongqiang Wang*cd and Markus Antoniettia Despite being one of the oldest materials described in the chemical literature, graphitic carbon nitride (g-C3N4) has just recently experienced a renaissance as a highly active photocatalyst, and the metal-free polymer was shown to be able to generate hydrogen under visible light. The semiconductor nature of g-C3N4 has triggered tremendous endeavors on its structural manipulation for enhanced photo(electro)chemical performance, aiming at an affordable clean energy future. While pursuing the stem of g-C3N4 related catalysis (photocatalysis, electrocatalysis and photoelectrocatalysis), a number of emerging intrinsic properties of g-C3N4 are certainly interesting, but less well covered, and we believe that these novel applications outside of conventional catalysis can be favorably exploited as well. Thanks to the general efforts devoted to the exploration and enrichment of g-C3N4 based chemistry, the boundaries of this area have Creative Commons Attribution 3.0 Unported Licence. been possibly pushed far beyond what people could imagine in the beginning. This review strives to cover the achievements of g-C3N4 related materials in these unconventional application fields for depicting the broader future of these metal-free and fully stable semiconductors. This review starts with Received 13th October 2015 the general protocols to engineer g-C3N4 micro/nanostructures for practical use, and then discusses the DOI: 10.1039/c5cs00767d newly disclosed applications in sensing, bioimaging, novel solar energy exploitation including photocatalytic coenzyme regeneration, templating, and carbon nitride based devices.
    [Show full text]
  • Solid State Metathesis Preparations of Hard Refractory Ceramics
    S o u p S t a t e M e t a t h e s is P reparations OF H a r d R e f r a c t o r y C e r a m i c s A thesis presented by: Artur Marek Nartowski BSc in partial fulfilment for the award of Ph. D. U n iv e r s it y C o l l e g e Lo n d o n D e p t , o f C h e m is t r y ProQuest Number: 10014877 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10014877 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Acknowledgements This work was supported by EPSRC and was completed under very helpfiil and encouraging supervision of Dr. I. P. Parkin. Grateful acknowledgement is due to members of staff, especially Dr. C. Carmalt, Prof. A. J. Craven, Dr. M. MacKenzie and the departmental microanalyst. I am also indebted to my fellow students, in particular, L.
    [Show full text]