Input Template for Content Writers

Total Page:16

File Type:pdf, Size:1020Kb

Input Template for Content Writers Input Template for Content Writers (e-Text and Learn More) 1. Details of Module and its Structure Module Detail Subject Name Botany Paper Name Systematic I (Bryophytes) Module Name/Title Diversity in Sporophyte Module Id Pre-requisites Objectives Keywords Foot, Seta, Capsule, Spore, Elater 2. 2. Development Team Role Name Affiliation National Coordinator <National Coordinator Name> Subject Coordinator <Prof.SujataBhargava> Paper Coordinator Dr A. K. Asthana National Botanical Research Institute, Lucknow Content Writer/Author (CW) Prof. GeetaAsthana Botany Department Lucknow University, Lucknow Content Reviewer (CR) Language Editor (LE) Systematic I (Bryophytes) Botany Diversity in Sporophyte Structure of Module/Syllabus of a module (Define Topic / Sub-topic of module ) <Topic name2> Diversity in Sporophyte Structure of sporophyte (Foot, Seta & Capsule) Liverwort Sporophyte Hornwort Sporophyte Moss sporophyte Systematic I (Bryophytes) Botany Diversity in Sporophyte Sporophyte Sporophyte is a dependent and diploid phase in the life cycle of Bryophytes. It is always attached to the gametophyte and nutritionally dependent on gametophyte due to lack of chloroplast. They are relatively small. They have no lateral appendages or branching as found in gametophyte. There is no mean of apical growth hence they are of determinate growth. However in hornworts the sporophyte is of indeterminate growth due to basal meristematic zone. The main function of the sporophyte is to produce spores as well as to disperse them to distant places for successful completion of life cycle. Accordingly they have adapted such morphology which is well suited to perform their ultimate function. The term sporogonium is often used for the bryophyte capsule as well as for whole bryophyte sporophyte. Nutritional dependency of sporophyte on Gametophyte: As far as nutritional dependency of sporophyte on gametophyte is concerned, the sporophytes are described as totally dependent on gametophyte and at times parasite on gametophyte also but it is not exactly true as chloroplasts occur in the capsule wall, seta and foot cells also (Müller1954, Watson 1964). In liverworts, the sporophytes are more dependent on gametophyte as they are poor in chlorophyll contents and they lack stomata. However, there are many liverworts in which the sporophytes are capable for photosynthesis at least in early stages of development as chloroplasts are present in foot, seta and capsule wall cells e.g. Marchantia polymorpha, Dumortiera, Riella americana, Sphaerocarpous texanus, Monoselenium tenerrum, Pellia epiphylla etc. (Bold 1938, 1948, Studhalter 1938, Müller 1954). In hornworts the sporophytes are green throughout the life. The capsule wall has chloroplast and functional stomata. Hence, they are not fully dependent on gametophyte. As such the sporophyte is not a free living structure, however there is a report of independent growth of sporophyte even after the death of Gametophyte, in Californian hornwort: Anthoceros fusiformis (Campbell 1924). In mosses the sporophytes are photosynthetically functional for a longer period of their lives as they have spongy green tissue and stomata which are mainly confined to apophysis region. Systematic I (Bryophytes) Botany Diversity in Sporophyte Structure of Sporophyte: The sporophyte in Bryophytes is differentiated into three parts: Foot, Seta and Capsule. Foot: Foot is the basal portion of the sporophyte. It is an absorbing and anchoring organ which remains embedded in the gametophytic tissue. It is haustorial in nature and derives nourishment for developing sporophyte. It may be variously shaped being globose, bulbous, conical, acuminate and sometimes anchor shaped with extended edges which deeply penetrate in gametophytic tissue. It is commonly present in all the bryophytes. Exceptionally it is absent in Riccia. The foot is globose (in Anthoceros, Corsinia, Targionia), globose anchor shaped (in Marchantia, Pellia), acuminate (Calobryum) and dagger-like (in mosses). The foot is an important and vital organ of sporophyte as its main function is absorption of water, inorganic ions and nutrients required for the growth of the sporophyte. It has a mass of cells which are generally undifferentiated in thalloid liverworts and slightly differentiated in leafy liverworts. However in mosses the foot cells are differentiated into outer haustorial cells called as ‘Transfer Cells’ and inner unspecialized cells with central conducting cells.These transfer cells are present at the junction of gametophytic and sporophytic tissue on both the sides. They are specialized cells for efficient transfer of nutrients by cell wall labyrinth. The labyrinth is formed by infoldings and growth of the cell wall material in to the protoplast which increases the surface area for absorption. By osmosis water is transferred from transfer cell of gametophyte to sporophytic tissue. At maturity of the capsule, cell wall labyrinth is filled with new wall material and looses the ability to transfer nutrients. Then foot changes from an absorbing organ to anchoring organ (Hébant 1975). In Liverworts the foot is generally wider than the seta while in mosses the foot is not wider than seta but gradually becomes narrower, tapered and deeply penetrated. Seta: The seta is a stalk like structure which holds the capsule. It may be short, massive or elongated and rigid. Sometimes it is absent also as in hornworts and few liverworts like Riccia. The length and movement of seta help in the dispersal of spores. The seta is variable in different groups. Liverworts: In some liverworts the seta is very small, narrow, highly reduced to few celled broad as in Sphaerocarpous, Corsinia and Riella. It does not elongate even after the maturity. While in Systematic I (Bryophytes) Botany Diversity in Sporophyte majority of liverworts the seta is small at initial stage but after the maturity of the capsule it elongates rapidly pushing the capsule outside the protective coverings: calyptra, perianth, perichaetium or involucre and helps in the spore dispersal e.g. members of order Jungermanniales and Metzgeriales. Cross section showing embedded sporophyte, Riccia thallii Foot Capsule Seta Marchantia Cross section of sporophyte Pellia: Capsule, Seta http://botweb.uwsp.edu/images/SPLab/m aster/1233.jpg In Pellia the seta elongates at the rate of 1mm per hour and attains a length of 5 cm (Watson 1964). Monoclea is also an exceptional genus having a long seta. In the order Marchantiales the seta generally remains small throughout. The capsules (Sporophytes) are present on the lower (ventral) side of archegoniophore and they are inverted and hanging. In Riccia the seta is totally absent. The seta is generally composed of thin walled cells but the seta anatomy may be variable. It may be differentiated or undifferentiated, massive type or with fixed number of cells having8+4 seta anatomyin (Cephalozia, Cephaloziella), sometimes articulated also as in the family Lejeuneaceae with 12+4 or 16+4 seta anatomy. Hornworts: In hornworts the seta is entirely absent. It may be represented by mere a constriction in between capsule and seta. Mosses: In all the mosses the seta is relatively very long and stout or rigid with well differentiated outer cortical and inner central conducting region. It develops gradually and attains its full length before the maturity of the capsule. It is recorded up to 5 cm long in Polytrichum commune and up to 7 cm long in Pohlianutans. In cleistocarpous mosses, the seta is short (e.g. Ephemerum and Phascum), while in some other mosses the seta is totally absent (e.g. Sphagnum, Andreaea). In these mosses the capsule is raised by means of leafless gametophytic axis (pseudopodium) which develops after the maturation of capsule due to meristematic activity. Systematic I (Bryophytes) Botany Diversity in Sporophyte Capsule:The capsule is main fertile portion of the sporophyte which is often termed as sporogonium also. It is of variable shapes:Spherical or globose (Sphaerocarpous, Riccia, Pellia, Fossombronia, Sphagnum and most of leafy liverworts), ovoid (Riccardia, Marchantia), elongated (Calobryum, Haplomitriium, Pallavicinia, Trichocolea, Monoclea), cylindrical (Notothylas, Anthoceros), pyriform (Funaria), asymmetrical somewhat feeding bottle shaped (Buxbaumia) andumbrella like (Splachnum). The structure of capsule is slightly different in liverworts, hornworts and mosses however basic structure is same having capsule wall enclosing spores. Liverwort Capsule: The liverwort capsule is of determinate growth. It has 1-many layered capsule wall. The stomata are totally absent. In the orders Marchantiales, Sphaerocarpales and Calobryales the capsule wall is unistratose while in Jungermanniales and Metzgeriales it is 2-many layered. The cells of the capsule wall is either thin walled throughoutor has characteristic thickening patterns: (i) Nodular thickenings - present at the corners or angles of cells or (ii) Annular thicknings - present on the end walls, radial walls or tangential walls. The thickening in the capsule wall cells plays an important role in the dehiscence of the capsule which is mainly 4-valved in liverworts. Sometimes there may be 2-4-valved dehiscence or irregular dehiscence (Marchantia). Besides in few members of the family Aytoniaceae (Plagichasma, Reboulia) the capsule dehisces through a lid or operculum. While in few taxa, there is no special dehiscence mechanism and the capsules are cleistocarpous where the capsule wall and surrounding tissue disintegrate releasing the spores.
Recommended publications
  • AMBRA1 Controls Plant Development and Senescence in Physcomitrella Patens
    Presentation type: Oral Presentation, Poster Presentation (underline the preferred type) AMBRA1 controls plant development and senescence in Physcomitrella patens. Alessandro Alboresi1, Jessica Ceccato1, Tomas Morosinotto1, Luisa Dalla Valle1. The first one should be the presenting/corresponding author (underlined) 1Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58/B, 35121, Padova ([email protected]; [email protected]; [email protected]) Autophagy is a universal mechanism that in plants control development, resistance to stresses and starvation. The role of autophagy is possible thanks to the programmed degradation of cell material that is delivered to the vacuole where hydrolases and proteases are localized. So far, many autophagy-related proteins (ATGs) have been identified. Some of them are universal, some are either specific to animals, plants or yeast. ATG protein complexes govern autophagosome initiation, nucleation, expansion, and maturation. In particular, the regulation of nucleation by the ATG6 (Beclin-1 in mammals) complex has not been well defined in plants. Here we described the study of the Activating Molecule in Beclin 1-Regulated Autophagy (AMBRA1) protein, recently identified in mice and then characterized in our department in zebrafish and in the non-vertebrate chordate Botryllus schlosseri. In animals AMBRA1 is a positive regulator of autophagy that binds Beclin-1 upon autophagic stimuli. AMBRA1 is a large intrinsically disordered protein, able to bind other regulatory partners involved in cell processes such as autophagy, apoptosis, cell proliferation, development and cancer. AMBRA1 sequence was found in plant genomes and we are studying its function in Physcomitrella patens where two lowly expressed genes are present, AMBRA1a and AMBRA1b.
    [Show full text]
  • Anthocerotophyta) of Colombia
    BOTANY https://dx.doi.org/10.15446/caldasia.v40n2.71750 http://www.revistas.unal.edu.co/index.php/cal Caldasia 40(2):262-270. Julio-diciembre 2018 Key to hornworts (Anthocerotophyta) of Colombia Clave para Antocerotes (Anthocerotophyta) de Colombia S. ROBBERT GRADSTEIN Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité (UMR 7205), Paris, France. [email protected] ABSTRACT A key is presented to seven genera and fifteen species of hornworts recorded from Colombia. Three species found in Ecuador but not yet in Colombia (Dendroceros crispatus, Phaeomegaceros squamuligerus, and Phaeoceros tenuis) are also included in the key. Key words. Biodiversity, identification, taxonomy. RESUMEN Se presenta una clave taxonómica para los siete géneros y quince especies de antocerotes registrados en Colombia. Tres especies registradas en Ecuador, pero aún no en Colombia (Dendroceros crispatus, Phaeomegaceros squamuligerus y Phaeoceros tenuis), también son incluidas. Palabras clave. Biodiversidad, identificación, taxonomía. INTRODUCCIÓN visible as black dots, rarely as blue lines (in Leiosporoceros); chloroplasts large, Hornworts (Anthocerotophyta) are a small 1–2(–4) per cell, frequently with a pyrenoid; division of bryophytes containing about 192 2) gametangia immersed in the thallus, accepted species worldwide (excluding 28 originating from an inner thallus cell; 3) doubtful species), in five families and 12 sporophyte narrowly cylindrical, without genera (Villarreal and Cargill 2016). They seta; 4) sporophyte growth by means of are commonly found on soil in rather open a basal meristem; 5) spore maturation places, but also on rotten logs, rock, bark asynchronous; and 6) capsule dehiscence or on living leaves. Hornworts were in the gradual, from the apex slowly downwards, past often classified with the liverworts by means of 2(-4) valves, rarely by an because of their superficial resemblance to operculum.
    [Show full text]
  • Characters of Bryophytes and Their Classification
    Unit–1 Characters of Bryophytes and their Classification (Lesson Structure) 1.0 Objective 1.1 Introduction 1.2 Characters of Bryophytes 1.3 Classification of Bryophytes 1.4 Questions for Exercise 1.5 Suggested readings 1.0 Objective : Bryophytes occupy a position just intermediate between the green thallophytes (Algae) and the vascular cryptogams (Pteridophytes). The objective of this unit is to make the students familiar with the characters & classification of Bryophytes. 1.1 Introduction : Bryophytes are plants of amphibious zone. During the dry period they become almost brittle in texture. With the onset of rainy season the apparently dried, brittle thalli turn green and become active to carry out the normal life functions. The group Bryophyta (Greek word; Byon = moss, Phyton = plant) includes the simplest and most primitive land plants. About 960 genera & 24,000 species have been reported in Bryophyta. Most of the Bryophytes are land dwellers which inhabit damp, shaded and humid localities. They are essentially terrestrial but they fail to complete their life cycle without water. Thus due to Characters of Bryophytes and their Classification peculiar type of their habitats, they are neither treated as perfect land plants nor aquatic. They are therefore, most appropriately called as amphibians of the plant kingdom. However] a few grow under diverse habitat such as aquatic submerged in water (eg. Riella, Riccia fluitans, Ricciocarpus), in bogs (e.g. Sphagnum), as epiphytes on tree trunks and branches (e.g. Dendroceros), epiphyllous (e.g. Radula protensa) or even in desert (e.g. Tortula desertorum ). 1.2 Characters of Bryophytes : Habitat (1) The plants usually grow in moist and shady places.
    [Show full text]
  • M.Sc. BOTANY SEMESTER - I BO- 7115 PAPER - I DIVERSITY of VIRUSES, MYCOPLASMA, BACTERIA and FUNGI (60 Hrs)
    ST. JOSEPH'S COLLEGE (AUTONOMOUS) M.Sc. BOTANY SEMESTER - I BO- 7115 PAPER - I DIVERSITY OF VIRUSES, MYCOPLASMA, BACTERIA AND FUNGI (60 Hrs) Unit I Five kingdom, Eight kingdom classification and Three domains of 02 hrs living organisms. Unit -II Viruses – general characters, nomenclature, classification; 08 hrs morphology, structure, transmission and replication. Purification of plant viruses. Symptoms of viral diseases in plants Mycoplasma – General characters , classification ,ultrastructure 05 hrs Unit-III and reproduction. Brief account of mycoplasmal diseases of plants- Little leaf of Brinjal. Unit -IV Bacteria –Forms, distribution and classification according to 12 hrs Bergy’s System, Classification based on DNA-DNA hybridization, 16s rRNA sequencing; Nutritional types: Autotrophic, heterotrophic, photosynthetic,chemosynthetic,saprophytic,parasitic and symbiotic ; A brief account on methonogenic bacteria ; Brief account of Actinomycetes and their importance in soil and medical microbiology. Unit – V Fungi 20 hrs General characteristics, Classification (Ainsworth 1973, McLaughlin 2001), structure and reproduction. Salient features of Myxomycota, Mastigomycotina, Zygomycotina, Ascomycotina, Basidiomycotina and Deuteromycotina and their classificafion upto class level. Unit - VI Brief account of fungal heterothallism, sex hormones and 09 hrs Parasexual cycle. Brief account of mycorrhizae,lichens, fungal symbionts in insects, fungi as biocontrol agents ( Trichoderma and nematophagous). Unit – VII Isolation, purification and culturing of microorganisms 04 hrs (bacteria and fungi). 1 PRACTICALS: Micrometry. Haemocytometer. Isolation, culture and staining techniques of Bacteria and Fungi. Type study: Stemonites, Synchytrium, Saprolegnia, Albugo, Phytophthora, Mucor/Rhizopus , Erysiphe, Aspergillus, Chaetomium, Pencillium, Morchella, Hamileia, Ustilago Lycoperdon, Cyathes, Dictyophora, Polyporus, Trichoderma, Curvularia, Alternaria, Drechslera and Pestalotia. Study of few bacterial, viral, mycoplasmal diseases in plants (based on availability).
    [Show full text]
  • The Bryological Times Number 123 October 2007
    ______________________________________________________________________________________________________ The Bryological Times Number 123 October 2007 Newsletter of the International Association of Bryologists CONTENTS IAB News World Conference on Bryology: • Report of the IAB Council Meeting .................................................................................................................. 2 • Some Highlights of the Scientific sessions by Jessica Beever ................................................................... 5 • Some Highlights of the Scientific sessions by Allison Downing ................................................................. 9 Obituary • Carmela Cortini Pedrotti (1931 - 2007) .......................................................................................................... 12 Personal News – new IAB members ................................................................................................................... 13 Job Opportunities ............................................................................................................................................... 14 Point of View • The discovery of haploidy and diploidy in bryophytes................................................................................ 14 Research News • Genetic diversity of a forest bryophyte, Dicranum viride (Sull. & Lesq.) Lindb. ...................................... 15 Bryological Techniques • Bryological investigation of two mounting media .....................................................................................
    [Show full text]
  • Wikstrom2009chap13.Pdf
    Liverworts (Marchantiophyta) Niklas Wikströma,*, Xiaolan He-Nygrénb, and our understanding of phylogenetic relationships among A. Jonathan Shawc major lineages and the origin and divergence times of aDepartment of Systematic Botany, Evolutionary Biology Centre, those lineages. Norbyvägen 18D, Uppsala University, Norbyvägen 18D 75236, Altogether, liverworts (Phylum Marchantiophyta) b Uppsala, Sweden; Botanical Museum, Finnish Museum of Natural comprise an estimated 5000–8000 living species (8, 9). History, University of Helsinki, P.O. Box 7, 00014 Helsinki, Finland; Early and alternative classiA cations for these taxa have cDepartment of Biology, Duke University, Durham, NC 27708, USA *To whom correspondence should be addressed (niklas.wikstrom@ been numerous [reviewed by Schuster ( 10)], but the ebc.uu.se) arrangement of terminal taxa (species, genera) into lar- ger groups (e.g., families and orders) based on morpho- logical criteria alone began in the 1960s and 1970s with Abstract the work of Schuster (8, 10, 11) and Schljakov (12, 13), and culminated by the turn of the millenium with the work Liverworts (Phylum Marchantiophyta) include 5000–8000 of Crandall-Stotler and Stotler (14). 7 ree morphological species. Phylogenetic analyses divide liverworts into types of plant bodies (gametophytes) have generally been Haplomitriopsida, Marchantiopsida, and Jungerman- recognized and used in liverwort classiA cations: “com- niopsida. Complex thalloids are grouped with Blasiales in plex thalloids” including ~6% of extant species diversity Marchantiopsida, and leafy liverworts are grouped with and with a thalloid gametophyte that is organized into Metzgeriidae and Pelliidae in Jungermanniopsida. The distinct layers; “leafy liverworts”, by far the most speci- timetree shows an early Devonian (408 million years ago, ose group, including ~86% of extant species diversity and Ma) origin for extant liverworts.
    [Show full text]
  • BRYOPHYTES .Pdf
    Diversity of Microbes and Cryptogams Bryophyta Geeta Asthana Department of Botany, University of Lucknow, Lucknow – 226007 India Date of submission: May 11, 2006 Version: English Significant Key words: Bryophyta, Hepaticopsida (Liverworts), Anthocerotopsida (Hornworts), , Bryopsida (Mosses). 1 Contents 1. Introduction • Definition & Systematic Position in the Plant Kingdom • Alternation of Generation • Life-cycle Pattern • Affinities with Algae and Pteridophytes • General Characters 2. Classification 3. Class – Hepaticopsida • General characters • Classification o Order – Calobryales o Order – Jungermanniales – Frullania o Order – Metzgeriales – Pellia o Order – Monocleales o Order – Sphaerocarpales o Order – Marchantiales – Marchantia 4. Class – Anthocerotopsida • General Characters • Classification o Order – Anthocerotales – Anthoceros 5. Class – Bryopsida • General Characters • Classification o Order – Sphagnales – Sphagnum o Order – Andreaeales – Andreaea o Order – Takakiales – Takakia o Order – Polytrichales – Pogonatum, Polytrichum o Order – Buxbaumiales – Buxbaumia o Order – Bryales – Funaria 6. References 2 Introduction Bryophytes are “Avascular Archegoniate Cryptogams” which constitute a large group of highly diversified plants. Systematic position in the plant kingdom The plant kingdom has been classified variously from time to time. The early systems of classification were mostly artificial in which the plants were grouped for the sake of convenience based on (observable) evident characters. Carolus Linnaeus (1753) classified
    [Show full text]
  • Mosses, Liverworts, Hornworts)
    Bryophyte Phylogeny Poster Systematics and Characteristics of Nonvascular Land Plants (Mosses, Liverworts, Hornworts) Bryophyte Phylogeny Anacrogynous. Lvs in three rows (2 lateral, succubous, 1 dorsal lobule) Poster Oil bodies scattered. Mucilage on ventral surface CS parenchymatous, with glomerophycotean fungus Di- or monoicous. Single S per gynoecium. Gemmae in axils of dorsal lobules Treubiales Treubiaceae Tracheophyte Subterranean axis. Lvs mostly isophyllous. Rhizoids – shoot calyptra + CS +, cells thin-walled, perforated Phylogeny Di- or monoicous. Gametangia lateral, bracts –. Seta massive Poster Blepharoplast: lamellar strip and spline < 90 microtubules, aperture on left side. Several S/gynoecium CAP 4-valved; walls unistratose. Elaterophore basal. Elaters filamentous. Asex. repro. – Haplomitriales Haplomitriaceae Thalli winged ("leafy"), 2 ventral scale rows. Air chambers –, gametangiophores – Ventral "auricles" with Nostoc. Dioicous. AN dorsal, solitary. AR dorsal, behind apex Angiosperm Blepharoplast: marchantialean. CAP 4(-6)-valved Phylogeny Elaters 2-helical. Elaterophore basal, rudimentary Gemmae receptacles flasked-shaped (unique in liverworts) Blasiaceae Poster Blasiales Air chambers +, chlorophyllose filaments – Rhizoids smooth MARCHANTIIDAE Ventral scales +, appendages – Archegoniophores branched Liverworts Gemmae Neohodgsoniales Neohodgsoniaceae Thalli rosettes or stems; axes: winged or lobes leaf-like thallose or foliose Air chambers –, mucilage cells –, pores – rhizoids + AR and S in pear-shaped involucres (dorsal
    [Show full text]
  • Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran)
    Diversity 2014, 6, 102-132; doi:10.3390/d6020102 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Review Biodiversity of the Hypersaline Urmia Lake National Park (NW Iran) Alireza Asem 1,†,*, Amin Eimanifar 2,†,*, Morteza Djamali 3, Patricio De los Rios 4 and Michael Wink 2 1 Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China 2 Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, Im Neuenheimer Feld 364, Heidelberg D-69120, Germany; E-Mail: [email protected] 3 Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE: UMR CNRS 7263/IRD 237/Aix- Marseille Université), Europôle Méditerranéen de l'Arbois, Pavillon Villemin BP 80, 13545, Aix-en Provence Cedex 04, France; E-Mail: [email protected] 4 Environmental Sciences School, Natural Resources Faculty, Catholic University of Temuco, Casilla 15-D, Temuco 4780000, Chile; E-Mail: [email protected] † These authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (A.A.); [email protected] (A.E.); Tel.: +86-150-6624-4312 (A.A.); Fax: +86-532-8203-2216 (A.A.); Tel.: +49-6221-544-880 (A.E.); Fax: +49-6221-544-884 (A.E.). Received: 3 December 2013; in revised form: 13 January 2014 / Accepted: 27 January 2014 / Published: 10 February 2014 Abstract: Urmia Lake, with a surface area between 4000 to 6000 km2, is a hypersaline lake located in northwest Iran. It is the saltiest large lake in the world that supports life. Urmia Lake National Park is the home of an almost endemic crustacean species known as the brine shrimp, Artemia urmiana.
    [Show full text]
  • The Thallose Liverworts of California
    THE THALLOSE LIVERWORTS OF CALIFORNIA A Thesis Presented to the Graduate Faculty of Humboldt State University In Partial Fuifiliment of the Requirements for the Degree Master of Arts By Alan Whittemore May 1982 THE THALLOSE LIVERWORTS OF CALIFORNIA By Alan T. Whittemore Approved: Date: INTRODUCTION Since the first representative collections of California liverworts were made over a century ago, the state has been known for the diversity of morphological types it contains. The important patterns in most higher taxa are present and often abundantly represented (Campbell, 1938), a situation particularly striking when compared with the cool-temperate areas of northeastern North America and northern Europe where most hepatic taxonomists have worked. These areas are poor in several groups, including most of the large order Marchantiales. While the pioneer- ing publications of Howe (1899) and Campbell (1895) stim- ulated a number of California collectors and morphologists to study the local hepatics in the first half of this century, these books were not adequately revised or replaced and study of this group virtually stopped. Works published in eastern North America and Europe, such as those of Schuster (1966-81), Macvicar (1926), and Mueller (1952- 58) are useful for the identification of California's leafy hepatics, but the large Marchantiales which form such a conspicuous and distinctive part of our flora are mostly absent from these areas, and are thus difficult to 2 identify. Furthermore, workers from these areas, who have no need to make distinctions among many species in these groups, and who often lack access to abundant material, have failed to describe many taxonomically useful charac- ters, particularly in the vegetative thallus of the Marchantiales.
    [Show full text]
  • The Bryological Times Number 126 November 2008
    ______________________________________________________________________________________________________ The Bryological Times Number 126 November 2008 Newsletter of the International Association of Bryologists CONTENT IAB News • The IAB-congress 2009 in South Africa: an update ...................................................................................... 2 • Stanley W. Greene Award: call for proposals ............................................................................................... 2 • The IAB seeks new candidates and active collaborators ............................................................................. 2 Personal News ....................................................................................................................................................... 3 Field Research News • Post IAB 2007 conference field trip to the Cameron Highlands ................................................................... 3 Research Reports • Bryolat project ................................................................................................................................................... 5 • Herbarium news from Michigan ...................................................................................................................... 5 Theses in bryology ................................................................................................................................................. 6 Bryological exhibition ...........................................................................................................................................
    [Show full text]
  • Bryophyte Biology Second Edition
    This page intentionally left blank Bryophyte Biology Second Edition Bryophyte Biology provides a comprehensive yet succinct overview of the hornworts, liverworts, and mosses: diverse groups of land plants that occupy a great variety of habitats throughout the world. This new edition covers essential aspects of bryophyte biology, from morphology, physiological ecology and conservation, to speciation and genomics. Revised classifications incorporate contributions from recent phylogenetic studies. Six new chapters complement fully updated chapters from the original book to provide a completely up-to-date resource. New chapters focus on the contributions of Physcomitrella to plant genomic research, population ecology of bryophytes, mechanisms of drought tolerance, a phylogenomic perspective on land plant evolution, and problems and progress of bryophyte speciation and conservation. Written by leaders in the field, this book offers an authoritative treatment of bryophyte biology, with rich citation of the current literature, suitable for advanced students and researchers. BERNARD GOFFINET is an Associate Professor in Ecology and Evolutionary Biology at the University of Connecticut and has contributed to nearly 80 publications. His current research spans from chloroplast genome evolution in liverworts and the phylogeny of mosses, to the systematics of lichen-forming fungi. A. JONATHAN SHAW is a Professor at the Biology Department at Duke University, an Associate Editor for several scientific journals, and Chairman for the Board of Directors, Highlands Biological Station. He has published over 130 scientific papers and book chapters. His research interests include the systematics and phylogenetics of mosses and liverworts and population genetics of peat mosses. Bryophyte Biology Second Edition BERNARD GOFFINET University of Connecticut, USA AND A.
    [Show full text]