DNA Systematics and Evolution of the Artiodactyl Family Bovidae (Phylogeny/Ntdna Sequences/Rrna Genes/Rapid Cladogenesis) MARC W

Total Page:16

File Type:pdf, Size:1020Kb

DNA Systematics and Evolution of the Artiodactyl Family Bovidae (Phylogeny/Ntdna Sequences/Rrna Genes/Rapid Cladogenesis) MARC W Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3972-3976, May 1992 Evolution DNA systematics and evolution of the artiodactyl family Bovidae (phylogeny/ntDNA sequences/rRNA genes/rapid cladogenesis) MARC W. ALLARD, MICHAEL M. MIYAMOTO, LIANNA JARECKI, FRED KRAuS, AND MICHELE R. TENNANT Department of Zoology, University of Florida, Gainesville, FL 32611-2009 Communicated by Charles G. Sibley, January 17, 1992 (received for review October 29, 1991) ABSTRACT Nine additional sequences from representa- outgroup representatives of the infraorder Pecora (8, 9). The tives ofdierent tribes ofthefamily Bovidae were combined with time of divergence for the bovid tribes [estimates ranging six published artiodactyl sequences to provide orthologous from 7 to 20 MA (7)] suggests that relationships within the mtDNA for investigation ofbovid phylogeny and evolution. Each family should be resolvable with this gene complex, which species was represented by a homologous 2.7-kilobase-pair evolves at a rate suitable for this analysis (10). Of the 14 stretch ofmtDNA for the complete 12S and 16S rRNA genes and commonly recognized tribes of Bovidae, only 3 (Ovibovini, three adjacent tRNA genes. These data, whencompared toother Peleini, and Rupicaprini) were not available for this sequenc- results, provided evidence for a monophyletic Bovidae and for ing study; their later inclusion will provide tests of the two clades within the family: one including the tribes Bosela- hypotheses developed herein. phini, Bovini, and Tragelaphini and another for an Antilo- pini/Neotragini grouping. AU other intrafamilial relationships MATERIALS AND METHODS were only weakly supported. These sequence comparisons sug- mtDNA sequences were collected from nine tribal represen- gest that most bovid tribes originated early in the Miocene with tatives including Aepyceros melampus (AME), Boselaphus all extant lineages present by -16-17 million years ago. Thus, tragocamelus (BTR), Cephalophus maxwelli (CMA), Dam- bovid tribes provide an example ofrapid cladogenesis, following aliscus dorcas (DDO), Gazella thomsoni (GTH), Kobus the origin of families in the infraorder Pecora. ellipsiprymnus (KEL), Madoqua kirki (MKI), Oryx gazella (OGA), and Tragelaphus imberbis (TIM). mtDNA isolation, The cloning, and subsequent sequencing followed reported pro- family Bovidae (infraorder Pecora, order Artiodactyla) cedures (11). Additionally, large portions of the sequence for includes 128 extant species in 45 recent genera, which are some species were collected by using PCR for amplification further grouped into 14 tribes, with most native to Africa (1). and sequencing of single-stranded DNA (12). Sequences This family includes domesticated forms (goats, sheep, and were compared to those for other bovid and pecoran repre- cattle), the large herding antelopes of the African plains, and sentatives [Bos taurus (BTA) and Capra hircus (CHI) versus the small solitary, territorial forms usually found in more Antilocapra americana (AAM), Cervus unicolor (CUN), forested areas. The family represents the most diverse group Giraffa camelopardalis (GCA), and Hydropotes inermis of large mammals originating since the Miocene and has been (HIN), respectively] (8, 9). The nine additional sequences studied extensively by those interested in paleoecology, bio- were aligned to each other and to the previously reported geography, comparative anatomy, genetics, behavior, and ones, as described before (9, 11). The four representatives physiology (2). Bovids are represented by a rich paleontolog- from the other pecoran families (AAM, CUN, HIN, and ical record; all extant tribes were present by 7 million years ago GCA) were treated as outgroups and were included in the (MA). Yet despite the large amount of information known analyses to root the trees. These four outgroups span the about them, their phylogenetic relationships remain uncertain. taxonomic and mtDNA diversity present in the closest avail- The difficulty has not been in placing extant taxa into able relatives of the bovid study group (3, 9). genera or tribes, but in determining the relationships among Several heuristic approaches implementing the parsimony tribal groups (3). Many attempts have been made to resolve procedure were conducted to find the most-parsimonious the phylogenetic relationships of bovid tribes (Fig. 1), al- (MP) solution, including varying taxon addition, starting though little, if any, consensus has been reached. This tree(s), and branch-swapping procedures. Analyses based on impasse is not simply a disagreement between molecules and all mutations and transversions alone were conducted. Other morphology, because competing morphological (Fig. 1 B, C, approaches tested the stability of the MP results. Subsets of and F) or molecular (Fig. 1 A and D) studies have disagreed the entire 2.7-kilobase-pair stretch (i.e., treating the 12S and among themselves. A convincing phylogenetic hypothesis is 16S rRNA genes alone and for transversions only) were required to maximize the evolutionary importance of the analyzed separately to determine support among the various facts available for bovids. In this study, we present additional analyses. The more conservative changes (i.e., least satu- molecular data in an attempt to provide better resolution of rated) of these subsets are the transversions, which convey intertribal relationships within this family. the most reliable information about the oldest nodes of our The characters for this study are obtained from nucleotide MP sequences for the mitochondrial rRNA gene complex, con- phylogenies (10). Transversions were also used for date sisting of the complete gene sequences for the large 16S and estimates because they have been documented to change small 12S subunits as well as their three flanking tRNAs linearly with time within the Artiodactyla (9). (tRNAPhe, tRNAv", and the 5' end of tRNALCU). Each taxon Bootstrap resampling (based on 1000 resampling events) was therefore represented by -2.7 kilobase pairs of contig- was also conducted to estimate the stability of the MP uous coding mtDNA. In this study, nucleotide sequences* for topologies (13). To determine how many extra steps were nine additional representatives of bovid tribes were added to required to collapse each node, strict consensus trees were the published sequences for 2 other tribes and for four Abbreviations: MA, million years ago; MP, most-parsimonious; MYR, million years. The three-letter abbreviations for the species The publication costs of this article were defrayed in part by page charge are given in Materials and Methods. payment. This article must therefore be hereby marked "advertisement" *The bovid sequences have been deposited in the GenBank data base in accordance with 18 U.S.C. §1734 solely to indicate this fact. (accession nos. M86493-M86501). 3972 Downloaded by guest on September 25, 2021 Evolution: Allard et al. Proc. Natl. Acad. Sci. USA 89 (1992) 3973 A B C index of dispersion [R(t) = (variance)/(mean of the branch Bovini Bovini Bovini lengths for sister lineages)] with values >2.5 taken as evi- Boselaphini -Boselaphini Boselaphini dence of extensive rate heterogeneity (9, 15). For protein Tragelaphini _ Tragelaphini Tragelaphini sequences used in clock calculations, R(t) is usually <2-3. _ Cephalophini Reduncini Mean percent pairwise divergences (+ 2 SE) for transversions Cephalophini - Hippotragini Neotragini alone were graphed for each tribe to the outgroup families to Hippotragini Reduncini Cephalophini test further for rate heterogeneities. These comparisons to Reduncini Antilopini Antilopini the outgroups make the assumption that the four pecoran Antilopini -Neotragini Alcelaphini families represented in this study are equally related to each Neotragini Caprini Aepycerotini other (i.e., the families reflect a star phylogeny or polychot- 4k a Caprini Alcelaphini Hippotragini omy), hypothesis supported by earlier results (9). The oldest fossils ofthe family Bovidae belong to the genus Alcelaphini Aepycerotini Caprini Eotragus, which has been assigned to the tribe Boselaphini Aepycerotini (7). A rate of divergence for this tribe, using transversions E only, was therefore calibrated according to these fossils and Lim Bovini subsequently compared to that calculated from a different set Aepycerotini Boselaphini of artiodactyl sequences (9). Times of divergence within the Tragelaphini Tragelaphini Additional Steps Bovidae were then estimated from these rates, after evalu- Cephalophini Cephalophini Trees All TV ating the extent of rate heterogeneity among the tribes (as Antilopini Antilopini Mutations described above). Neotragini Neotragini A 19 20 B 38 21 RESULTS AND DISCUSSION Caprini Caprini C 45 31 Bovini Alcelaphini D 55 36 Pairwise Comparisons. Percent divergence was calculated E 32 4 for all pairwise comparisons of the 15 artiodactyl represen- Reduncini Aepycerotini tatives. Within the Bovidae, the minimum divergence found Alcelaphini { Hippotragini (8.3%) was for the CMA to KEL comparison; the highest Hippotragini Reduncini (12.1%) was from the comparisons of TIM to DDO and BTR to FIG. 1. Alternative hypotheses for relationships among the Bo- GTH (Table 1, upper diagonal). The most divergent value vidae based on a wide range of morphological and molecular char- for interfamilial comparisons was 13.7% between AAM and acters. (A-E) Previously hypothesized trees. Only those with a DDO, whereas the least divergent pecoran comparison over- majority of tribes represented are included here. (F) Listing of the lapped
Recommended publications
  • Chromosomal Evolution in Raphicerus Antelope Suggests Divergent X
    www.nature.com/scientificreports OPEN Chromosomal evolution in Raphicerus antelope suggests divergent X chromosomes may drive speciation through females, rather than males, contrary to Haldane’s rule Terence J. Robinson1*, Halina Cernohorska2, Svatava Kubickova2, Miluse Vozdova2, Petra Musilova2 & Aurora Ruiz‑Herrera3,4 Chromosome structural change has long been considered important in the evolution of post‑zygotic reproductive isolation. The premise that karyotypic variation can serve as a possible barrier to gene fow is founded on the expectation that heterozygotes for structurally distinct chromosomal forms would be partially sterile (negatively heterotic) or show reduced recombination. We report the outcome of a detailed comparative molecular cytogenetic study of three antelope species, genus Raphicerus, that have undergone a rapid radiation. The species are largely conserved with respect to their euchromatic regions but the X chromosomes, in marked contrast, show distinct patterns of heterochromatic amplifcation and localization of repeats that have occurred independently in each lineage. We argue a novel hypothesis that postulates that the expansion of heterochromatic blocks in the homogametic sex can, with certain conditions, contribute to post‑ zygotic isolation. i.e., female hybrid incompatibility, the converse of Haldane’s rule. This is based on the expectation that hybrids incur a selective disadvantage due to impaired meiosis resulting from the meiotic checkpoint network’s surveillance of the asymmetric expansions of heterochromatic blocks in the homogametic sex. Asynapsis of these heterochromatic regions would result in meiotic silencing of unsynapsed chromatin and, if this persists, germline apoptosis and female infertility. Te chromosomal speciation theory 1,2 also referred to as the “Hybrid dysfunction model”3, has been one of the most intriguing questions in biology for decades.
    [Show full text]
  • Boselaphus Tragocamelus</I>
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Boselaphus tragocamelus (Artiodactyla: Bovidae) David M. Leslie Jr. U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Leslie, David M. Jr., "Boselaphus tragocamelus (Artiodactyla: Bovidae)" (2008). USGS Staff -- Published Research. 723. https://digitalcommons.unl.edu/usgsstaffpub/723 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIAN SPECIES 813:1–16 Boselaphus tragocamelus (Artiodactyla: Bovidae) DAVID M. LESLIE,JR. United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; [email protected] Abstract: Boselaphus tragocamelus (Pallas, 1766) is a bovid commonly called the nilgai or blue bull and is Asia’s largest antelope. A sexually dimorphic ungulate of large stature and unique coloration, it is the only species in the genus Boselaphus. It is endemic to peninsular India and small parts of Pakistan and Nepal, has been extirpated from Bangladesh, and has been introduced in the United States (Texas), Mexico, South Africa, and Italy. It prefers open grassland and savannas and locally is a significant agricultural pest in India. It is not of special conservation concern and is well represented in zoos and private collections throughout the world. DOI: 10.1644/813.1.
    [Show full text]
  • Influence of Common Eland (Taurotragus Oryx) Meat Composition on Its Further Technological Processing
    CZECH UNIVERSITY OF LIFE SCIENCES PRAGUE Faculty of Tropical AgriSciences Department of Animal Science and Food Processing Influence of Common Eland (Taurotragus oryx) Meat Composition on its further Technological Processing DISSERTATION THESIS Prague 2018 Author: Supervisor: Ing. et Ing. Petr Kolbábek prof. MVDr. Daniela Lukešová, CSc. Co-supervisors: Ing. Radim Kotrba, Ph.D. Ing. Ludmila Prokůpková, Ph.D. Declaration I hereby declare that I have done this thesis entitled “Influence of Common Eland (Taurotragus oryx) Meat Composition on its further Technological Processing” independently, all texts in this thesis are original, and all the sources have been quoted and acknowledged by means of complete references and according to Citation rules of the FTA. In Prague 5th October 2018 ………..………………… Acknowledgements I would like to express my deep gratitude to prof. MVDr. Daniela Lukešová CSc., Ing. Radim Kotrba, Ph.D. and Ing. Ludmila Prokůpková, Ph.D., and doc. Ing. Lenka Kouřimská, Ph.D., my research supervisors, for their patient guidance, enthusiastic encouragement and useful critiques of this research work. I am very gratefull to Ing. Petra Maxová and Ing. Eva Kůtová for their valuable help during the research. I am also gratefull to Mr. Petr Beluš, who works as a keeper of elands in Lány, Mrs. Blanka Dvořáková, technician in the laboratory of meat science. My deep acknowledgement belongs to Ing. Radek Stibor and Mr. Josef Hora, skilled butchers from the slaughterhouse in Prague – Uhříněves and to JUDr. Pavel Jirkovský, expert marksman, who shot the animals. I am very gratefull to the experts from the Natura Food Additives, joint-stock company and from the Alimpex-maso, Inc.
    [Show full text]
  • An Exemplary Case Study Gérard Dubost
    Convergence characteristics between a rodent, the South American lowland paca, and a ruminant, the African water chevrotain: An exemplary case study Gérard Dubost To cite this version: Gérard Dubost. Convergence characteristics between a rodent, the South American lowland paca, and a ruminant, the African water chevrotain: An exemplary case study. Comptes Rendus Biologies, Elsevier Masson, 2017, 10.1016/j.crvi.2017.02.001. hal-01485153 HAL Id: hal-01485153 https://hal.sorbonne-universite.fr/hal-01485153 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License G Model CRASS3-3495; No. of Pages 10 C. R. Biologies xxx (2017) xxx–xxx Contents lists available at ScienceDirect Comptes Rendus Biologies ww w.sciencedirect.com Ecology/E´ cologie Convergence characteristics between a rodent, the South American lowland paca, and a ruminant, the African water chevrotain: An exemplary case study Caracte`res convergents entre un rongeur, le
    [Show full text]
  • Gaits and Their Development in the Infraorder Pecora by Anne Innis
    Gaits and Their Development in the Infraorder Pecora by Anne Innis Dagg, M.A. THESIS Presented to the Faculty of Graduate Studies of the University of Waterloo in partial ful­ fillmenc of the requirements for the degree of Doctor of Philosopty in Biolog The University of Waterloo February, 1967 The University of Waterloo requires the signature of all persons using this thesis. Please sign below, and give address and date. I hereby declare that I am the sole a�thor of this thesis. I authorize the University of Waterloo to lend it to other institutions or individuals for the purpose of scholarly research. Signature Abstract The gaits of twenty-eight species of the Infraorder Pecora are analyzed from motion picture sequences comprising over 45,000 frames. For each gait the percentage time spent on the various supporting legs during each stride and the order in which the combinations of supporting legs were used are tabulated. When possible the times for the strides are calculated. The walk patterns of each of the four families studied are shown to be statistically distinctive. Within each family, those members that live where the vegetation is so dense that they must rely on hearing to warn them of danger use a more stable walk than those species that inhabit open grasslands. A stable walk is that in which diagonal legs are used in·preference to lateral legs and three or four supporting legs are used rather than two. With a more stable walk, 4 species is able to pause quickly and to flee instantly if danger thr�atens.
    [Show full text]
  • Last Interglacial (MIS 5) Ungulate Assemblage from the Central Iberian Peninsula: the Camino Cave (Pinilla Del Valle, Madrid, Spain)
    Palaeogeography, Palaeoclimatology, Palaeoecology 374 (2013) 327–337 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Last Interglacial (MIS 5) ungulate assemblage from the Central Iberian Peninsula: The Camino Cave (Pinilla del Valle, Madrid, Spain) Diego J. Álvarez-Lao a,⁎, Juan L. Arsuaga b,c, Enrique Baquedano d, Alfredo Pérez-González e a Área de Paleontología, Departamento de Geología, Universidad de Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain b Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, C/Sinesio Delgado, 4, 28029 Madrid, Spain c Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain d Museo Arqueológico Regional de la Comunidad de Madrid, Plaza de las Bernardas, s/n, 28801-Alcalá de Henares, Madrid, Spain e Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, s/n, 09002 Burgos, Spain article info abstract Article history: The fossil assemblage from the Camino Cave, corresponding to the late MIS 5, constitutes a key record to un- Received 2 November 2012 derstand the faunal composition of Central Iberia during the last Interglacial. Moreover, the largest Iberian Received in revised form 21 January 2013 fallow deer fossil population was recovered here. Other ungulate species present at this assemblage include Accepted 31 January 2013 red deer, roe deer, aurochs, chamois, wild boar, horse and steppe rhinoceros; carnivores and Neanderthals Available online 13 February 2013 are also present. The origin of the accumulation has been interpreted as a hyena den. Abundant fallow deer skeletal elements allowed to statistically compare the Camino Cave fossils with other Keywords: Early Late Pleistocene Pleistocene and Holocene European populations.
    [Show full text]
  • Anaplasma Phagocytophilum in the Highly Endangered Père David's
    Yang et al. Parasites & Vectors (2018) 11:25 DOI 10.1186/s13071-017-2599-1 LETTER TO THE EDITOR Open Access Anaplasma phagocytophilum in the highly endangered Père David’s deer Elaphurus davidianus Yi Yang1,3, Zhangping Yang2,3*, Patrick Kelly4, Jing Li1, Yijun Ren5 and Chengming Wang1,6* Abstract Eighteen of 43 (41.8%) Père David’s deer from Dafeng Elk National Natural Reserve, China, were positive for Anaplasma phagocytophilum based on real-time FRET-PCR and species-specific PCRs targeting the 16S rRNA or msp4. To our knowledge this is the first report of A. phagocytophilum in this endangered animal. Keywords: Anaplasma phagocytophilum, Père David’s deer, Elaphurus davidianus, China Letter to the Editor GmbH, Mannheim, Germany). The fluorescence reson- Père David’s deer (Elaphurus davidianus) are now found ance energy transfer (FRET) quantitative PCR targeting only in captivity although they occurred widely in north- the 16S rRNA gene of Anaplasma spp. [5] gave positive eastern and east-central China until they became extinct reactions for 18 deer (41.8%), including 8 females in the wild in the late nineteenth century [1]. In the (34.8%) and 10 males (50.0%). To investigate the species 1980s, 77 Père David’s deer were reintroduced back into of Anaplasma present, the positive samples were further China from Europe. Currently the estimated total popu- analyzed with species-specific primers targeting the 16S lation of Père David’s deer in the world is approximately rRNA gene of A. centrale, A. bovis, A. phagocytophilum 5000 animals, the majority living in England and China.
    [Show full text]
  • Evaluation of 3 Milk Replacers for Hand-Rearing Indian Nilgai (Boselaphus Tragocamelus)
    Evaluation of 3 Milk Replacers for Hand-Rearing Indian Nilgai (Boselaphus tragocamelus) Catherine D. Burch, M. Diehl, and M.S Edwards Zoological Society of San Diego, San Diego Wild Animal Park, San Diego, California Hoofstock neonates are often hand-raised for multiple reasons. Feeding maternal milk is optimal, but is rarely available for hand-rearing. Therefore, suitable substitutes must be identified. Published nutrient composition of maternal milk is frequently used as a guide. In many instances, however, no information is available regarding the milk composition of a particular species. Nilgai have been successfully raised at the Wild Animal Park using several formulas. It has yet to be determined which formula(s) produce the best response. Eight nilgai (3 females, 5 males) were received for hand-rearing and were randomly assigned 1 of the following 3 formulas for a blind study: evaporated cows (EC) :nonfat cows (NFC) 2: 1, EC: Milk Matrix 30/55®:water 10: 3: 12, or EC:SPF-Iac® 2: 1. EC: NFC 2: 1, which has been used for several seasons, was designated as the control. The composition of EC:30/55:H2O 10:3: 12 is comparable to the published composition of eland milk, a species taxonomically related to nilgai. EC:SPF-Iac® 2: 1 has lipid and carbohydrate composition intermediate to the other formulas. Response parameters monitored include weight gain, stool consistency, feeding response, and overall body condition. Based on the results, Indian nilgai can be hand-reared successfully on any of the 3 milk replacers. Of the 3, however, the group fed EC:NFC 2: 1 were the heaviest at weaning and the most vigorous throughout the hand-rearing process.
    [Show full text]
  • Herbivoresherbivores Whatwhat Isis Herbivore?Herbivore?
    HerbivoresHerbivores WhatWhat isis herbivore?herbivore? • A herbivore is an animal that gets its energy from eating plants • special digestive systems Herbivore Taxonomy Order Suborder Family Proboscideae Elephantidae Elephants Equidae Equines, Perissodactyla Tapiridae (Odd-Toe ungulates) Tapir, Rhinocerotidae Rhinoceroses Swines, Suidae Artiodactyla Suina Hippopotamus Hippopotamidae (Even-Toe ungulates) Tylopoda Camellidae Camels & Llamas Tragulina Tragulidae Tragulus Ruminantia Giraffidae Giraffes, Cervids, Cervidae Antilopes, Bovines, Antilocapridae Caprines, Antlopes Bovidae Etc. Cetartiodactyla wwwwww..ultimateungulateultimateungulate..comcom Order Perissodactyla From Greek : perissos = strange, of numbers odd daktulos = a finger or toe == OddOdd-- ToeToe ungulatesungulates ((สสัตวัตวกกีบคีบคี่)ี่) -Enlarged central digit carries most of body weight (mesaxonic) -Canine teeth reduced or absent -Simple stomachs with large caecum -Hind gut fermentation Order Perissodactyla Order Artiodactyla Greek : artios = complete, of numbers even daktulos = a finger or toe == EvenEven-- ToeToe ungulatesungulates ((สสัตวัตวกกีบคีบคู)ู) - Two enlarged digits share the weight of the body about equally (paraxonic) - Upper incisors and canines lost or reduced - Rumination - Males (and sometimes females) have weaponry : tusks, antler, horns Order Artiodactyla Herbivore Taxonomy Order Suborder Family Proboscideae Elephantidae Elephants Equidae Equines, Perissodactyla Tapiridae (Odd-Toe ungulates) Tapir, Rhinocerotidae Rhinoceroses Swines, Suidae Artiodactyla
    [Show full text]
  • Current Taxonomy and Iversity of Crown Ruminants Above the Species
    Zitteliana B 32 (2014) 5 Current taxonomy and diversity of crown ruminants above the species level Colin Groves School of Archaeology & Anthropology, Australian National University Zitteliana B 32, 5 – 14 Canberra, ACT 0200 Australia München, 31.12.2014 E-mail: [email protected] Manuscript received 17.01.2014; revision accepted 20.10.2014 ISSN 1612 - 4138 Abstract Linnaeus gave us the idea of systematics, with each taxon of lower rank nested inside one of higher rank; Darwin showed that these taxa are the result of evolution; Hennig demonstrated that, if they are to mean anything, all taxa must represent monophyla. He also pro- posed that, to bring objectivity into the system, each taxonomic rank should be characterised by a particular time depth, but this is not easy to bring about: genera such as Drosophila and Eucalyptus have a time-depth comparable to whole orders among mammals! Within restricted groups of organisms, however, time-depths do tend to vary within limits: we will not do too much violence to current usage if we insist that a modern mammal (including ruminant) genus must have a time-depth of about 5 million years, i.e. going back at least to the Miocene-Pliocene boundary, and a modern family must have a time-depth of about 25 million years, i.e. going back to the Oligocene- Miocene boundary. Molecular studies show that living ruminants present examples where the „traditional“ classification (in the main laid down in the mid- 20th-century, and all too often still accepted as standard even today) violates Hennigian principles.
    [Show full text]
  • Evolution and Biogeography of Haemonchus Contortus: Linking Faunal Dynamics in Space and Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Department of Agriculture: Agricultural Publications from USDA-ARS / UNL Faculty Research Service, Lincoln, Nebraska 2016 Evolution and Biogeography of Haemonchus contortus: Linking Faunal Dynamics in Space and Time Eric P. Hoberg Agricultural Research Service, USDA, [email protected] D.S. Zarlenga Agricultural Research Service, USDA Follow this and additional works at: https://digitalcommons.unl.edu/usdaarsfacpub Hoberg, Eric P. and Zarlenga, D.S., "Evolution and Biogeography of Haemonchus contortus: Linking Faunal Dynamics in Space and Time" (2016). Publications from USDA-ARS / UNL Faculty. 2243. https://digitalcommons.unl.edu/usdaarsfacpub/2243 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Agricultural Research Service, Lincoln, Nebraska at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Publications from USDA-ARS / UNL Faculty by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. CHAPTER ONE Evolution and Biogeography of Haemonchus contortus: Linking Faunal Dynamics in Space and Time E.P. Hoberg*,1, D.S. Zarlengax *US National Parasite Collection and Animal Parasitic Disease Laboratory, Agricultural Research Service, USDA, Beltsville, MD, United States x Animal Parasitic Disease Laboratory, Agricultural Research Service, USDA, Beltsville, MD, United States 1Corresponding author: E-mail: [email protected] Contents 1. Introduction 2 2. Haemonchus: History and Biodiversity 3 3. Phylogeny and Biogeography: Out of Africa 4 4. Domestication, Geographical Expansion and Invasion 7 5.
    [Show full text]
  • Whole-Genome Sequencing of Wild Siberian Musk
    Yi et al. BMC Genomics (2020) 21:108 https://doi.org/10.1186/s12864-020-6495-2 RESEARCH ARTICLE Open Access Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features Li Yi1†, Menggen Dalai2*†, Rina Su1†, Weili Lin3, Myagmarsuren Erdenedalai4, Batkhuu Luvsantseren4, Chimedragchaa Chimedtseren4*, Zhen Wang3* and Surong Hasi1* Abstract Background: Siberian musk deer, one of the seven species, is distributed in coniferous forests of Asia. Worldwide, the population size of Siberian musk deer is threatened by severe illegal poaching for commercially valuable musk and meat, habitat losses, and forest fire. At present, this species is categorized as Vulnerable on the IUCN Red List. However, the genetic information of Siberian musk deer is largely unexplored. Results: Here, we produced 3.10 Gb draft assembly of wild Siberian musk deer with a contig N50 of 29,145 bp and a scaffold N50 of 7,955,248 bp. We annotated 19,363 protein-coding genes and estimated 44.44% of the genome to be repetitive. Our phylogenetic analysis reveals that wild Siberian musk deer is closer to Bovidae than to Cervidae. Comparative analyses showed that the genetic features of Siberian musk deer adapted in cold and high-altitude environments. We sequenced two additional genomes of Siberian musk deer constructed demographic history indicated that changes in effective population size corresponded with recent glacial epochs. Finally, we identified several candidate genes that may play a role in the musk secretion based on transcriptome analysis. Conclusions: Here, we present a high-quality draft genome of wild Siberian musk deer, which will provide a valuable genetic resource for further investigations of this economically important musk deer.
    [Show full text]