Food Consumption and Weight Response of Elk (Cervus Canadensis Nelsoni) Under Winter Conditions

Total Page:16

File Type:pdf, Size:1020Kb

Food Consumption and Weight Response of Elk (Cervus Canadensis Nelsoni) Under Winter Conditions University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1952 Food consumption and weight response of elk (Cervus canadensis nelsoni) under winter conditions C. Roger Hungerford The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Hungerford, C. Roger, "Food consumption and weight response of elk (Cervus canadensis nelsoni) under winter conditions" (1952). Graduate Student Theses, Dissertations, & Professional Papers. 6484. https://scholarworks.umt.edu/etd/6484 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. THE FOOD CONSUMPTION AliD WEIGHT RK£PO::£E OF ELK (C erv as c a n a d e n sis^ n e ls o n l) UNDER WINTER CONDITIONS Cid/iRLES ROGER HUNGERFORD B*S#, U niversity of IdarxOj 19^8 Presented in partial fulfillm ent of the requirements for the degree of Master of Science in W ildlife Management MONTANA STATE UNIVERSITY 1952 UMI Number; EP37285 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Oisssrtation F^ublishing UMI EP37285 Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code Pro uest ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106 - 1346 This thesis has been approved by the Board of Examiners in partial fulfillm ent of the requirements for the degree of Master of Science In W ildlife Management# Chairman Board of Examiners Dean of the Graduate School - l i - The writer is especially indebted to Professor Melvin Morris who suggested this problem, and who spent many hours of his time in generous assistance and guidance* His wisdom and deep interest was a constant source of encouragement, and whatever success was acidleved is due him in large measure* Hr. John Schwartz, Superintendent of the National Bison Range, Moiese, Montana, furnished the experimental animals* Robert Lambeth, Chief Warden, Robert Cooney, Director of the W ildlife Restoration Division, and others of tiie Montana Fish and GaiTse Department assured construction of the experimental feeding pens* Tiie Department fur* nished the pen site, materials, living quarters, and much of the labor required in the job of constructing the feeding facilities* Hr. Stan Hon grain, manager of the Blackfoot-Clearwater Game Range, gave active assistance triroughout construction and grass forage collection* The School of Forestry gave financial assistance and many students partic­ ipated in the work of pen construction and brows© collection* The Montana Cooperative W ildlife Unit^ sponsored the research and maintained the w riter as a Unit Fellow throughout the experiment* Dr* B* L* Che a turn. Unit Leader and chairman of the advisory committee, gave active assistance, as well as enlisting the cooperation of the many people and agencies who aided this study* The writer is sincerely grateful and hopes tliat iiis work has justified this assistance* ^The Montana State Fish and Game Department, Montana State University, the U* S* Fish and W ildlife Service, and the W ildlife Management Institute, cooperating - i l l * TAHLS CF OCKTEÜTS PAGE INTRODUCTION........................................................................................................ 1 REVIEW OF LITERATURE . • • ................................................................... 3 >lETaOD£ AND PROCEDURE......................................................................... 12 Fore^e Collection •••*•••••••* *•••••* 12 Hay ...... .. ......... 12 Grass ...... .. .. ... ... ... lU Browse ..... .. .... ... ... l6 Feeding Me*Uiod8 ..... .... ......... 19 Experimental Animals 20 Weather Data . 22 FOOD CONSUFiPTiGN AND ANIMi\L RESPONSE.....................................................23 Results with Hay ............... 23 Results witn Grass . .. .. .. ... 2? Results with I^owse 29 ADDITIONAL OBSERVATIONS................................................................................... lA Browse Species Preference . ......... .. hX Desire for other Foods .................. ••......................................ill Water Consuirption i|2 S alt Con sumption ...... .......... ... i|2 Influence of Weather ............................ ii2 Temperament and Cojipat ability ..................... * ii5 Mortality and Injuries .......................................... U5 • iv- PAGE Pellet Group Counts Ii6 Final Animal Condition . # . * * * li? DISCUSSION.......................................................................................................... ii8 SIM-IARY Ai\D CONCLUSIOWS ....................... 52 APPENDIX...................................................................................... ..... • . 55 Description of Feeding Pens and Weighing Facilities . 55 LITERATURE CITED..................................................................................... 56 LIST OF TABLES TABLE PAGE It Percentajrc Coiipositlon of tlie Grass Hay by Weight of Species ••••••••••«•*•»•••«• lU II* Composition of Bunch Grass by Vegetative Description . 16 III* Suinmary of Air Dry Forage Consumption and Weight Response of Adult Elk •••« •••••*•••• 35 XV* Air Dry Forage Consumption and Weight Response of Calves .«...#.###**##***** 36 V* Chemical Composition of Forage Comparable to the Forages Fed the Experimental Elk *....**.* 57 VI* Chemical Composition of Forages Used ........................ 36sl • v i — LIST OF FIGURES Am PLATES FIGURE PAGE la# D aily Hay Consumption . # ........................ 2h lb# D aily Hay Con&un^tion •«•••••••••#•«*#• 2$ 2# Daily Grass Consumption # . # * . # . # . , 28 3# Average Daily Consunçïtion of Air Dry Material per Hundredweight of Animal •••••••••••#• 31 U« Average Daily Consumption In Pounds o f Air Diy Material per Animal .# 31 g. Daily Browse Consuir^tion •«•••••••••••#• 32 6# Change of Weight and Diet of Cow Elk ••#••*#•• 33 7* Average Per Cent of Weight Lost .................... 33 6# Maximum and Minimum Tem peratures ...# . .... h3 9# Variations in Wind Velocity and Snowfall ...... UU PLATE 1# Experimental Feeding Pens . ... .. 13 2# Composition of Hay Fed the Elk Ig 3# site of Browse Collection Area near Evaro, r^ntana . # 17 U* Example of Drowse Utilization ......... 18 5# Hay Diet# Animal ^3 3iown at the Conclusion of the Experiment, March 9 37 6# Calves at the Beginning and at the Conclusion of the Experiment 38 7* Grass Diet# Animal //2 Siown at the Beginning and at the Conclusion of the Experiment . ..... 39 8# Browse Diet# Animal ^6 Btiovm at the beginning and at the Conclusion of the Experiment ..*.... hO - ^ i - INTRODUCTION Proper managoraent o f big gaine re q a iro s tù s eétablisiiiiient of a balance between population numbers and food supply# Tais balance le necessary to achieve maximum health and productivity of animals as well as full forage production, soil stabilization, and watershed value of the game range# big game population and food supply are frequently out of balance as evidenced ly dariage to adjacent a^^rlcultural areas and overuse or elimination of sor.o plants from tiieir range# In some cases the equilibrium may be disturbed by an overabundance of one big game animal to the dotrimont of another# To establish a balance, ws noed to know not only tiie amount of available forage produced per unit of range, but also the forage needs of eacn big game species present# Food habits of wild ruminants are not sufficiently specialized to prevent competition# The elk is tiie most versatile cf them all and is most likely to cause harmful rivalry (Tlurie, 1951)# By reason of its size and number in western Montana, its total forage and range require­ ment is very large# Before tlie elk population can be brought into balance with its food supply, the food requirements of tiie elk must be known# Knowledge of the food requirement of elk is also necessary in order to measure their degree of competition with other wild ruminants# Experimental pen feeding can provide food requirement information# The value of various foods presented to the animals is rougnly expressed in animal condition and weight changes as responses to diot and to a lesser extent by the difference in amounts of food consumed# 2 The purpose of this study was to determine the response of Rocky Mountain elk (Cervus canadensis, Nelson!) when fed the following three diets! meadow hay^ cured native bunch grass, and native browse plants* Effects were determined by animal condition and weight changes* A sig­ nificant aspect was to determine tiie effects of weatiier upon weight trends and food consumption of elk. The two diets of native bunch grass and native browse plants were chosen as most significant in the winter diet of elk in Kcaitana. Meadow hay was used as a basis of comparison and to evaluate hay in artificial feeding* REVIEW
Recommended publications
  • Anaplasma Phagocytophilum in the Highly Endangered Père David's
    Yang et al. Parasites & Vectors (2018) 11:25 DOI 10.1186/s13071-017-2599-1 LETTER TO THE EDITOR Open Access Anaplasma phagocytophilum in the highly endangered Père David’s deer Elaphurus davidianus Yi Yang1,3, Zhangping Yang2,3*, Patrick Kelly4, Jing Li1, Yijun Ren5 and Chengming Wang1,6* Abstract Eighteen of 43 (41.8%) Père David’s deer from Dafeng Elk National Natural Reserve, China, were positive for Anaplasma phagocytophilum based on real-time FRET-PCR and species-specific PCRs targeting the 16S rRNA or msp4. To our knowledge this is the first report of A. phagocytophilum in this endangered animal. Keywords: Anaplasma phagocytophilum, Père David’s deer, Elaphurus davidianus, China Letter to the Editor GmbH, Mannheim, Germany). The fluorescence reson- Père David’s deer (Elaphurus davidianus) are now found ance energy transfer (FRET) quantitative PCR targeting only in captivity although they occurred widely in north- the 16S rRNA gene of Anaplasma spp. [5] gave positive eastern and east-central China until they became extinct reactions for 18 deer (41.8%), including 8 females in the wild in the late nineteenth century [1]. In the (34.8%) and 10 males (50.0%). To investigate the species 1980s, 77 Père David’s deer were reintroduced back into of Anaplasma present, the positive samples were further China from Europe. Currently the estimated total popu- analyzed with species-specific primers targeting the 16S lation of Père David’s deer in the world is approximately rRNA gene of A. centrale, A. bovis, A. phagocytophilum 5000 animals, the majority living in England and China.
    [Show full text]
  • The European Fallow Deer (Dama Dama Dama)
    Heredity (2017) 119, 16–26 OPEN Official journal of the Genetics Society www.nature.com/hdy ORIGINAL ARTICLE Strong population structure in a species manipulated by humans since the Neolithic: the European fallow deer (Dama dama dama) KH Baker1, HWI Gray1, V Ramovs1, D Mertzanidou2,ÇAkın Pekşen3,4, CC Bilgin3, N Sykes5 and AR Hoelzel1 Species that have been translocated and otherwise manipulated by humans may show patterns of population structure that reflect those interactions. At the same time, natural processes shape populations, including behavioural characteristics like dispersal potential and breeding system. In Europe, a key factor is the geography and history of climate change through the Pleistocene. During glacial maxima throughout that period, species in Europe with temperate distributions were forced south, becoming distributed among the isolated peninsulas represented by Anatolia, Italy and Iberia. Understanding modern patterns of diversity depends on understanding these historical population dynamics. Traditionally, European fallow deer (Dama dama dama) are thought to have been restricted to refugia in Anatolia and possibly Sicily and the Balkans. However, the distribution of this species was also greatly influenced by human-mediated translocations. We focus on fallow deer to better understand the relative influence of these natural and anthropogenic processes. We compared modern fallow deer putative populations across a broad geographic range using microsatellite and mitochondrial DNA loci. The results revealed highly insular populations, depauperate of genetic variation and significantly differentiated from each other. This is consistent with the expectations of drift acting on populations founded by small numbers of individuals, and reflects known founder populations in the north.
    [Show full text]
  • Cervid Mixed-Species Table That Was Included in the 2014 Cervid RC
    Appendix III. Cervid Mixed Species Attempts (Successful) Species Birds Ungulates Small Mammals Alces alces Trumpeter Swans Moose Axis axis Saurus Crane, Stanley Crane, Turkey, Sandhill Crane Sambar, Nilgai, Mouflon, Indian Rhino, Przewalski Horse, Sable, Gemsbok, Addax, Fallow Deer, Waterbuck, Persian Spotted Deer Goitered Gazelle, Reeves Muntjac, Blackbuck, Whitetailed deer Axis calamianensis Pronghorn, Bighorned Sheep Calamian Deer Axis kuhili Kuhl’s or Bawean Deer Axis porcinus Saurus Crane Sika, Sambar, Pere David's Deer, Wisent, Waterbuffalo, Muntjac Hog Deer Capreolus capreolus Western Roe Deer Cervus albirostris Urial, Markhor, Fallow Deer, MacNeil's Deer, Barbary Deer, Bactrian Wapiti, Wisent, Banteng, Sambar, Pere White-lipped Deer David's Deer, Sika Cervus alfredi Philipine Spotted Deer Cervus duvauceli Saurus Crane Mouflon, Goitered Gazelle, Axis Deer, Indian Rhino, Indian Muntjac, Sika, Nilgai, Sambar Barasingha Cervus elaphus Turkey, Roadrunner Sand Gazelle, Fallow Deer, White-lipped Deer, Axis Deer, Sika, Scimitar-horned Oryx, Addra Gazelle, Ankole, Red Deer or Elk Dromedary Camel, Bison, Pronghorn, Giraffe, Grant's Zebra, Wildebeest, Addax, Blesbok, Bontebok Cervus eldii Urial, Markhor, Sambar, Sika, Wisent, Waterbuffalo Burmese Brow-antlered Deer Cervus nippon Saurus Crane, Pheasant Mouflon, Urial, Markhor, Hog Deer, Sambar, Barasingha, Nilgai, Wisent, Pere David's Deer Sika 52 Cervus unicolor Mouflon, Urial, Markhor, Barasingha, Nilgai, Rusa, Sika, Indian Rhino Sambar Dama dama Rhea Llama, Tapirs European Fallow Deer
    [Show full text]
  • American Elk (Cervus Elaphus)
    American Elk (Cervus elaphus) November 1999 Fish and Wildlife Habitat Management Leaflet Number 11 General Information Before European settlement, an estimated ten million elk roamed the North American continent. The American elk (Cervus elaphus), or wapiti, a Native American word meaning “white rump,” once had the largest range of any deer species in North America. For centuries, the elk has been a picturesque icon of the American west and has pro- vided recreational opportunities for hunters, photographers, artists, and other wildlife enthusiasts. Unregulated hunting, grazing compe- tition from domestic livestock, and habitat destruction from unre- strained timber harvesting, urbanization, and westward expansion throughout the nineteenth century reduced American elk populations to less than 100,000 individuals continent-wide by the early 1900s. Fortunately, the elk’s ability to use a variety of habitats, its opportun- istic feeding habits, and positive response to management efforts has Bull elk enabled the species to survive natural and human-induced pressures over time. These factors, coupled with concentrated wildlife management efforts, have returned the American elk to stable, and in some areas increasing, populations in the United States and Canada. This pamphlet is designed to serve as an introduction to elk habitat requirements and to assist private landowners and managers in developing elk management plans. Success of any individual species management plan depends on targeting the specific needs of the desired species, analyzing the desig- nated habitat area as a whole to ensure that all required habitat elements are present, and determining what management techniques will best improve the land as elk habitat. Range Four subspecies of American elk live in North America today.
    [Show full text]
  • The Persian Fallow Deer by Hubert J
    291 The Persian Fallow Deer By Hubert J. Pepper Discovered less than a hundred years ago, the Persian fallow deer Dama mesopotamica is in serious danger of becoming extinct. Mr. Pepper describes this large deer and the little that is known of its history, and urges the need for establishing a captive herd based on the two females in a German zoo, the only ones in captivity. HE Persian fallow deer Dama mesopotamica, which was first described as recently as 1875, is in imminent danger of extinction without ever Thaving been properly studied scientifically. There may be no more than 50 to 60 left in the world, and only two in captivity. This giant among fallow deer, standing at the shoulder about one-third as high again as the European fallow deer Dama dama, was presumably known to the ancient Egyptians (Dawson, 1934), but little written evidence remains. Fallow deer are mentioned in the Bible among the clean animals and in the list of game animals furnished for Solomon's daily table, and Tristram (1866) mentioned representatives of a fallow deer species on Mount Tabor and on the Litani River. The real discovery of the Persian fallow deer came, however, when Sir Victor Brooke was offered the skin and horns of a spotted deer from south-west Persia, which, he said, " appertained to a new and very interesting species " (1875). A drawing by J. Wolf, published at the same time, does full justice to the animal. Brooke wrote : " Hair of moderate length, stiff, close-set. General colour of neck, body and limbs bright fawn.
    [Show full text]
  • Milk and the Antibacterial Activity of Deer Lactoferrin and Its Hydrolysates
    foods Article Lactoferrin Isolation and Hydrolysis from Red Deer (Cervus elaphus) Milk and the Antibacterial Activity of Deer Lactoferrin and Its Hydrolysates Ye Wang 1,*, Alaa El-Din A. Bekhit 2 , Susan L. Mason 1 and James D. Morton 1 1 Department of Wine, Food and Molecular Bioscience, Lincoln University, PO Box 85084, Lincoln 7674, New Zealand; [email protected] (S.L.M.); [email protected] (J.D.M.) 2 Department of Food Science, University of Otago, PO Box 56, Dunedin 9054, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-2102566552 Received: 11 October 2020; Accepted: 18 November 2020; Published: 21 November 2020 Abstract: Lactoferrin (Lf) and other whey proteins have been isolated from red deer milk for the first time using a three-step anion and cation exchange chromatography protocol. The separated deer Lf was subject to in vitro gastric and duodenal digestions to generate peptides. The purity of the deer Lf and its hydrolysis products were analyzed by SDS-PAGE. The antibacterial activity of the deer Lf and its hydrolysates were investigated and was compared to cow counterpart. Gastric and duodenal digested deer Lf had strong bactericidal activity against E. coli ATCC 25922 with minimum inhibition concentration (MIC) of 280 µM and 402 µM, respectively. These results suggest that deer milk contains bioactive whey proteins and can generate bioactive peptides, which can benefit human health by inhibiting food-borne pathogenic bacteria. Keywords: deer milk; whey proteins; alpha-lactalbumin; beta-lactoglobulin; lactoferrin fractionation; lactoferrin hydrolysis; antibacterial activity; E. coli inhibition 1.
    [Show full text]
  • The Population of Red Deer (Cervus Elaphus L., 1758) in Tulcea County (Romania)
    Travaux du Muséum National d’Histoire Naturelle © Décembre Vol. LIII pp. 351–356 «Grigore Antipa» 2010 DOI: 10.2478/v10191-010-0026-3 THE POPULATION OF RED DEER (CERVUS ELAPHUS L., 1758) IN TULCEA COUNTY (ROMANIA) SORIN GEACU Abstract. The presence of the Red Deer in the North-western parts of Tulcea County is an example of the natural expansion of a species spreading area. In North Dobrogea, this mammal first occurred only forty years ago. The first specimens were spotted on Cocoºul Hill (on the territory of Niculiþel area) in 1970. Peak numbers (68 individuals) were registered in the spring of 1987. The deer population (67 specimens in 2007) of this county extended along 10 km from West to East and 20 km from North to South over a total of 23,000 ha (55% of which was forest land) in the East of the Mãcin Mountains and in the West of the Niculiþel Plateau. Résumé. La présence du cerf rouge (Cervus elaphus) dans le nord-ouest du département Tulcea constitue un exemple d’extension naturelle de l’aire de distribution d’une espèce. Ce mammifère n’est apparu dans le nord de la Dobrogea que depuis 40 années. Les premiers exemplaires ont été observés en 1970 à Dealul Cocoºului situé sur le territoire de la commune Niculiþel. Le plus grand nombre en a été enregistré au cours du printemps de l’année 1987, quand on y a observé 68 exemplaires. En 2007 l’aire de la population de cerfs (67 exemplaires) du département de Tulcea s’étendait sur environ 10 km de l’ouest vers l’est et 20 km du nord vers le sud, en tout environ 23 000 ha (dont 55% de terrain forestier) à l’est des Monts Mãcin et à l’ouest du Plateau Niculiþel.
    [Show full text]
  • Post-Translational Protein Deimination Signatures in Plasma and Plasma Evs of Reindeer (Rangifer Tarandus)
    biology Article Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer (Rangifer tarandus) Stefania D’Alessio 1, Stefanía Thorgeirsdóttir 2, Igor Kraev 3 , Karl Skírnisson 2 and Sigrun Lange 1,* 1 Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK; [email protected] 2 Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland; [email protected] (S.T.); [email protected] (K.S.) 3 Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)207-911-5000 (ext. 64832) Simple Summary: Reindeer are an important wild and domesticated species of the Arctic, Northern Europe, Siberia and North America. As reindeer have developed various strategies to adapt to extreme environments, this makes them an interesting species for studies into diversity of immune and metabolic functions in the animal kingdom. Importantly, while reindeer carry natural infections caused by viruses (including coronaviruses), bacteria and parasites, they can also act as carriers for transmitting such diseases to other animals and humans, so called zoonosis. Reindeer are also affected by chronic wasting disease, a neuronal disease caused by prions, similar to scrapie in sheep, mad cows disease in cattle and Creutzfeldt-Jakob disease in humans. The current study assessed a specific protein modification called deimination/citrullination, which can change how proteins Citation: D’Alessio, S.; function and allow them to take on different roles in health and disease processes.
    [Show full text]
  • (Cervus Elaphus) and Siberian Roe Deer (Capreolus Pygargus) in China and a Brief Literature Review
    Parasite 24, 54 (2017) © W. Zhao et al., published by EDP Sciences, 2017 https://doi.org/10.1051/parasite/2017056 Available online at: www.parasite-journal.org RESEARCH ARTICLE Dominance of the Enterocytozoon bieneusi genotype BEB6 in red deer (Cervus elaphus) and Siberian roe deer (Capreolus pygargus) in China and a brief literature review Wei Zhao, Jianguang Wang, Ziyin Yang, and Aiqin Liu* Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang 150081, PR China Received 9 August 2017, Accepted 3 December 2017, Published online 21 December 2017 Abstract- -Enterocytozoon bieneusi is the most frequently diagnosed microsporidian species in humans and is also found in a wide range of animals. It is considered to be an important but neglected zoonotic pathogen. With the development of deer bred in captivity, the number of deer has been increasing in recent years in China and there are more people involved in this work. The aims of this study were to determine prevalence and genotypes of E. bieneusi in red deer (Cervus elaphus) and Siberian roe deer (Capreolus pygargus), and to assess their potential zoonotic transmission. A total of 122 fecal specimens were collected from 104 red deer and 18 roe deer from three deer farms in Heilongjiang and Jilin Provinces, China. Enterocytozoon bieneusi was detected and genotyped by PCR and sequencing of the internal transcribed spacer (ITS) region of the rRNA gene. The average infection rate was 8.2% (10/122), with 7.7% (8/104) for red deer and 11.1% (2/18) for roe deer. Two genotypes were identified: a known genotype BEB6 (n = 9) and a novel genotype named HLJD-VI (n = 1).
    [Show full text]
  • DNA Systematics and Evolution of the Artiodactyl Family Bovidae (Phylogeny/Ntdna Sequences/Rrna Genes/Rapid Cladogenesis) MARC W
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3972-3976, May 1992 Evolution DNA systematics and evolution of the artiodactyl family Bovidae (phylogeny/ntDNA sequences/rRNA genes/rapid cladogenesis) MARC W. ALLARD, MICHAEL M. MIYAMOTO, LIANNA JARECKI, FRED KRAuS, AND MICHELE R. TENNANT Department of Zoology, University of Florida, Gainesville, FL 32611-2009 Communicated by Charles G. Sibley, January 17, 1992 (received for review October 29, 1991) ABSTRACT Nine additional sequences from representa- outgroup representatives of the infraorder Pecora (8, 9). The tives ofdierent tribes ofthefamily Bovidae were combined with time of divergence for the bovid tribes [estimates ranging six published artiodactyl sequences to provide orthologous from 7 to 20 MA (7)] suggests that relationships within the mtDNA for investigation ofbovid phylogeny and evolution. Each family should be resolvable with this gene complex, which species was represented by a homologous 2.7-kilobase-pair evolves at a rate suitable for this analysis (10). Of the 14 stretch ofmtDNA for the complete 12S and 16S rRNA genes and commonly recognized tribes of Bovidae, only 3 (Ovibovini, three adjacent tRNA genes. These data, whencompared toother Peleini, and Rupicaprini) were not available for this sequenc- results, provided evidence for a monophyletic Bovidae and for ing study; their later inclusion will provide tests of the two clades within the family: one including the tribes Bosela- hypotheses developed herein. phini, Bovini, and Tragelaphini and another for an Antilo- pini/Neotragini grouping. AU other intrafamilial relationships MATERIALS AND METHODS were only weakly supported. These sequence comparisons sug- mtDNA sequences were collected from nine tribal represen- gest that most bovid tribes originated early in the Miocene with tatives including Aepyceros melampus (AME), Boselaphus all extant lineages present by -16-17 million years ago.
    [Show full text]
  • Feral Pigs and the Environment: an Annotated Bibliography
    Feral pigs and the environment: an annotated bibliography By Trixie L. Wolf and Michael R. Conover Feral pigs and the environment: an annotated bibliography Trixie Wolf and Michael R. Conover 2003 Jack H. Berryman Institute Department of Forest, Range and Wildlife Sciences College of Natural Resources Utah State University Logan, Utah 84322-5230 Feral pigs (Sus scrofa) have been introduced by humans to many parts of the world where pigs did not exist historically. In areas where feral pigs are an exotic species, they are a joy to people who like to hunt them and a menace to people who are concerned about their effects on native flora and fauna. In this annotated bibliography, we examine the scientific literature to assess the impact of feral hogs on their environment. We emphasize studies conducted in areas where feral hogs are exotic species, but we have also included those conducted within their native range, along with papers dealing with the management of feral hogs. In preparing this publication, we were faced with many situations where we had to make a decision about whether to include or exclude a particular paper from our bibliography. Our decision usually was to include the paper because we cannot tell which particular papers might be of interest to a reader. Because all papers are listed in the index by key words, there is little cost to the readers if our bibliography is exhaustive if papers can be found easily and rapidly using the index. We have, however, only provided a summary or abstract for those studies we believed to be most pertinent to the topic.
    [Show full text]
  • CORTISOL CONCENTRATIONS in MALE ALASKAN MOOSE (Alces A
    CORTISOL CONCENTRATIONS IN MALE ALASKAN MOOSE (Alces a. gigas) AFTER EXOGENOUS ACTH ADMINISTRATION George A. Bubenik1, Charles C. Schwartz1 and John Carnesl 1Department of Zoology, University of Guelph, Guelph, Ontario, Canada, Nl G 2Wl; 2Alaska Department ofFish & Game, Soldotna, Alaska 99669 USA. ABSTRACT: Blood levels of cortisol were determined in five yearling Alaskan moose after an exogenous administration of 40 I.U. of ACTH. A rapid elevation of cortisol concentration (over l5J.1 g/100 mL) within 60 min. of ACTH injection demonstrated an unexpectedly high level of adrenocortical response to a simulated stress. The results in moose are compared to several other deer species. ALCES VOL. 30 (1994) pp.65-69 Endocrine investigations of reindeer To expand our knowledge of stress adap­ (Rangifer tarandus tarandus) and moose tations of cervids and to compare these data to (Alces alces) are rare. Stress-induced varia­ other deer species, we examined the time tions of serum corticoid levels in moose were course of cortisol concentrations in Alaskan investigated by Franzmann and et al. (1975) moose after an exogenous administration of and in reindeer by Rehbinder and Edqvist ACTH. (1981) and Wiklund et al. (1993). Winter, summer and fall concentrations of MATERIAL AND METHODS ), ) triiodothyronine (T3 thyroxine T4 and Five tame, male, yearling Alaskan moose cortisol in moose were reported by Nilssen et (A. alces gigas) born and raised by their , al. (1985) and seasonal changes ofT3 T4 and mothers at the Kenai Moose Research Center growth hormone were published by Ryg (MRC) at Soldotna, Alaska, were tranquilized ( 1982). However, concentrations or seasonal with a 2:1 mixture of xylazine hydrochloride profiles of many other hormones in moose (Anased - Lloyd Lab.
    [Show full text]