American Elk (Cervus Elaphus)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cervid TB DPP Testing August 2017
Cervid TB DPP Testing August 2017 Elisabeth Patton, DVM, PhD, Diplomate ACVIM Veterinary Program Manager Wisconsin Department of Agriculture, Trade and Consumer Protection Division of Animal Health Why Use the Serologic Test? Employ newer, accurate diagnostic test technology Minimizes capture and handling events for animal safety Expected to promote additional cervid TB testing • Requested by USAHA and cervid industry Comparable sensitivity and specificity to skin tests 2 Historical Timeline 3 Stat-Pak licensed for elk and red deer, 2009 White-tailed and fallow deer, 2010-11 2010 - USAHA resolution - USDA evaluate Stat-Pak as official TB test 2011 – Project to evaluate TB serologic tests in cervids (Cervid Serology Project); USAHA resolution to approve Oct 2012 – USDA licenses the Dual-Path Platform (DPP) secondary test for elk, red deer, white-tailed deer, and fallow deer Improved specificity compared to Stat-Pak Oct 2012 – USDA approves the Stat-Pak (primary) and DPP (secondary) as official bovine TB tests in elk, red deer, white- tailed deer, fallow deer and reindeer Recent Actions Stat-Pak is no longer in production 9 CFR 77.20 has been amended to approve the DPP as official TB program test. An interim rule was published on 9 January 2013 USDA APHIS created a Guidance Document (6701.2) to provide instructions for using the tests https://www.aphis.usda.gov/animal_health/animal_ diseases/tuberculosis/downloads/vs_guidance_670 1.2_dpp_testing.pdf 4 Cervid Serology Project Objective 5 Evaluate TB detection tests for official bovine tuberculosis (TB) program use in captive and free- ranging cervids North American elk (Cervus canadensis) White-tailed deer (Odocoileus virginianus) Reindeer (Rangifer tarandus) Primary/screening test AND Secondary Test: Dual Path Platform (DPP) Rapid immunochromatographic lateral-flow serology test Detect antibodies to M. -
Bison and Elk in Yellowstone National Park - Linking Ecosystem, Animal Nutrition, and Population Processes
Bison and Elk in Yellowstone National Park - Linking Ecosystem, Animal Nutrition, and Population Processes Part 3 - Final Report to U.S. Geological Survey Biological Resources Division Bozeman, MT Project: Spatial-Dynamic Modeling of Bison Carrying Capacity in the Greater Yellowstone Ecosystem: A Synthesis of Bison Movements, Population Dynamics, and Interactions with Vegetation Michael B. Coughenour Natural Resource Ecology Laboratory Colorado State University Fort Collins, Colorado December 2005 INTRODUCTION Over the last three decades bison in Yellowstone National Park have increased in numbers and expanded their ranges inside the park up to and beyond the park boundaries (Meagher 1989a,b, Taper et al. 2000, Meagher et al. 2003). Potentially, they have reached, if not exceeded the capacity of the park to support them. The bison are infected with brucellosis, and it is feared that the disease will be readily transmitted to domestic cattle, with widespread economic repercussions. Brucellosis is an extremely damaging disease for livestock, causing abortions and impaired calf growth. After a long campaign beginning in 1934 and costing over $1.3 billion (Thorne et al. 1991), brucellosis has been virtually eliminated from cattle and bison everywhere in the conterminous United States except in the Greater Yellowstone Ecosystem. Infection of any livestock in Montana, Idaho, or Wyoming would result in that state losing its brucellosis-free status, leading to considerable economic hardships resulting from intensified surveillance, testing, and control (Thorne et al. 1991). Management alternatives that have been considered include hazing animals back into the park, the live capture and holding of animals that leave the park, and culling or removal from within the park. -
Differential Habitat Selection by Moose and Elk in the Besa-Prophet Area of Northern British Columbia
ALCES VOL. 44, 2008 GILLINGHAM AND PARKER – HABITAT SELECTION BY MOOSE AND ELK DIFFERENTIAL HABITAT SELECTION BY MOOSE AND ELK IN THE BESA-PROPHET AREA OF NORTHERN BRITISH COLUMBIA Michael P. Gillingham and Katherine L. Parker Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9, email: [email protected] ABSTRACT: Elk (Cervus elaphus) populations are increasing in the Besa-Prophet area of northern British Columbia, coinciding with the use of prescribed burns to increase quality of habitat for ungu- lates. Moose (Alces alces) and elk are now the 2 large-biomass species in this multi-ungulate, multi- predator system. Using global positioning satellite (GPS) collars on 14 female moose and 13 female elk, remote-sensing imagery of vegetation, and assessments of predation risk for wolves (Canis lupus) and grizzly bears (Ursus arctos), we examined habitat use and selection. Seasonal ranges were typi- cally smallest for moose during calving and for elk during winter and late winter. Both species used largest ranges in summer. Moose and elk moved to lower elevations from winter to late winter, but subsequent calving strategies differed. During calving, moose moved to lowest elevations of the year, whereas elk moved back to higher elevations. Moose generally selected for mid-elevations and against steep slopes; for Stunted spruce habitat in late winter; for Pine-spruce in summer; and for Subalpine during fall and winter. Most recorded moose locations were in Pine-spruce during late winter, calv- ing, and summer, and in Subalpine during fall and winter. -
Table of Contents
TABLE OF CONTENTS INTRODUCTION .....................................................................................................................1 CREATING A WILDLIFE FRIENDLY YARD ......................................................................2 With Plant Variety Comes Wildlife Diversity...............................................................2 Existing Yards....................................................................................................2 Native Plants ......................................................................................................3 Why Choose Organic Fertilizers?......................................................................3 Butterfly Gardens...............................................................................................3 Fall Flower Garden Maintenance.......................................................................3 Water Availability..............................................................................................4 Bird Feeders...................................................................................................................4 Provide Grit to Assist with Digestion ................................................................5 Unwelcome Visitors at Your Feeders? ..............................................................5 Attracting Hummingbirds ..................................................................................5 Cleaning Bird Feeders........................................................................................6 -
Anaplasma Phagocytophilum in the Highly Endangered Père David's
Yang et al. Parasites & Vectors (2018) 11:25 DOI 10.1186/s13071-017-2599-1 LETTER TO THE EDITOR Open Access Anaplasma phagocytophilum in the highly endangered Père David’s deer Elaphurus davidianus Yi Yang1,3, Zhangping Yang2,3*, Patrick Kelly4, Jing Li1, Yijun Ren5 and Chengming Wang1,6* Abstract Eighteen of 43 (41.8%) Père David’s deer from Dafeng Elk National Natural Reserve, China, were positive for Anaplasma phagocytophilum based on real-time FRET-PCR and species-specific PCRs targeting the 16S rRNA or msp4. To our knowledge this is the first report of A. phagocytophilum in this endangered animal. Keywords: Anaplasma phagocytophilum, Père David’s deer, Elaphurus davidianus, China Letter to the Editor GmbH, Mannheim, Germany). The fluorescence reson- Père David’s deer (Elaphurus davidianus) are now found ance energy transfer (FRET) quantitative PCR targeting only in captivity although they occurred widely in north- the 16S rRNA gene of Anaplasma spp. [5] gave positive eastern and east-central China until they became extinct reactions for 18 deer (41.8%), including 8 females in the wild in the late nineteenth century [1]. In the (34.8%) and 10 males (50.0%). To investigate the species 1980s, 77 Père David’s deer were reintroduced back into of Anaplasma present, the positive samples were further China from Europe. Currently the estimated total popu- analyzed with species-specific primers targeting the 16S lation of Père David’s deer in the world is approximately rRNA gene of A. centrale, A. bovis, A. phagocytophilum 5000 animals, the majority living in England and China. -
Prescribed Burning for Elk in N Orthem Idaho
Proceedings: 8th Tall Timbers Fire Ecology Conference 1968 Prescribed Burning For Elk in N orthem Idaho THOMAS A. LEEGE, RESEARCH BIOLOGIST Idaho Fish and Game Dept. Kamiah, Idaho kE majestic wapiti, otherwise known as the Rocky Mountain Elk (Cervus canadensis), has been identified with northern Idaho for the last 4 decades. Every year thousands of hunters from all parts of the United States swarm into the wild country of the St. Joe Clearwater River drainages. Places like Cool water Ridge, Magruder and Moose Creek are favorite hunting spots well known for their abundance of elk. However, it is now evident that elk numbers are slowly decreasing in many parts of the region. The reason for the decline is apparent when the history of the elk herds and the vegetation upon which they depend are closely exam ined. This paper will review some of these historical records and then report on prescribed burning studies now underway by Idaho Fish and Game personnel. The range rehabilitation program being developed by the Forest Service from these studies will hopefully halt the elk decline and maintain this valuable wildlife resource in northern Idaho. DESCRIPTION OF THE REGION The general area I will be referring to includes the territory to the north of the Salmon River and south of Coeur d'Alene Lake (Fig. 1). 235 THOMAS A. LEEGE It is sometimes called north-central Idaho and includes the St. Joe and Clearwater Rivers as the major drainages. This area is lightly populated, especially the eaStern two-thirds which is almost entirely publicly owned and managed by the United States Forest Service; specifically, the St. -
Published Proceedings from the CWD Forum
PROCEEDINGS Jackson Hole Chronic Wasting Disease Forum December 7, 2016 National Museum of Wildlife Art Jackson, Wyoming INTRODUCTION The purpose of this Chronic Wasting Disease forum was to highlight CWD research and management considerations, with the goal to share current science-based information with the general public and all organizations concerned with the long-term health of elk and deer populations in the Jackson Hole Area. ABSTRACTS *Names of presenters in bold text Wyoming Chronic Wasting Disease Surveillance Mary Wood, State Veterinarian, Wildlife Veterinary Research Services, Wyoming Game and Fish Department, Laramie, Wyoming, USA Chronic Wasting Disease (CWD) was first described in captive mule deer from Colorado and Wyoming in the 1970’s (Williams 1980). After the initial discovery and description of this disease, the Wyoming Game and Fish Department (WGFD) began collaborative work with Dr. Elizabeth Williams in 1982 to investigate whether the disease was present in free-ranging populations (Williams 1992, Miller 2000). This was the beginning of a decades-long surveillance program to study the distribution and spread of this disease in free-ranging cervid populations. Between 1982 and 1997 a limited number of CWD samples were collected through local check stations near Laramie and Wheatland WY. WGFD surveillance began in earnest in 1997, with peak surveillance occurring between 2003 and 2011 when federal funding was available. Currently the WGFD Wildlife Health Laboratory tests between 1500 and 3500 samples for CWD each year with over 56,000 samples tested to date in Wyoming. Surveillance includes voluntary sample collection from hunter harvested animals as well as collection from road-killed animals and targeted animals showing signs consistent with CWD. -
COMMON MAMMALS of OLYMPIC NATIONAL PARK Roosevelt Elk the Largest and Most Majestic of All the Animals to Be Found in Olympic Na
COMMON MAMMALS OF OLYMPIC NATIONAL PARK Roosevelt Elk The largest and most majestic of all the animals to be found in Olympic National Park is the Roosevelt or Olympic elk. They were given the name Roosevelt elk in honor of President Theodore Roosevelt who did much to help preserve them from extinction. They are also known by the name "wapiti" which was given to them by the Shawnee Indians. Of the two kinds of elk in the Pacific Northwest, the Roosevelt elk are the largest. Next to the moose, the elk is the largest member of the deer family. The male sometimes measures 5 feet high at the shoulder and often weighs 800 pounds or more. Their coats are a tawny color except for the neck which is dark brown. It is easy to tell elk from deer because of the large size and the large buff colored rump patch. When the calves are born in May or June, they weigh between 30 and 40 pounds and are tawny colored splashed with many light spots and a conspicuous rump patch. Only the bull elk has antlers. They may measure as much as 5 feet across. Each year they shed the old set of antlers after mating season in the fall and almost immediately begin to grow a new set. During the summer months, some of the elk herds can be found in the high mountains; the elk move down into the rain forest valleys on the western side of the park during the winter months. About 5,000 elk live in Olympic National Park where they, like all of the animals are protected in their natural environment. -
Elk: Wildlife Notebook Series
Elk Elk (Cervus elaphus) are sometimes called “wapiti” in North America. Two subspecies of elk have been introduced to Alaska. Roosevelt elk (Cervus elaphus roosevelti) are larger, slightly darker in color, and have shorter, thicker antlers than the Rocky Mountain elk (Cervus elaphus nelsoni). In many European countries “elk” are actually what we know as moose (Alces alces). Fossil bones indicate that a subspecies of elk once existed in Interior Alaska during the Pleistocene period, but all of the elk currently in Alaska were introduced from the Pacific Northwest in the last century. The first successful translocation involved eight Roosevelt elk calves that were captured on the Olympic Peninsula of Washington State in 1928 and moved to Afognak Island (near Kodiak) in 1929. These elk have successfully established themselves on both Afognak and Raspberry Islands. The second successful transplant occurred in 1987, when 33 Roosevelt elk and 17 Rocky Mountain elk were captured in Oregon and moved to Etolin Island (near Petersburg) in Southeast Alaska. These elk subsequently dispersed and established a second breeding population on neighboring Zarembo Island. General description: Elk are members of the deer family and share many physical traits with deer, moose, and caribou. They are much larger than deer and caribou, but not as large as the moose which occur in Alaska. Distinguishing features include a large yellowish rump patch, a grayish to brownish body, and dark brown legs and neck. Unlike some members of the deer family, both sexes have upper canine teeth. The males have antlers, which in prime bulls are very large, sweeping gracefully back over the shoulders with spikes pointing forward. -
ROCKY MOUNTAIN ELK One of Our Greatest Treasures in Castle Pines Village Is Our Amazing Wildlife. Thanks to Our Close Proximity
ROCKY MOUNTAIN ELK One of our greatest treasures in Castle Pines Village is our amazing wildlife. Thanks to our close proximity to Cherokee Ranch, we are home to many animal species that are seldom seen elsewhere, especially in such abundance. The Rocky Mountain Elk is one of these unique Village visitors. Also known as the American Elk, or “wapiti” by Native Americans, the Rocky Mountain Elk is one of the largest representatives of the deer family and one of the largest mammals in North America. Males, or bulls, can reach 1000 pounds and female cows up to 500. An adult bull averages 5ft at the shoulder with antlers of 5 points on either side. They are grayish-brown in color, with a tan rump and a darker brown shoulder-to-chest coloration. The Rocky Mountain elk is a browser, eating mostly grasses during the day in open grasslands. As they are a herbivore, they will also eat other plants, leaves and bark, consuming 9 to 15 pounds of food a day. As night approaches, elk move toward forest edges and usually sleep under tree cover. They range in large winter herds that break down into smaller groups in summer. In mid to late September, the elk mating season, or “rut”, begins. Due to seasonal hormonal changes, the neck and shoulders of the bull increase in size. Antlers, which are made of bone, begin to sharpen naturally and grow up to an inch a day. The weight of each antler can reach 40 pounds, the size being related to the amount of sunlight the bull receives. -
Out-Of-Season Births of Elk Calves in Wyoming
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Fish & Wildlife Publications US Fish & Wildlife Service 1994 Out-of-Season Births of Elk Calves in Wyoming Bruce L. Smith National Elk Refuge Follow this and additional works at: https://digitalcommons.unl.edu/usfwspubs Part of the Aquaculture and Fisheries Commons Smith, Bruce L., "Out-of-Season Births of Elk Calves in Wyoming" (1994). US Fish & Wildlife Publications. 67. https://digitalcommons.unl.edu/usfwspubs/67 This Article is brought to you for free and open access by the US Fish & Wildlife Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Fish & Wildlife Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Prairie Naturalist 26(2): June 1994 131 Out-of-Season Births of Elk Calves in Wyoming BRUCE L. SMITH National Elk Refuge, Jackson, WY 83001 ABSTRACf-Five out-of-season births of Rocky Mountain elk were documented over a 24-month period at the National Elk Refuge, Wyoming. One of four November neonates was radio-instrumented and subsequently died seven days later due to hypothermia. An April-born calf was killed by a coyote. Supplemental winter feeding of elk at the Refuge may increase the frequency of asynchronous reproduction. Key words: Elk, Cervus elaphus, birth, reproduction, mortality, supplemental feeding Rocky Mountain elk (Cervus elaphus nelsoni) are polyestrus, seasonal breeders, and the reproductive cycle corresponds to forage phenology (Taber et al. 1982). Calves are normally produced at peak forage quality in spring when the energetic demands of lactation on dams are rapidly increasing (Moen 1973, Robbins et al. -
Quarterly Report January-March 2019
Resource use and distribution of Roosevelt elk and Kodiak brown bears on Afognak, Raspberry, and Sitkalidak Islands, Alaska Progress Report: January- March 2019 Issued: June 2019 Submitted to: Alaska Department of Fish and Game Prepared by: Shannon Finnegan – Graduate Research Assistant, SUNY College of Environmental Science & Forestry Principal Investigators: Dr. Jerrold Belant – Camp Fire Professor of Wildlife Conservation, SUNY College of Environmental Science & Forestry Nathan Svoboda – Area Wildlife Biologist, Alaska Department of Fish and Game The State University of New York College of Environmental Science and Forestry 1 Forestry Drive Syracuse, NY, 13210 Abstract During January–March 2019, we monitored 34 elk and 42 brown bears overall. In February, the project hired a second PhD student, Sarah Schooler, to focus on Roosevelt elk (Cervus canadensis). Student Shannon Finnegan carried out her PhD proposal defense at SUNY ESF in March 2019. In March, we collected 155 fecal samples from 5 herds of elk to examine winter diet. In February, we determined average den entry dates for brown bears, the average den entry date for female brown bears on Afognak and Raspberry Islands was 24 October 2018, and 2 November 2018 for males. On Sitkalidak Island the average den entry date for females was 25 November 2018. We are ordering new equipment and preparing for captures in fall 2019. 2 Summary ➢ We have continued to monitor 34 elk and 42 brown bears collared in 2017 and 2018. ➢ We have continued to update our project website (www.campfirewildlife.com), Facebook page (www.facebook.com/campfirewildlife), and Twitter page (https://twitter.com/campfirewild) with project results.