Development of a Universal Nucleobase and Modified
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Excited State Dynamics of Isocytosine; a Hybrid Case of Canonical Nucleobase Photodynamics
The Journal of Physical Chemistry Letters This document is confidential and is proprietary to the American Chemical Society and its authors. Do not copy or disclose without written permission. If you have received this item in error, notify the sender and delete all copies. Excited State Dynamics of Isocytosine; a Hybrid Case of Canonical Nucleobase Photodynamics Journal: The Journal of Physical Chemistry Letters Manuscript ID jz-2017-020322.R1 Manuscript Type: Letter Date Submitted by the Author: n/a Complete List of Authors: Berenbeim, Jacob; UC Santa Barbara, Chemistry and Biochemistry Boldissar, Samuel; UCSB, Department of Chemistry Siouri, Faady; UCSB, Department of Chemistry Gate, Gregory; UCSB, Department of Chemistry Haggmark, Michael; UC Santa Barbara, Chemistry and Biochemistry Aboulache, Briana; University of California Santa Barbara Cohen, Trevor; UC Santa Barbara, Chemistry and Biochemistry De Vries, Mattanjah; UCSB, Department of Chemistry ACS Paragon Plus Environment Page 1 of 12 The Journal of Physical Chemistry Letters 1 2 3 4 Excited State Dynamics of Isocytosine; A Hybrid Case of Canonical 5 Nucleobase Photodynamics 6 7 Jacob A. Berenbeim, Samuel Boldissar, Faady M. Siouri, Gregory Gate, Michael R. 8 Haggmark, Briana Aboulache, Trevor Cohen, and Mattanjah S. de Vries* 9 10 Department of Chemistry and Biochemistry, University of California Santa 11 12 Barabara, CA 93106-9510 13 *E-mail: [email protected] 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 1 ACS Paragon Plus Environment The Journal of Physical Chemistry Letters Page 2 of 12 1 2 3 Abstract 4 5 We present resonant two-photon ionization (R2PI) spectra of isocytosine (isoC) and pump-probe 6 results on two of its tautomers. -
Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation
G C A T T A C G G C A T genes Review Alternative Biochemistries for Alien Life: Basic Concepts and Requirements for the Design of a Robust Biocontainment System in Genetic Isolation Christian Diwo 1 and Nediljko Budisa 1,2,* 1 Institut für Chemie, Technische Universität Berlin Müller-Breslau-Straße 10, 10623 Berlin, Germany; [email protected] 2 Department of Chemistry, University of Manitoba, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada * Correspondence: [email protected] or [email protected]; Tel.: +49-30-314-28821 or +1-204-474-9178 Received: 27 November 2018; Accepted: 21 December 2018; Published: 28 December 2018 Abstract: The universal genetic code, which is the foundation of cellular organization for almost all organisms, has fostered the exchange of genetic information from very different paths of evolution. The result of this communication network of potentially beneficial traits can be observed as modern biodiversity. Today, the genetic modification techniques of synthetic biology allow for the design of specialized organisms and their employment as tools, creating an artificial biodiversity based on the same universal genetic code. As there is no natural barrier towards the proliferation of genetic information which confers an advantage for a certain species, the naturally evolved genetic pool could be irreversibly altered if modified genetic information is exchanged. We argue that an alien genetic code which is incompatible with nature is likely to assure the inhibition of all mechanisms of genetic information transfer in an open environment. The two conceivable routes to synthetic life are either de novo cellular design or the successive alienation of a complex biological organism through laboratory evolution. -
5-Fluorocytosine/Isocytosine Monohydrate. the First Example of Isomorphic and Isostructural Co-Crystal of Pyrimidine Nucleobases
crystals Article 5-Fluorocytosine/Isocytosine Monohydrate. The First Example of Isomorphic and Isostructural Co-Crystal of Pyrimidine Nucleobases Gustavo Portalone Department of Chemistry, ‘Sapienza’ University of Rome, 00185 Rome, Italy; [email protected]; Tel.: +396-4991-3715 Received: 1 October 2020; Accepted: 2 November 2020; Published: 3 November 2020 Abstract: To date, despite the crucial role played by cytosine, uracil, and thymine in the DNA/RNA replication process, no examples showing isomorphic and isostructural behavior among binary co-crystals of natural or modified pyrimidine nucleobases have been so far reported in the literature. In view of the relevance of biochemical and pharmaceutical compounds such as pyrimidine nucleobases and their 5-fluoroderivatives, co-crystals of the molecular complex formed by 5-fluorocytosine and isocytosine monohydrate, C H FN O C H N O H O, have been synthesized 4 4 3 · 4 5 3 · 2 by a reaction between 5-fluorocytosine and isocytosine. They represent the first example of isomorphic and isostructural binary co-crystals of pyrimidine nucleobases, as X-ray diffraction analysis shows structural similarities in the solid-state organization of molecules with that of the (1:1) 5-fluorocytosine/5-fluoroisocytosine monohydrate molecular complex, which differs solely in the H/F substitution at the C5 position of isocytosine. Molecules of 5-fluorocytosine and isocytosine are present in the crystal as 1H and 3H-ketoamino tautomers, respectively. They form almost coplanar WC base pairs through nucleobase-to-nucleobase DAA/ADD hydrogen bonding interactions, demonstrating that complementary binding enables the crystallization of specific tautomers. Additional peripheral hydrogen bonds involving all available H atom donor and acceptor sites of the water molecule give a three-dimensional polymeric structure. -
Durham Research Online
Durham Research Online Deposited in DRO: 04 January 2019 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Pohl, Radek and Socha, Ond§rejand Slav¡§cek,Petr and S¡ala,Michal§ and Hodgkinson, Paul and Dra§c¡nsk¡y, Martin (2018) 'Proton transfer in guaninecytosine base pair analogues studied by NMR spectroscopy and PIMD simulations.', Faraday discussions., 212 . pp. 331-344. Further information on publisher's website: https://doi.org/10.1039/C8FD00070K Publisher's copyright statement: This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk Faraday Discussions Cite this: Faraday Discuss.,2018,212,331 View Article Online PAPER View Journal | View Issue Proton transfer in guanine–cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations† a a b a Radek Pohl, Ondˇrej Socha, Petr Slav´ıcek,ˇ Michal Sˇala,´ c a Paul Hodgkinson and Martin Dracˇ´ınsky´ * Received 28th March 2018, Accepted 1st May 2018 DOI: 10.1039/c8fd00070k It has been hypothesised that proton tunnelling between paired nucleobases significantly enhances the formation of rare tautomeric forms and hence leads to errors in DNA Creative Commons Attribution-NonCommercial 3.0 Unported Licence. -
207650 / Prebiotic Synthesis of Diaminopyrimidine And
J Mol Evol (1996) 43:543-550 )o. =MOLECUI.AR 207650 NASAJCR.--- ---- 0 Swinga-Veriq New Yo_ Inc, 1996 / /. // / f ..4 " 2 / .o :/ Prebiotic Synthesis of Diaminopyrimidine and Thiocytosine Michael P. Robertson,* Matthew Levy, Stanley L. Miller Deparunent of Chemistry and Biochemistry. University of California. San Diego. La Jolla, CA 92093-0317. USA Received: 12 December 1995 / Accepted: 29 June 1996 Abstract. The reaction of guanidine hydrochloride Key words: Pyrimidine synthesis -- Cyanoacetalde- with cyanoacetaldehyde gives high yields (40-85%) of hyde -- Guanidine -- Thiourea--Drying lagoons 2,4-diaminopyrimidine under the concentrated condi- tions of a drying lagoon model of prebiotic synthesis, in contrast to the low yields previously obtained under more dilute conditions. The prebiotic source of cyano- Introduction acetaldehyde, cyanoacetylene, is produced from electric discharges under reducing conditions. The effect of pH and concentration of guanidine hydrochloride on the rate Until recently, the prebiotic synthesis of pyrimidines has of synthesis and yield of diaminopyrimidine were inves- been considered poor. The first experiments used cyano- tigated, as well as the hydrolysis of diaminopyrimidine to acetylene and cyanate to produce cytosine, but the con- cytosine, isocytosine, and uracil.Thiourea also reacts centrations of cyanate needed were rather high (0.1 M) with cyanoacetaldehyde to give 2-thiocytosine, but the (Ferris et al. 1968). An overlooked experiment in this pyrimidine yields are much lower than with guanidine paper used 1 M cyanoacetylene and 1 M urea to produce hydrochloride or urea. Thiocytosine hydrolyzes to thio- cytosine in 4.8% yield. uracil and cytosine and then to uracil. This synthesis Cyanoacetylene is produced in substantial yield from would have been a significant prebiotic source of electric discharges acting on CH 4 + N 2 mixtures 2-thiopyrimidines and 5-substituted derivatives of thio- (Sanchez et at. -
Bioenergetics, ATP & Enzymes
Bioenergetics, ATP & Enzymes Some Important Compounds Involved in Energy Transfer and Metabolism Bioenergetics can be defined as all the energy transfer mechanisms occurring within living organisms. Energy transfer is necessary because energy cannot be created and it cannot be destroyed (1st law of thermodynamics). Organisms can acquire energy from chemicals (chemotrophs) or they can acquire it from light (phototrophs), but they cannot make it. Thermal energy (heat) from the environment can influence the rate of chemical reactions, but is not generally considered an energy source organisms can “capture” and put to specific uses. Metabolism, all the chemical reactions occurring within living organisms, is linked to bioenergetics because catabolic reactions release energy (are exergonic) and anabolic reactions require energy (are endergonic). Various types of high-energy compounds can “donate” the energy required to drive endergonic reactions, but the most commonly used energy source within cells is adenosine triphosphate (ATP), a type of coenzyme. When this molecule is catabolized (broken down), the energy released can be used to drive a wide variety of synthesis reactions. Endergonic reactions required for the synthesis of nucleic acids (DNA and RNA) are exceptions because all the nucleotides incorporated into these molecules are initially high-energy molecules as described below. The nitrogenous base here is adenine, the sugar is the pentose monosaccharide ribose and there are three phosphate groups attached. The sugar and the base form a molecule called a nucleoside, and the number of phosphate groups bound to the nucleoside is variable; thus alternative forms of this molecule occur as adenosine monophosphate (AMP) and adenosine diphosphate (ADP). -
1/05661 1 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC. -
Role of Uridine Triphosphate in the Phosphorylation of 1-ß-D- Arabinofuranosylcytosine by Ehrlich Ascites Tumor Cells1
[CANCER RESEARCH 47, 1820-1824, April 1, 1987] Role of Uridine Triphosphate in the Phosphorylation of 1-ß-D- Arabinofuranosylcytosine by Ehrlich Ascites Tumor Cells1 J. Courtland White2 and Leigh H. Hiñes Department of Biochemistry, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103 ABSTRACT potent feedback regulation by dCTP (3-9). The level of dCTP in the cell has been shown to be an important determinant of Pyrimidine nucleotide pools were investigated as determinants of the ara-C action in a variety of cell types (10-12). For example, rate of phosphorylation of l-j9-D-arabinofuranosylcytosine (ara-C) by Harris et al. (10) demonstrated that the sensitivity of several Ehrlich ascites cells and cell extracts. Cells were preincubated for 2 h with 10 MMpyrazofurin, 10 imi glucosamine, 50 MM3-deazauridine, or mouse tumor cell lines to ara-C was inversely proportional to 1 HIMuridine in order to alter the concentrations of pyrimidine nucleo- their cellular dCTP level. In addition, these authors observed tides. Samples of the cell suspensions were taken for assay of adenosine that thymidine enhanced ara-C sensitivity in those cell lines S'-triphosphate (ATP), uridine 5'-triphosphate (IIP), cytidine S'-tn- where there was a depression in dCTP levels but not in those phosphate, guanosine S'-triphosphate, deoxycytidine S'-triphosphate cell lines where thymidine did not alter dCTP pools. Cellular (dCTP), and deoxythymidine S'-triphosphate; then l MM[3H|ara-C was pools of dCTP may also be decreased by inhibitors of the de added and its rate of intrazellular uptake was measured for 30 min. -
Nanoconjugates Able to Cross the Blood-Brain Barrier Alexander H Stegh, Janina Paula Luciano, Samuel A
(12) STANDARD PATENT (11) Application No. AU 2017216461 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Nanoconjugates Able To Cross The Blood-Brain Barrier (51) International Patent Classification(s) A61K 31/7088 (2006.01) A61K 48/00 (2006.0 1) A61K 9/00 (2006.01) A61P 35/00 (2006.01) (21) Application No: 2017216461 (22) Date of Filing: 2017.08.15 (43) Publication Date: 2017.08.31 (43) Publication Journal Date: 2017.08.31 (44) Accepted Journal Date: 2019.10.17 (62) Divisional of: 2012308302 (71) Applicant(s) NorthwesternUniversity (72) Inventor(s) Mirkin, Chad A.;Ko, Caroline H.;Stegh, Alexander;Giljohann, David A.;Luciano, Janina;Jensen, Sam (74) Agent / Attorney WRAYS PTY LTD, L7 863 Hay St, Perth, WA, 6000, AU (56) Related Art US 2010/0233084 Al LJUBIMOVA et al. "Nanoconjugate based on polymalic acid for tumor targeting", Chemico-Biological Interactions, 2008, Vol. 171, Pages 195-203. WO 2011/028847 Al BONOU et al. "Nanotechnology approach for drug addiction therapy: Gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons", PNAS, 2009, Vol. 106, No. 14, Pages 5546-5550. PATIL et al. "Temozolomide Delivery to Tumor Cells by a Multifunctional Nano Vehicle Based on Poly(#-L-malic acid)", Pharmaceutical Research, 2010, Vol. 27, Pages 2317-2329. ABSTRACT Polyvalent nanoconjugates address the critical challenges in therapeutic use. The single-entity, targeted therapeutic is able to cross the blood-brain barrier (BBB) and is thus effective in the treatment of central nervous system (CNS) disorders. Further, despite the tremendously high 5 cellular uptake of nanoconjugates, they exhibit no toxicity in the cell types tested thus far. -
Geochemical Influences on Nonenzymatic Oligomerization Of
bioRxiv preprint doi: https://doi.org/10.1101/872234; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Geochemical influences on nonenzymatic oligomerization of prebiotically relevant cyclic nucleotides Authors: Shikha Dagar‡, Susovan Sarkar‡, Sudha Rajamani‡* ‡ Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India Correspondence: [email protected]; Tel.: +91-20-2590-8061 Running title: Cyclic nucleotides and emergence of an RNA World Key words: Dehydration-rehydration cycles, lipid-assisted oligomerization, cyclic nucleotides, analogue environments Dagar, S. 1 bioRxiv preprint doi: https://doi.org/10.1101/872234; this version posted December 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The spontaneous emergence of RNA on the early Earth continues to remain an enigma in the field of origins of life. Few studies have looked at the nonenzymatic oligomerization of cyclic nucleotides under neutral to alkaline conditions, in fully dehydrated state. Herein, we systematically investigated the oligomerization of cyclic nucleotides under prebiotically relevant conditions, where starting reactants were subjected to repeated dehydration-rehydration (DH- RH) regimes, like they would have been on an early Earth. DH-RH conditions, a recurring geological theme, are driven by naturally occurring processes including diurnal cycles and tidal pool activity. These conditions have been shown to facilitate uphill oligomerization reactions in terrestrial geothermal niches, which are hypothesized to be pertinent sites for the emergence of life. -
Proton Transfer in Guanine–Cytosine Base Pair Analogues Studied by NMR Spectroscopy and PIMD Simulations†
Faraday Discussions Cite this: Faraday Discuss.,2018,212,331 View Article Online PAPER View Journal | View Issue Proton transfer in guanine–cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations† a a b a Radek Pohl, Ondˇrej Socha, Petr Slav´ıcek,ˇ Michal Sˇala,´ c a Paul Hodgkinson and Martin Dracˇ´ınsky´ * Received 28th March 2018, Accepted 1st May 2018 DOI: 10.1039/c8fd00070k It has been hypothesised that proton tunnelling between paired nucleobases significantly enhances the formation of rare tautomeric forms and hence leads to errors in DNA Creative Commons Attribution-NonCommercial 3.0 Unported Licence. replication. Here, we study nuclear quantum effects (NQEs) using deuterium isotope- induced changes of nitrogen NMR chemical shifts in a model base pair consisting of two tautomers of isocytosine, which form hydrogen-bonded dimers in the same way as the guanine–cytosine base pair. Isotope effects in NMR are consequences of NQEs, because ro-vibrational averaging of different isotopologues gives rise to different magnetic shielding of the nuclei. The experimental deuterium-induced chemical shift changes are compared with those calculated by a combination of path integral molecular dynamics (PIMD) simulations with DFT calculations of nuclear shielding. These calculations can This article is licensed under a directly link the observable isotope-induced shifts with NQEs. A comparison of the deuterium-induced changes of 15N chemical shifts with those predicted by PIMD simulations shows that inter-base proton transfer reactions do not take place in this Open Access Article. Published on 02 May 2018. Downloaded 9/30/2021 3:56:34 AM. system. -
Oxidative Stress and the Guanosine Nucleotide Triphosphate Pool: Implications for a Biomarker and Mechanism of Impaired Cell Function
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2008 OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION Celeste Maree Bolin The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Bolin, Celeste Maree, "OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION" (2008). Graduate Student Theses, Dissertations, & Professional Papers. 728. https://scholarworks.umt.edu/etd/728 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. OXIDATIVE STRESS AND THE GUANOSINE NUCLEOTIDE TRIPHOSPHATE POOL: IMPLICATIONS FOR A BIOMARKER AND MECHANISM OF IMPAIRED CELL FUNCTION By Celeste Maree Bolin B.A. Chemistry, Whitman College, Walla Walla, WA 2001 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Toxicology The University of Montana Missoula, Montana Spring 2008 Approved by: Dr. David A. Strobel, Dean Graduate School Dr. Fernando Cardozo-Pelaez,