Nonaqueous Syntheses of Metal Oxide and Metal Nitride Nanoparticles
Total Page:16
File Type:pdf, Size:1020Kb
Max-Planck Institut für Kolloid and Grenzflächenforschung Nonaqueous Syntheses of Metal Oxide and Metal Nitride Nanoparticles Dissertation zur Erlangung des akademischen Grades “doctor rerum naturalium” (Dr. rer. nat.) in der Wissenschaftsdisziplin “Kolloidchemie” eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät Universität Potsdam von Jelena Buha Potsdam, im Januar 2008 Dieses Werk ist unter einem Creative Commons Lizenzvertrag lizenziert: Namensnennung - Keine kommerzielle Nutzung - Weitergabe unter gleichen Bedingungen 2.0 Deutschland Um die Lizenz anzusehen, gehen Sie bitte zu: http://creativecommons.org/licenses/by-nc-sa/2.0/de/ Elektronisch veröffentlicht auf dem Publikationsserver der Universität Potsdam: http://opus.kobv.de/ubp/volltexte/2008/1836/ urn:nbn:de:kobv:517-opus-18368 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18368] С’ вером у Богa Abstract Nanostructured materials are materials consisting of nanoparticulate building blocks on the scale of nanometers (i.e. 10-9 m). Composition, crystallinity and morphology can enhance or even induce new properties of the materials, which are desirable for todays and future technological applications. In this work, we have shown new strategies to synthesise metal oxide and metal nitride nanomaterials. The first part of the work deals with the study of nonaqueous synthesis of metal oxide nanoparticles. We succeeded in the synthesis of In2O3 nanopartcles where we could clearly influence the morphology by varying the type of the precursors and the solvents; of ZnO mesocrystals by using acetonitrile as a solvent; of transition metal oxides (Nb2O5, Ta2O5 and HfO2) that are particularly hard to obtain on the nanoscale and other technologically important materials. Solvothermal synthesis however is not restricted to formation of oxide materials only. In the second part we show examples of nonaqueous, solvothermal reactions of metal nitrides, but the main focus lies on the investigation of the influence of different morphologies of metal oxide precursors on the formation of the metal nitride nanoparticles. In spite of various reports, the number and variety of nanocrystalline metal nitrides is marginally small by comparison to metal oxides; hence preformed metal oxides as precursors for the preparation of metal nitrides are a logical choice. By reacting oxide nanoparticles with cyanamide, urea or melamine, at temperatures of 800 to 900 °C under nitrogen flow metal nitrides could be obtained. We studied in detail the influence of the starting material and realized that size, crystallinity, type of nitrogen source and temperature play the most important role. We have managed to propose and verify a dissolution-recrystallisation model as the formation mechanism. Furthermore we could show that the initial morphology of the oxides could be retained when ammonia flow was used instead. Table of Contents 1 INTRODUCTION................................................................................1 REFERENCES .............................................................................................................7 2 ANALYSIS AND CHARACTERIZATION ..........................................9 2.1 METHODS ............................................................................................................9 2.1.1 Wide Angle X-ray Scattering (WAXS) ..................................................................9 2.1.1.1 The Powder X-ray Diffraction Method ...................................................................... 11 2.1.1.2 Distinctive Aspects of Nanoparticles’ Diffraction................................................... 12 2.1.2 Transmission Electron Microscopy...................................................................14 2.1.2.1 Basics about the Transmission Electron Microscope............................................ 15 2.1.2.2 High-Resolution TEM Lattice Imaging...................................................................... 17 2.1.3 Scanning Electron Microscopy (SEM)...............................................................21 2.2 CHARACTERIZATION ...........................................................................................22 2.2.1 Powder X-ray Diffraction (XRD) Measurements ...............................................22 2.2.2 Transmission Electron Microscopy (TEM)........................................................22 2.2.3 High-Resolution Transmission Electron Microscopy (HRTEM)......................23 2.2.4 Scanning Electron Microscopy (SEM)...............................................................23 2.2.5 Elemental Analysis (EA) .....................................................................................23 2.3 REFERENCES .....................................................................................................23 3 NONAQUEOUS SYNTHESES OF METAL OXIDE NANOPARTICLES ................................................................................25 3.1 INTRODUCTION ...................................................................................................25 3.2 SYNTHESIS OF INDIUM OXIDE AS A CASE STUDY FOR THE DEPENDENCE OF PARTICLE MORPHOLOGY ON PRECURSORS AND SOLVENTS ........................................................27 3.2.1 Introduction..........................................................................................................27 3.2.2 Experimental ........................................................................................................27 3.2.3 Results and Discussion ......................................................................................28 3.2.4 Conclusions .........................................................................................................29 3.3 NONAQUEOUS SYNTHESIS OF NANOCRYSTALINE INDIUM AND ZINC OXIDE IN THE OXYGEN-FREE SOLVENT ACETONITRILE ....................................................................30 3.3.1 Introduction..........................................................................................................30 3.3.2 Experimental ........................................................................................................30 3.3.3 Results and Discussion ......................................................................................31 3.3.4 Conclusions .........................................................................................................38 3.4 SYNTHESIS OF TITANIA NANOPARTICLES IN AROMATIC SOLVENTS .........................38 3.4.1 Introduction..........................................................................................................38 3.4.2 Experimental ........................................................................................................39 3.4.3 Results and Discussion ......................................................................................39 3.4.4 Conclusions .........................................................................................................41 3.5 SOLVOTHERMAL AND SURFACTANT FREE SYNTHESIS OF CRYSTALLINE NIOBIUM OXIDE, HAFNIUM OXIDE AND TANTALUM OXIDE NANOPARTICLES ................................42 3.5.1 Introduction..........................................................................................................42 3.5.2 Experimental ........................................................................................................43 3.5.3 Results and Discussion ......................................................................................43 3.5.4 Conclusions .........................................................................................................50 3.6 REFERENCES .....................................................................................................50 4 SYNTHESES OF METAL NITRIDE NANOPARTICLES.................55 4.1 INTRODUCTION ...................................................................................................55 4.2 NONAQUEOUS SYNTHESIS OF INDIUM NITRIDE AS A CASE STUDY FOR THE DEPENDENCE OF PARTICLE SIZE ON PRECURSORS AND SOLVENTS .............................56 4.2.1 Introduction..........................................................................................................56 4.2.2 Experimental ........................................................................................................57 4.2.3 Results and Discussion ......................................................................................57 4.2.4 Conlusions ...........................................................................................................64 4.3 THERMAL TRANSFORMATION OF METAL OXIDES INTO METAL NITRIDES USING CYANAMIDE, UREA AND MELAMINE AS NITROGEN SOURCES .......................................65 4.3.1 Introduction..........................................................................................................65 4.3.2 Experimental ........................................................................................................66 4.3.3 Results and Discussion ......................................................................................71 4.3.3.1 Binary oxides as precursors ..................................................................................... 71 4.3.3.2 Ternary oxides as precursors ................................................................................... 83 4.3.3.3 Mixed oxides as precursors ...................................................................................... 85 4.3.4 Conclusions .........................................................................................................87