The Southern Double Stars of Carl Rümker I: History, Identification, Accuracy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Sky This Month
The sky this month May 2020 By Joe Grida, Technical Informaon Officer, ASSA ([email protected]) irst of all, an apology. Pressures of work now preclude me from producing this guide every week. So, from now on it will be monthly. It is designed to keep you looking up during these rather uncertain mes. We F can’t get together for Members’ Viewing Nights, so I thought I’d write this to give you some ideas of observing targets that you can chase on any clear night this coming month. Stargazing is something that we all like to do. Cavemen did it many thousands of years ago, and we sll do it. There’s something rather special in looking into a dark sky and seeing all those stars. It’s more meaningful now. We don’t have to assign god-like powers to any of those stars for we now know what they really are, and I think that makes it even more awesome to look up at a star-studded sky. Keep looking up! Naked eye star walk Later in the evening on the night of May 7th, look high up the eastern sky. The Full Moon will be below and slightly right of a star with one of my very favourite star names - Zubenelgenubi. The Arabic name "Zubenelgenubi" means the "the southern claw." Thousands of years ago, it and the star that stands above it and to the right; Zubeneschamali, the northern claw; were part of Scorpius, the scorpion. But later, they were stripped away and assigned to a new constellaon: Libra, the balance scales. -
ASSA SYMPOSIUM 2002 - Magda Streicher
ASSA SYMPOSIUM 2002 - Magda Streicher Deep Sky Dedication Magda Streicher ASSA SYMPOSIUM 2002 - Magda Streicher Deep Sky Dedication • Introduction • Selection of Objects • The Objects • My Observing Programs • Conclusions ASSA SYMPOSIUM 2002 - Magda Streicher Table 1 List of Objects NGC 6826 Blinking nebula in Cygnus NGC 1554/5 Hind’s Variable Nebula in Taurus NGC 3228 cluster in Vela NGC 6204 cluster in Ara NGC 5281 cluster in Centaurus NGC 4609 cluster in Crux NGC 4439 cluster in Crux NGC 272 asterism in Andromeda NGC 1963 galaxy and asterism in Columba NGC 2017 multiple star in Lepus ‘Mini Coat Hanger’ asterism in Ursa Minor ‘Stargate’ asterism in Corvus ASSA SYMPOSIUM 2002 - Magda Streicher James Dunlop • Born 31/10/1793 • Dalry, near Glasgow • 9” f/12 reflector • Catalogue of 629 objects ASSA SYMPOSIUM 2002 - Magda Streicher John Herschel • Born 7/3/1792 • Slough, near Windsor • Cape 1834-38 • Catalogued over 5000 objects • Died 11/5/1871 ASSA SYMPOSIUM 2002 - Magda Streicher NGC6826 Blinking Nebula in Cygnus RA19h44.8 Dec +50º 31 Magnitude 9.8 Size 2.3’ Through the eyepiece of my best friend, the telescope, millions of light points share in togetherness, our own sun, suddenly pale and alone. ASSA SYMPOSIUM 2002 - Magda Streicher NGC1554/55 Hind’s Variable Nebula in Taurus RA04h21.8 Dec +19º 32 Magnitude 12-13 Size 0.5’ The beauty of the night skies filled my life with share wonder and in a way I think share the closeness with me. ASSA SYMPOSIUM 2002 - Magda Streicher NGC3228 Open Cluster Dunlop 386 In Vela RA10h21.8 Dec -51º 43 Magnitude 6.0 Size 18’ Many of us have wished upon the first star spotted in the evening twilight because there is something special about looking at the stars. -
Central Coast Astronomy Virtual Star Party January 16Th 7Pm Pacific
Central Coast Astronomy Virtual Star Party January 16th 7pm Pacific Welcome to our Virtual Star Gazing session! We’ll be focusing on objects you can see with binoculars or a small telescope, so after our session, you can simply walk outside, look up, and understand what you’re looking at. CCAS President Aurora Lipper and astronomer Kent Wallace will bring you a virtual “tour of the night sky” where you can discover, learn, and ask questions as we go along! All you need is an internet connection. You can use an iPad, laptop, computer or cell phone. When 7pm on Saturday night rolls around, click the link on our website to join our class. CentralCoastAstronomy.org/stargaze Before our session starts: Step 1: Download your free map of the night sky: SkyMaps.com They have it available for Northern and Southern hemispheres. Step 2: Print out this document and use it to take notes during our time on Saturday. This document highlights the objects we will focus on in our session together. Celestial Objects: Moon: The moon is 3 days past new, which is really good for star gazing. Be sure to look at the moon tonight with your naked eyes and/or binoculars! Mercury is rising into the western sky and may be a good target near the end of the month. Mars is up high but is shrinking in size as the weeks progress. *Image credit: all astrophotography images are courtesy of NASA unless otherwise noted. All planetarium images are courtesy of Stellarium. Central Coast Astronomy CentralCoastAstronomy.org Page 1 Main Focus for the Session: 1. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Observing Exoplanets
Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. -
Accelerated Reader Quiz List - Reading Practice Quiz Book Title Author Points No
Accelerated Reader Quiz List - Reading Practice Quiz Book Title Author Points No. Level 31584 Big Brown Bear McPhail, David 0.4 0.5 EN 9353 EN Birthday Car, The Hillert, Margaret 0.5 0.5 7255 EN Can You Play? Ziefert, Harriet 0.5 0.5 35988 Day I Had to Play with My Sister, The Bonsall, Crosby 0.5 0.5 EN 36786 Dogs Frost, Helen 0.5 0.5 EN 902 EN Emperor Penguins Up Close Bredeson, Carmen 0.5 0.5 36787 Fish Frost, Helen 0.5 0.5 EN 9382 EN Little Runaway, The Hillert, Margaret 0.5 0.5 49858 Sit, Truman! Harper, Dan 0.5 0.5 EN 60939 Tiny Goes to the Library Meister, Cari 0.5 0.5 EN 36785 Cats Frost, Helen 0.6 0.5 EN 76670 Duck, Duck,Goose! (A Coyote's on the Loose!) Beaumont, Karen 0.6 0.5 EN 31833 Fathers Schaefer, Lola M. 0.6 0.5 EN 9364 EN Funny Baby, The Hillert, Margaret 0.6 0.5 9383 EN Magic Beans, The Hillert, Margaret 0.6 0.5 83514 Puppy Mudge Finds a Friend Rylant, Cynthia 0.6 0.5 EN 88312 Puppy Mudge Wants to Play Rylant, Cynthia 0.6 0.5 EN 59439 Rosie's Walk Hutchins, Pat 0.6 0.5 EN 9391 EN Three Bears, The Hillert, Margaret 0.6 0.5 9392 EN Three Goats, The Hillert, Margaret 0.6 0.5 9393 EN Three Little Pigs, The Hillert, Margaret 0.6 0.5 9400 EN Yellow Boat, The Hillert, Margaret 0.6 0.5 9355 EN Cinderella at the Ball Hillert, Margaret 0.7 0.5 31818 Family Pets Schaefer, Lola M. -
XVI. Astrometric Measurements of Visual Binaries in 2015, and New Orbits for DUN 5, ADS 5958, 6276, 7294, 8211, and 13169 M
Speckle observations with PISCO in Merate (Italy): XVI. Astrometric measurements of visual binaries in 2015, and new orbits for DUN 5, ADS 5958, 6276, 7294, 8211, and 13169 M. Scardia, Jean-Louis Prieur, L. Pansecchi, R. Argyle, A. Zanutta, E. Aristidi To cite this version: M. Scardia, Jean-Louis Prieur, L. Pansecchi, R. Argyle, A. Zanutta, et al.. Speckle observations with PISCO in Merate (Italy): XVI. Astrometric measurements of visual binaries in 2015, and new orbits for DUN 5, ADS 5958, 6276, 7294, 8211, and 13169. Astronomical Notes / Astronomische Nachrichten, Wiley-VCH Verlag, 2018, 339 (7-8), pp.571-585. 10.1002/asna.201813494. hal-02357166 HAL Id: hal-02357166 https://hal.archives-ouvertes.fr/hal-02357166 Submitted on 9 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Astron. Nachr. / AN 000, No.00, 1–15 (0000) / DOI please set DOI! Speckle observations with PISCO in Merate (Italy): XVI. Astrometric measurements of visual binaries in 2015, and new orbits for DUN 5, ADS 5958, 6276, 7294, 8211 and 13169. M. Scardia1, J.-L. Prieur2,3, L. Pansecchi1, R.W. Argyle4, A. Zanutta1, and E. -
Variable Star Classification and Light Curves Manual
Variable Star Classification and Light Curves An AAVSO course for the Carolyn Hurless Online Institute for Continuing Education in Astronomy (CHOICE) This is copyrighted material meant only for official enrollees in this online course. Do not share this document with others. Please do not quote from it without prior permission from the AAVSO. Table of Contents Course Description and Requirements for Completion Chapter One- 1. Introduction . What are variable stars? . The first known variable stars 2. Variable Star Names . Constellation names . Greek letters (Bayer letters) . GCVS naming scheme . Other naming conventions . Naming variable star types 3. The Main Types of variability Extrinsic . Eclipsing . Rotating . Microlensing Intrinsic . Pulsating . Eruptive . Cataclysmic . X-Ray 4. The Variability Tree Chapter Two- 1. Rotating Variables . The Sun . BY Dra stars . RS CVn stars . Rotating ellipsoidal variables 2. Eclipsing Variables . EA . EB . EW . EP . Roche Lobes 1 Chapter Three- 1. Pulsating Variables . Classical Cepheids . Type II Cepheids . RV Tau stars . Delta Sct stars . RR Lyr stars . Miras . Semi-regular stars 2. Eruptive Variables . Young Stellar Objects . T Tau stars . FUOrs . EXOrs . UXOrs . UV Cet stars . Gamma Cas stars . S Dor stars . R CrB stars Chapter Four- 1. Cataclysmic Variables . Dwarf Novae . Novae . Recurrent Novae . Magnetic CVs . Symbiotic Variables . Supernovae 2. Other Variables . Gamma-Ray Bursters . Active Galactic Nuclei 2 Course Description and Requirements for Completion This course is an overview of the types of variable stars most commonly observed by AAVSO observers. We discuss the physical processes behind what makes each type variable and how this is demonstrated in their light curves. Variable star names and nomenclature are placed in a historical context to aid in understanding today’s classification scheme. -
Exótico Cielo Profundo 15
15 Joyas por Crux Centaurus (Cen), Crux (Cru), Musca (Mus) · Exótico Cielo Profundo 15 de Rodolfo Ferraiuolo y Enzo De Bernardini Constelación Centaurus (Cen) Crux (Cru) Musca (Mus) Época Otoño Austral PK 300-0.1 NGC 4463 PK 300-1.1 PK 300-2.1 Ru 105 Tr 20 Objetos NGC 4609 Hogg 15 Saco de Carbón NGC 4755 NGC 4815 NGC 4852 La Cruz del Sur o Crux, la más pequeña de las 88 constelaciones que forman el firmamento, posee varias joyas nocturnas y, en esta ocasión estudiaremos algunas de ellas, más otras en Centaurus y Musca. Vamos a rodear e incursionar dentro de la afamada nebulosa oscura bautizada Saco de Carbón, observando, además de ella, variados cúmulos estelares y, unas pocas y dificultosas nebulosas planetarias. Estos objetos fueron elegidos entre muchos más de este tipo en el área y, esperamos les agraden. Esta fantástica región del ecuador galáctico, es atravesada por la Asociación Centaurus Inferior-Crux, parte de asociación estelar más cercana al Sol, denominada Asociación Scorpius-Centaurus OB 1 y, gran parte de las brillantes estrellas de la zona son miembros de ella. Nuestro punto de partida será el conocido y hermoso cúmulo estelar abierto o galáctico NGC 4755, hallado sobre una rica y bella zona estelar, a menos de un grado al sudeste de la estrella binaria y variable, de mag. 1,3, beta (β) Crucis, Mimosa o Becrux, haciendo muy fácil su localización. Fue catalogado por Bayer, en 1603, como estrella individual y, descripto como "la estrella nebulosa kappa". En el año 1752, el Abad y astrónomo rumano-francés Nicolás Louis de Lacaille o Nicolai-Ludovici De La Caille, descubre este objeto como agrupación estelar, con un telescopio refractor de media pulgada, desde Sudáfrica; incluyéndolo como uno de los 42 objetos de su catálogo de 1755, Sur les étoiles nébuleuses du ciel austral, en las Memorias de la Real Academia de las Ciencias de Paris, Francia. -
Early Australian Optical and Radio Observations of Centaurus A
CSIRO PUBLISHING Publications of the Astronomical Society of Australia, 2010, 27, 402–430 www.publish.csiro.au/journals/pasa Early Australian Optical and Radio Observations of Centaurus A Peter RobertsonA,C, Glen CozensA, Wayne OrchistonA, Bruce SleeA,B, and Harry WendtA A Centre for Astronomy, James Cook University, Townsville, Qld 4811, Australia B CSIRO Astronomy and Space Sciences, PO Box 76, Epping, NSW 2121, Australia C Corresponding author. Email: [email protected] Received 2009 October 8, accepted 2009 December 8 Abstract: The discovery of the radio source Centaurus A and its optical counterpart NGC 5128 were important landmarks in the history of Australian astronomy. NGC 5128 was first observed in August 1826 by James Dunlop during a survey of southern objects at the Parramatta Observatory, west of the settlement at Sydney Cove. The observatory had been founded a few years earlier by Thomas Brisbane, the new governor of the British colony of New South Wales. Just over 120 years later, John Bolton, Gordon Stanley and Bruce Slee discovered the radio source Centaurus A at the Dover Heights field station in Sydney, operated by CSIRO’s Radiophysics Laboratory (the forerunner to CSIRO Astronomy and Space Sciences). This paper will describe this early historical work and summarize further studies of Centaurus A by other Radiophysics groups up to 1960. Keywords: Centaurus A — NGC 5128 — radio galaxies — history of Australian astronomy — Parramatta Observatory — Radiophysics Laboratory 1 Introduction different nature began at Dover Heights in Sydney, the site The radio source Centaurus A and its optical counterpart of a former wartime radar research station operated by the NGC 5128 comprise possibly the most important astro- Radiophysics Laboratory. -
ASTR 1010 Homework Solutions
ASTR 1010 Homework Solutions Chapter 1 24. Set up a proportion, but be sure that you express all the distances in the same units (e.g., centimeters). The diameter of the Sun is to the size of a basketball as the distance to Proxima Centauri (4.2 LY) is to the unknown distance (X), so (1.4 × 1011 cm) / (30 cm) = (4.2 LY)(9.46 × 1017 cm/LY) / (X) Rearranging terms, we get X = (4.2 LY)(9.46 × 1017 cm/LY)(30 cm) / (1.4 × 1011 cm) = 8.51 × 108 cm = 8.51 × 103 km = 8510 km In other words, if the Sun were the size of a 30-cm diameter ball, the nearest star would be 8510 km away, which is roughly the distance from Los Angeles to Tokyo. 27. The Sun’s hydrogen mass is (3/4) × (1.99 × 1030 kg) = 1.49 × 1030 kg. Now divide the Sun’s hydrogen mass by the mass of one hydrogen atom to get the number of hydrogen atoms contained in the Sun: (1.49 × 1030 kg) / (1.67 × 10-27 kg/atom) = 8.92 × 1056 atoms. 8 11 29. The distance from the Sun to the Earth is 1 AU = 1.496 × 10 km = 1.496 × 10 m. The light-travel time is the distance, 1 AU, divided by the speed of light, i.e., 11 8 3 time = distance/speed = (1.496 × 10 m) / (3.00 × 10 m/s) = 0.499 × 10 s = 499 s = 8.3 minutes. 34. Since you are given diameter (D = 2.6 cm) and angle, and asked to find distance, you need to rewrite the small-angle formula as d = (206,265)(D) / (α). -
An Analysis of the First Three Catalogues of Southern Star Clusters and Nebulae
ResearchOnline@JCU This file is part of the following reference: Cozens, Glendyn John (2008) An analysis of the first three catalogues of southern star clusters and nebulae. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/24051/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/24051/ Nicolas-Louis de La Caille, James Dunlop and John Herschel – An analysis of the First Three Catalogues of Southern Star Clusters and Nebulae Thesis submitted by Glendyn John COZENS BSc London, DipEd Adelaide in June 2008 for the degree of Doctor of Philosophy in the Faculty of Science, Engineering and Information Technology James Cook University STATEMENT OF ACCESS I, the undersigned, author of this work, understand that James Cook University will make this thesis available for use within the University Library and, via the Australian Digital Theses network, for use elsewhere. I understand that, as an unpublished work, a thesis has significant protection under the Copyright Act and; I do not wish to place any further restriction on access to this work. ____________________ Signature Date ii STATEMENT OF SOURCES DECLARATION I declare that this thesis is my own work and has not been submitted in any form for another degree or diploma at any university or other institution of tertiary education. Information derived from the published or unpublished work of others has been acknowledged in the text and a list of references is given.