Interrelationships of the Family Pleuronectidae (Pisces: Pleuronectiformes)

Total Page:16

File Type:pdf, Size:1020Kb

Interrelationships of the Family Pleuronectidae (Pisces: Pleuronectiformes) Title INTERRELATIONSHIPS OF THE FAMILY PLEURONECTIDAE (PISCES: PLEURONECTIFORMES) Author(s) SAKAMOTO, Kazuo Citation MEMOIRS OF THE FACULTY OF FISHERIES HOKKAIDO UNIVERSITY, 31(1-2), 95-215 Issue Date 1984-12 Doc URL http://hdl.handle.net/2115/21876 Type bulletin (article) File Information 31(1_2)_P95-215.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP INTERRELATIONSHIPS OF THE FAMILY PLEURONECTIDAE (PISCES: PLEURONECTIFORMES) By Kazuo SAKAMOTO * Laboratory of Marine Zoology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan Contents Page I. Introduction···································································· 95 II. Acknowledgments· ................... ·.·......................................... 96 III. Materials········································································ 97 IV. Methods·····················.··· ... ····················· .......... ············· 102 V. Systematic methodology· ......................................................... 102 1. Application of numerical phenetics .............................................. 102 2. Procedures in the present study ................................................. 104 VI. Comparative morphology ........................................................ 108 1. Jaw apparatus ................................................................ 109 2. Cranium······································································ 111 3. Orbital bones . .. 137 4. Suspensorium and opercular apparatus ........................................... 140 5. Hyoid arch· ................................................................... 144 6. Branchial apparatus and gill rakers·· ............................................ 148 7. Fins·········································································· 155 8. Pectoral girdle ................................................................ 164 9. Pelvic girdle .................................................................. 169 10. Urohyal ...................................................................... 171 11. Vertebrae and their accessory bones ... .. 173 12. Caudal skeleton and fin ........................................................ 181 13. Others····················· ....... ················· ... · .......... ············· 194 VII. Interrelationships of the fishes of the Pleuronectidae ................................ 198 VIII. Summary ...................................................................... 212 IX. Literature cited ................................................................. 213 I. Introduction The fishes of the family Pleuronectidae, inhabiting the sand-muddy bottom between shallow inshore waters and continental slope, are widely distributed in the The present work was submitted as a partial fulfillment of the requirements for Doctor's degree in Fisheries Science at Hokkaido University in 1984 . • Present address: 3546 Futami, Hohoku-cho, Toyoura-gun, Yamaguchi Prefecture 759-55, Japan. - 95- Mem. Fac. Fish. Hokkaido Univ. [XXXI, 1/2 world. This family is characterized in having both eyes on the right side of the body, the optic nerve of the left eye always dorsal, the preopercle with a free margin and the fin rays without spines. The Pleuronectidae includes 114 species. While most are marine, some of them enter such fresh waters as rivers, lakes and marshes. The phylogeny of the pleuronectid fishes has been studied by several investi­ gators (Regan, 1910; Norman, 1934; Kuronuma, 1938; Hubbs, 1945; Kim, 1973; Li,1981). These authors, except Kim (1973), discussed the relation only among the subfamilies on the basis of several characters including osteology. Kim (1973) studied the interrelationships of 14 species of the Pleuronectinae (sensu Norman, 1934) based on the comparative osteology of the cranium, the urohyal, the vertebrae and the caudal skeleton. Though there are many studies on both internal and external morphology in the present family owing to their morphological peculiarities (e.g. Kyle, 1921; Hikita, 1934; Chabanaud, 1936; Yazudani, 1969; Groot, 1971 etc.), most of those studies were fragmentary and did not treat the interrelationships of the pleuronectids. Under the circumstances, it is necessary to clarify the interrelationships of the pleuronectid fishes on the basis of as many internal and external characters as possible. In order to analyse the interrelationships of the species of the Pleu­ ronectidae, numerical phenetics (Sneath and Sokal, 1973) was adopted as a system­ atic methodology. The classification of righteye flounders has been studied by many ichthyologists since the end of the nineteenth century. In 1910, Regan treated the righteye flounders as a single family Pleuronectidae for the first time. Since then, the classification of this group has been discussed mainly at a sub familial level based on several internal and external characters (Regan, 1929; Norman, 1934; Berg, 1940; Hubbs, 1945 etc.), though some or all the subfamilies were sometimes raised to familial rank (Regan, 1920; Jordan, 1923 etc.). Nelson (1976) divided the Pleu­ ronectidae into four subfamilies and the Pleuronectinae into two tribes. In the present study, all the pleuronectid species are classified into the supraspecific taxa which are newly defined by the ranking on the basis of their phenetic interrelationships. II. Acknowledgments I wish to express my sincere gratitude to the late Dr. Takao Igarashi, the former professor of Hokkaido University, for his guidance in the course of the present study and critical reading of the manuscript. Also, I wish to thank Dr. Keikichi Hamada, professor of the same university, for critical reading of the manuscript. I wish to express my thanks to Dr. Seikichi Mishima, professor of the same university, for critical reading of the manuscript. I wish to express the deepest appreciation to Dr. Kunio Amaoka, professor of the same university, for his valuable advice and critical reading of the manuscript. I wish to thank for their help in the present study to the following persons: Mr. Koji Abe of Hokkaido Fisheries Experimental Station at Wakkanai; Dr. Gerald R. Allen of Western Australian Museum; Dr. Hirotoshi Asano of Kinki University; Dr. A.J. Bass of National Museum of New Zealand; Dr. William N. Eschmeyer of - 96- 1984J SAKAMOTO: Interrelationships of Pleuronectidae California Academy of Science; Dr. Martin Gomon of National Museum of Victoria; Dr. S.J. de Groot of Ministerie van Landbouw en Visserij; Dr. Karsten E. Hartel of Museum of Comparative Zoology; Dr. Hiroshi Hatanaka of Far Seas Fisheries Research Laboratory; Mr. Masashi Higashi of Noshappu Kanryu Aquarium; Dr. P. Alexander Hulley of South African Museum; Drs. Tamotsu Iwai, Izumi Nakamura and Tetsuji Nakabo of Kyoto University; Dr. Gavin James of Ministry of Agricul­ ture and Fisheries, New Zealand; Mr. Shinichi Kanamaru of Hokkaido Regional Fisheries Research Laboratory; Dr. Yong Uk Kim of Pusan Fisheries College; Mr. Daiji Kitagawa of Iwate Fisheries Experimental Station; Dr. Grace Klein-Mac­ Phee; Mr. Shinji Kudo of Tokai Regional Fisheries Research Laboratory; Dr. Katsuzo Kuronuma; Dr. Kenichiro Kyushin and Mr. Akihisa Iwata of the same university; Dr. Peter Last of Tasmanian Fisheries Development Authority; Dr .. Robert J. Lavenberg of Los Angels County Museum; Mr. Toshihiro Mizushima of Hokkaido Fisheries Experimental Station at Kushiro; Mr. Syuka Maruyama of Hokkaido Fisheries Experimental Station at Hakodate; Dr. Supap Monkolprasit of Kasetsart University; Dr. J~rgen Nielsen of Universiteteits Zoologiske Museum; Dr. Han Nijssen of Zoi:ilogisch Museum, Universiteit van Amsterdam; Mr. Masatoshi Nozawa of Tottori Fisheries Experimental Station; Dr. Osamu Okamura of Kochi University; Mr. Teiji Ono of Onahama Fishermen's Cooperative Association; Mr. Koichi Ouchi of Esashi Enyo Co. Ltd.; Drs. John R. Paxton and Barry C. Russell of Australian Museum; Prof. Margaret M. Smith of J.L.B. Smith Institute of Ichthyology; Mr. Umeji Suzuki; Mr. Tetsuo Takagoshi of Fukushima Fisheries Experimental Station; Drs. Toru Takai, Shyohei Nishikawa and Osame Tabeta of Shimonoseki University of Fisheries; Dr. Yoshiaki Tominaga of the University of Tokyo; Dr. Stanley H. Weitzman and Ms. Susan L. Jewett of U.S. National Museum; Dr. Mark White of Ministry of Agriculture, Fisheries and Food, England; Dr. Peter J.P. Whitehead and Mr. Alwyne Wheeler of British Museum (Natural History); Mr. Tamotsu Yamamura of Notsuke Fishermen's Cooperative Associa­ tion; Mr. Takuji Yatou. Dr. Don E. McAllister of National Museum of Canada kindly reviewed the manuscript. Mr. Nobuyoshi Kimura kindheartedly advised me on my English. I express my sincere thanks to Mr. Yuichi Kobayashi who kindly prepared a computer program for the present study. Also, I thank Dr. Yurin Sakamoto of the same university for his advice on FORTRAN program. Finally, my special thanks go to Dr. Kazuhiro Nakaya, associate professor of the same university, and the graduate students of our laboratory who have helped me in varIOUS ways. The present work was supported in part by grants from the Ito Foundation for the Advancement of Ichthyology. III. Materials The specimens examined for the present study the listed with their catalogued numbers, the numbers of the specimens and the sizes. The abbreviations prefixed to the catalogued numbers indicate the following institutions where those specimens belong: - 97- Mem. Fac. Fish. Hokkaido Univ. [XXXI, 1/2 BMNH: British Museum (Natural
Recommended publications
  • Aspects of the Life History of Hornyhead Turbot, Pleuronichthys Verticalis, Off Southern California
    Aspects of the Life History of Hornyhead Turbot, Pleuronichthys verticalis, off Southern California he hornyhead turbot T(Pleuronichthys verticalis) is a common resident flatfish on the mainland shelf from Magdalena Bay, Baja Califor- nia, Mexico to Point Reyes, California (Miller and Lea 1972). They are randomly distributed over the bottom at a density of about one fish per 130 m2 and lie partially buried in the sediment (Luckinbill 1969). Hornyhead turbot feed primarily on sedentary, tube-dwelling polychaetes (Luckinbill 1969, Allen 1982, Cross et al. 1985). They pull the tubes from the sediment, Histological section of a fish ovary. extract the polychaete, and then eject the tube (Luckinbill 1969). Hornyhead turbot are Orange County, p,p’-DDE Despite the importance of batch spawners and may averaged 362 μg/kg wet the hornyhead turbot in local spawn year round (Goldberg weight in hornyhead turbot monitoring programs, its life 1982). Their planktonic eggs liver and 5 μg/kg dry weight in history has received little are 1.00-1.16 mm diameter the sediments (CSDOC 1992). attention. The long-term goal (Sumida et al. 1979). Their In the same year in Santa of our work is to determine larvae occur in the nearshore Monica Bay, p,p’-DDE aver- how a relatively low trophic plankton throughout the year aged 7.8 mg/kg wet weight in level fish like the hornyhead (Gruber et al. 1982, Barnett et liver and 81 μg/kg dry weight turbot accumulates tissue al. 1984, Moser et al. 1993). in the sediments (City of Los levels of chlorinated hydrocar- Several agencies in South- Angeles 1992).
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • Identification of Larvae of Three Arctic Species of Limanda (Family Pleuronectidae)
    Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) Morgan S. Busby, Deborah M. Blood & Ann C. Matarese Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2153-9 1 23 Your article is protected by copyright and all rights are held exclusively by 2017. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2153-9 ORIGINAL PAPER Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) 1 1 1 Morgan S. Busby • Deborah M. Blood • Ann C. Matarese Received: 28 September 2016 / Revised: 26 June 2017 / Accepted: 27 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Identification of fish larvae in Arctic marine for L. proboscidea in comparison to the other two species waters is problematic as descriptions of early-life-history provide additional evidence suggesting the genus Limanda stages exist for few species. Our goal in this study is to may be paraphyletic, as has been proposed in other studies.
    [Show full text]
  • Why Are There So Many Flatfishes? Jaw Asymmetry, Diet, and Diversification in the Pleuronectiformes
    Why are there so many flatfishes? Jaw asymmetry, diet, and diversification in the Pleuronectiformes Jonathan Chang1 Functional Morphology and Ecology of Fishes Summer 2014 1Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA. Contact information: Jonathan Chang 610 Charles E. Young Drive S Los Angeles CA 90095 [email protected] Keywords: flatfish, Pleuronectidae, Paralichthyidae, Bothidae, asymmetry, geometric morphometrics, comparative methods, functional morphology Chang 1 Abstract Flatfishes (Actinopterygii: Pleuronectiformes) are a diverse group of teleost fishes, with over 700 species in the order. Jaw asymmetry and diet have been thought to contribute to flatfish diversity but this has not yet been tested in a comparative framework. Here I use geometric morphometric and comparative methods to test whether ocular-blind side asymmetry in flatfish head morphology contributed to flatfish diversification. I find that the repeated convergent evolution of similar morphology, jaw function, and diet likely contribute to the high diversity of flatfishes. Introduction Pleuronectiform fishes are highly diverse, with over 700 described species (Froese and Pauly, 2014). These fishes are characterized by their unique bilateral asymmetry and their benthic ecology. Flatfishes also generally consume one of three main types of prey: buried infauna, pelagic fishes and crustaceans, and a third type intermediate to the first two (de Groot 1971, Tsuruta & Omori 1976). I hypothesize that this specialization into different prey types has driven the diversification and morphological disparity in asymmetry of flatfish species. Methods 12 species of flatfish comprising of 11 genera and 2 families (Table 1) were collected via trawl and seine at these sites: Jackson Beach, [48°31'13.0"N 123°00'35.1"W] and Orcas – Eastsound [48°38'26.9"N 122°52'14.0"W].
    [Show full text]
  • Pleuronectidae
    FAMILY Pleuronectidae Rafinesque, 1815 - righteye flounders [=Heterosomes, Pleronetti, Pleuronectia, Diplochiria, Poissons plats, Leptosomata, Diprosopa, Asymmetrici, Platessoideae, Hippoglossoidinae, Psettichthyini, Isopsettini] Notes: Hétérosomes Duméril, 1805:132 [ref. 1151] (family) ? Pleuronectes [latinized to Heterosomi by Jarocki 1822:133, 284 [ref. 4984]; no stem of the type genus, not available, Article 11.7.1.1] Pleronetti Rafinesque, 1810b:14 [ref. 3595] (ordine) ? Pleuronectes [published not in latinized form before 1900; not available, Article 11.7.2] Pleuronectia Rafinesque, 1815:83 [ref. 3584] (family) Pleuronectes [senior objective synonym of Platessoideae Richardson, 1836; family name sometimes seen as Pleuronectiidae] Diplochiria Rafinesque, 1815:83 [ref. 3584] (subfamily) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Poissons plats Cuvier, 1816:218 [ref. 993] (family) Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Leptosomata Goldfuss, 1820:VIII, 72 [ref. 1829] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Diprosopa Latreille, 1825:126 [ref. 31889] (family) Platessa [no stem of the type genus, not available, Article 11.7.1.1] Asymmetrici Minding, 1832:VI, 89 [ref. 3022] (family) ? Pleuronectes [no stem of the type genus, not available, Article 11.7.1.1] Platessoideae Richardson, 1836:255 [ref. 3731] (family) Platessa [junior objective synonym of Pleuronectia Rafinesque, 1815, invalid, Article 61.3.2 Hippoglossoidinae Cooper & Chapleau, 1998:696, 706 [ref. 26711] (subfamily) Hippoglossoides Psettichthyini Cooper & Chapleau, 1998:708 [ref. 26711] (tribe) Psettichthys Isopsettini Cooper & Chapleau, 1998:709 [ref. 26711] (tribe) Isopsetta SUBFAMILY Atheresthinae Vinnikov et al., 2018 - righteye flounders GENUS Atheresthes Jordan & Gilbert, 1880 - righteye flounders [=Atheresthes Jordan [D.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • Ÿþø R J a N H a G E N P H D T H E S
    MUSCLE GROWTH AND FLESH QUALITY OF FARMED ATLANTIC HALIBUT (HIPPOGLOSSUS HIPPOGLOSSUS) IN RELATION TO SEASON OF HARVEST Ørjan Hagen A Thesis Submitted for the Degree of PhD at the University of St. Andrews 2008 Full metadata for this item is available in the St Andrews Digital Research Repository at: https://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/642 This item is protected by original copyright Muscle growth and flesh quality of farmed Atlantic halibut (Hippoglossus hippoglossus) in relation to season of harvest. Ørjan Hagen A thesis submitted for the degree of Doctor of Philosophy University of St Andrews St Andrews, July 2008 ii This thesis is dedicated to my family. I could not have managed without their loving support. Thank you so much! iii Acknowledgements Taking a PhD abroad at a highly respected University across the world has been a milestone of my life. I am very proud to have been a PhD student at the University of St Andrews and very grateful to the people helping me reaching my goals. Looking back at the beginning (October 2003) these last few years have been an educational expedition, full of challenges and memories. I have met people from Australia and Taiwan in the east to Canada in the west, wonderful people that I hope to have collaboration with in the future. There are so many to thank, and I would like to start with my supervisor and the head of the “Fish Muscle Research Group” (FMRG), Prof.
    [Show full text]
  • INVERTEBRATE SPECIES in the EASTERN BERING SEA By
    Effects of areas closed to bottom trawling on fish and invertebrate species in the eastern Bering Sea Item Type Thesis Authors Frazier, Christine Ann Download date 01/10/2021 18:30:05 Link to Item http://hdl.handle.net/11122/5018 e f f e c t s o f a r e a s c l o s e d t o b o t t o m t r a w l in g o n fish a n d INVERTEBRATE SPECIES IN THE EASTERN BERING SEA By Christine Ann Frazier RECOMMENDED: — . /Vj Advisory Committee Chair Program Head / \ \ APPROVED: M--- —— [)\ Dean, School of Fisheries and Ocean Sciences • ~7/ . <-/ / f a Dean of the Graduate Sch6oI EFFECTS OF AREAS CLOSED TO BOTTOM TRAWLING ON FISH AND INVERTEBRATE SPECIES IN THE EASTERN BERING SEA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE 6 By Christine Ann Frazier, B.A. Fairbanks, Alaska December 2003 UNIVERSITY OF ALASKA FAIRBANKS ABSTRACT The Bering Sea is a productive ecosystem with some of the most important fisheries in the United States. Constant commercial fishing for groundfish has occurred since the 1960s. The implementation of areas closed to bottom trawling to protect critical habitat for fish or crabs resulted in successful management of these fisheries. The efficacy of these closures on non-target species is unknown. This study determined if differences in abundance, biomass, diversity and evenness of dominant fish and invertebrate species occur among areas open and closed to bottom trawling in the eastern Bering Sea between 1996 and 2000.
    [Show full text]
  • Witch Flounder, Glyptocephalus Cynoglossus, Life History and Habitat Characteristics
    NOAA Technical Memorandum NMFS-NE-139 Essential Fish Habitat Source Document: Witch Flounder, Glyptocephalus cynoglossus, Life History and Habitat Characteristics U. S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Northeast Region Northeast Fisheries Science Center Woods Hole, Massachusetts September 1999 Recent Issues 105. Review of American Lobster (Homarus americanus) Habitat Requirements and Responses to Contaminant Exposures. By Renee Mercaldo-Allen and Catherine A. Kuropat. July 1994. v + 52 p., 29 tables. NTIS Access. No. PB96-115555. 106. Selected Living Resources, Habitat Conditions, and Human Perturbations of the Gulf of Maine: Environmental and Ecological Considerations for Fishery Management. By Richard W. Langton, John B. Pearce, and Jon A. Gibson, eds. August 1994. iv + 70 p., 2 figs., 6 tables. NTIS Access. No. PB95-270906. 107. Invertebrate Neoplasia: Initiation and Promotion Mechanisms -- Proceedings of an International Workshop, 23 June 1992, Washington, D.C. By A. Rosenfield, F.G. Kern, and B.J. Keller, comps. & eds. September 1994. v + 31 p., 8 figs., 3 tables. NTIS Access. No. PB96-164801. 108. Status of Fishery Resources off the Northeastern United States for 1994. By Conservation and Utilization Division, Northeast Fisheries Science Center. January 1995. iv + 140 p., 71 figs., 75 tables. NTIS Access. No. PB95-263414. 109. Proceedings of the Symposium on the Potential for Development of Aquaculture in Massachusetts: 15-17 February 1995, Chatham/Edgartown/Dartmouth, Massachusetts. By Carlos A. Castro and Scott J. Soares, comps. & eds. January 1996. v + 26 p., 1 fig., 2 tables. NTIS Access. No. PB97-103782. 110. Length-Length and Length-Weight Relationships for 13 Shark Species from the Western North Atlantic.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Bering Sea Climate Vulnerability Assessment Species-Specific Results: Arrowtooth Flounder − Atheresthes Stomias
    Arrowtooth flounder − Atheresthes stomias Overall Vulnerability Rank = Low Biological Sensitivity = Low Climate Exposure = Low Sensitivity Data Quality = 92% of scores ≥ 2 Exposure Data Quality = 56% of scores ≥ 2 Expert Data Expert Scores Plots Atheresthes stomias Scores Quality (Portion by Category) Low Habitat Specificity 1.1 3.0 Moderate High Prey Specificity 1.6 2.6 Very High Adult Mobility 1.7 2.0 Dispersal of Early Life Stages 1.4 2.0 Early Life History Survival and Settlement Requirements 2.0 2.0 Complexity in Reproductive Strategy 1.8 1.8 Spawning Cycle 2.3 2.0 Sensitivity to Temperature 1.7 2.8 Sensitivity attributes Sensitivity to Ocean Acidification 2.0 2.8 Population Growth Rate 3.0 3.0 Stock Size/Status 1.0 3.0 Other Stressors 1.1 2.8 Sensitivity Score Low Sea Surface Temperature 2.0 2.5 Sea Surface Temperature (variance) 1.6 2.5 Bottom Temperature 2.1 3.0 Bottom Temperature (variance) 2.1 3.0 Salinity 1.2 2.0 Salinity (variance) 2.3 2.0 Ocean Acidification 4.0 3.0 Ocean Acidification (variance) 1.4 3.0 Phytoplankton Biomass 1.4 1.2 Phytoplankton Biomass (variance) 1.3 1.2 Plankton Bloom Timing 1.5 1.0 Plankton Bloom Timing (variance) 2.2 1.0 Large Zooplankton Biomass 1.2 1.0 Large Zooplanton Biomass (variance) 1.3 1.0 Exposure factors Exposure factors Mixed Layer Depth 1.5 1.0 Mixed Layer Depth (variance) 2.3 1.0 Currents 1.4 2.0 Currents (variance) 1.6 2.0 Air Temperature NA NA Air Temperature (variance) NA NA Precipitation NA NA Precipitation (variance) NA NA Sea Surface Height NA NA Sea Surface Height (variance) NA NA Exposure Score Low Overall Vulnerability Rank Low For assistance with this document, please contact NOAA Fisheries Office of Science and Technology at (301) 427-8100 or visit https://www.fisheries.noaa.gov/contact/office-science-and-technology Arrowtooth Flounder (Astheresthes stomias) Overall Climate Vulnerability Rank: Low.
    [Show full text]
  • Bilateral Asymmetry and Bilateral Variation in Fishes *
    BILATERAL ASYMMETRY AND BILATERAL VARIATION IN FISHES * bARL L. HUBBS AND LAURA C. HUBBS CONTENTS PAGE Introduction ................................................................................................................... 230 Statistical methods ....................................................................................................... 231 Dextrality and sinistrality in flatfishes .................................................................. 234 Reversal of sides in flounders .............................................................................. 236 Decreased viability of reversed flounders ......................................................... 240 Incomplete mirror imaging in reversed flounders .......................................... 243 A completely reversed flatfish .............................................................................. 245 Interpretation of reversal in flatfishes ............................................................... 246 Teratological return toward symmetry ............................................................. 249 Secondary asymmetries in flatfishes .................................................................... 250 Bilateral variation in number of rays in paired fins on the two sides of flatfishes ................................................................................................................. 254 Asymmetries and bilateral variations in essentially symmetrical fishes ....... 263 Bilateral variation in number of rays in the left
    [Show full text]