Risk Factors for Incident Stroke Among Patients with End-Stage Renal Disease

Total Page:16

File Type:pdf, Size:1020Kb

Risk Factors for Incident Stroke Among Patients with End-Stage Renal Disease J Am Soc Nephrol 14: 2623–2631, 2003 Risk Factors for Incident Stroke among Patients with End-Stage Renal Disease STEPHEN L. SELIGER,* DANIEL L. GILLEN,† DAVID TIRSCHWELL,‡ HAIMANOT WASSE,* BRYAN R. KESTENBAUM,* and CATHERINE O. STEHMAN-BREEN§ *Division of Nephrology, University of Washington, Seattle, Washington; †Department of Biostatistics, University of Washington School of Public Health and Community Medicine, Seattle, Washington; ‡Department of Neurology, University of Washington, Seattle, Washington; and §Division of Nephrology, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington Abstract. Although patients with ESRD experience markedly were associated with the risk of stroke—serum albumin (per higher rates of stroke, no studies in the US have identified 1 g/dl decrease, hazard ratio [HR] ϭ 1.43), height-adjusted risk factors associated with stroke in this population. It was body weight (per 25% decrease, HR ϭ 1.09), and a subjec- hypothesized that black race, malnutrition, and elevated BP tive assessment of undernourishment (HR ϭ 1.27)—as was would be associated with the risk of stroke among patients higher mean BP (per 10 mmHg, HR ϭ 1.11). The associa- with ESRD. Data from the United States Renal Data Sys- tion between black race varied by cardiac disease status, tems were used. Adult Medicare-insured hemodialysis and with blacks estimated to be at lower risk than whites among peritoneal dialysis patients without a history of stroke or individuals with cardiac disease (HR ϭ 0.74), but at higher transient ischemic attack (TIA) were considered for analy- risk among individuals without cardiac disease (HR ϭ sis. The primary outcome was hospitalized or fatal stroke. 1.24). This study confirms the extraordinarily high rates of Cox proportional hazards models were used to determine the stroke in ESRD patients on dialysis and identifies high mean associations between the primary predictor variables and BP and malnutrition as potentially modifiable risk factors. stroke. The rate of incident stroke was 33/1,000 person- The association between black race and stroke differs by years in the study sample. After adjustment for age and cardiac disease status; the reasons for this differing effect of other patient characteristics, three markers of malnutrition race deserve further investigation. Patients with ESRD experience markedly advanced atheroscle- not be generalizable to the US dialysis population. In addition, rotic disease of the cerebral vasculature (1–4). Although we although blacks have much higher rates of stroke in the general recently reported a 5- to 10-fold risk of hospitalized ischemic population, no previous studies have examined black race as a and hemorrhagic stroke among ESRD patients compared with risk factor for incident stroke in the dialysis population. We non-ESRD individuals (5), little is known regarding potential used data collected by the United States Renal Data System stroke risk factors among the ESRD population. Risk factors (USRDS) to identify patient characteristics associated with the for stroke in this population are likely to differ from those in risk of hospitalized or fatal stroke in dialysis patients, with the non-ESRD population. For example, elevated BP and body specific focus on black race, hypertension, and malnutrition as mass index are risk factors for stroke in the general population, risk factors. whereas in the dialysis population, they are associated with a lower risk of adverse outcomes such as all-cause and cardiac Materials and Methods death (6–9). Only one small study, conducted in a Japanese Study Population dialysis population, has examined risk factors for stroke (10), We used data from the USRDS Dialysis Morbidity and Mortality identifying hypertension as the only significant predictor. Studies, Waves 2 to 4 (DMMS-2 to -4). Details of the studies per- However, the study had limited power, and results from the formed by the USRDS are described elsewhere (12). Briefly, the younger and healthier Japanese dialysis population (11) may USRDS collects demographic and clinical data on all patients who have survived Ͼ90 d of renal replacement therapy for ESRD. DMMS-2 was a prospective observational study of a sample of adult Received January 27, 2003. Accepted July 15, 2003. patients who initiated dialysis in 1996 and early 1997, with deliberate Correspondence to Dr. Stephen L. Seliger, Division of Nephrology, Box oversampling of patients on peritoneal dialysis. DMMS-3 and -4 were 356521, University of Washington, Seattle, WA 98102. Phone: 206-543-3792; retrospective studies of random samples of hemodialysis patients who Fax: 206-685-8661; E-mail: [email protected] were alive on December 31, 1993. Data collection techniques and 1046-6673/1410-2623 content were kept consistent across the three studies, allowing them to Journal of the American Society of Nephrology be combined for use in epidemiologic research. The study population Copyright © 2003 by the American Society of Nephrology for this analysis included all patients who were in DMMS-2 to -4 and DOI: 10.1097/01.ASN.0000088722.56342.A8 treated with dialysis and were Medicare-insured with no previous 2624 Journal of the American Society of Nephrology J Am Soc Nephrol 14: 2623–2631, 2003 history of stroke or transient ischemic attack. Following the recom- Statistical Analyses mendations of the USRDS for studies of hospitalization rates (13), The Cox proportional hazards model for censored survival data was patients for whom fee-for-service Medicare was not the primary used to assess the association between the primary risk factors of insurer were excluded from our analysis, because hospitalization data interest and incident stroke after adjustment for potential confounders. for these patients are incomplete in the USRDS database (see the Primary predictor variables of interest included race (white, black, Outcome section). Asian, other), mean BP (MBP; calculated as [systolic BP ϩ 2*dia- stolic BP]/3), and markers of malnutrition (serum albumin, body weight, and a subjective assessment of undernourishment). Adjust- Ascertainment of Baseline Patient Characteristics ment variables to control confounding were a priori chosen on the Baseline patient data were abstracted by dialysis facility personnel basis of their potential relationship with the outcome of interest. from each patient’s medical record and through patient interview. Cigarette smoking was not included as an adjustment covariate in the Patient characteristics ascertained included demographic (age, gender, primary model because of the high degree of missing information and race), laboratory (albumin, cholesterol, hemoglobin, calcium, (15%) for this variable in the USRDS; rather, the potential confound- parathyroid hormone, and phosphorous), clinical (cause of renal dis- ing effect of smoking was assessed in an exploratory analysis. Renal ease, history of cardiovascular disease (CVD), history of stroke or replacement modality (hemodialysis, peritoneal dialysis, transplant) transient ischemic attack (TIA), dialysis vintage, smoking status, and was modeled as time-dependent covariates, allowing patients to a subjective assessment of undernourishment), and other measure- switch risk groups over the course of follow-up. All models were ments (height, weight, and BP). Previous CVD was defined as any further adjusted for DMMS study via stratification. diagnosis of coronary artery disease, myocardial infarction, coronary Following recommendations from the USRDS (13), incident pa- artery bypass, angioplasty, cardiac arrest, or congestive heart failure. tients were not considered at risk for hospitalizations until day 90 of The average of up to three measurements of BP during three consec- ESRD. Patients were followed from day 90 of ESRD or (for prevalent utive dialysis sessions, recorded either before dialysis (in hemodial- patients) from the DMMS study start date and were censored at loss ysis patients) or randomly (in peritoneal dialysis patients), were used to follow-up, nonstroke death, or the end of the study period (Decem- in this analysis. For DMMS-2 patients, only single measurements of ber 31, 1999). laboratory variables were available. For patients in DMMS-3 and -4, Formal and graphic techniques were used to confirm the presence multiple values for laboratory measurements were available for up to of proportional hazards and to identify potential outliers. We hypoth- 3 mo preceding the start of the study; for these patients, all available esized that all continuous covariates would be linearly related to the values were averaged before inclusion into a statistical model. outcome of interest; however, exploratory residual analyses were performed to investigate functional form further. In particular, we explored linear and nonlinear forms of MBP to determine whether Outcome there was a “U”-or“J”-shaped relationship between BP and stroke. The primary outcome was defined as first hospitalized stroke or Effect modification by age, gender, CVD, and DMMS wave was fatal nonhospitalized stroke. Hospitalization for stroke was deter- explored and tested via stratification and the use of multiplicative mined by linking Medicare hospital billing records to each patient interactions. through unique identifier codes supplied by the USRDS. Diagnosis of stroke was based on the International Classification of Diseases, 9th Results Revision, Clinical Modification (ICD-9-CM) diagnosis codes con- Study Population tained in these billing
Recommended publications
  • Speech Sound Programme for 'K' / 'C' at the Start of Words
    Speech Sound Programme for ‘k’ / ‘c’ at the start of words This programme is for children who are producing a ‘t’ sound in place of a ‘k’ / ‘c’ sound at the start of words. For example, ‘cat’ is produced ‘tat’ and ‘cup’ is produced ‘tup’. ‘k’ is the target sound. ‘t’ is the produced sound. Below are a set of stages to work through with the child. Start with Stage 1 and only move up to the next stage when you are confident that the child has achieved the current stage. It is recommended that the programme is carried out for 15 minutes three times a week. If you would like any advice or you feel that the child is not making progress, please contact the Speech and Language Therapy team on 0151 514 2334. Stage 1 - Listening for the target sound 1. See ‘Picture Set 1’ for sound cue pictures that represent the target sound ‘k’ and the produced sound ‘t’. 2. Place the two pictures (‘k’ and ‘t’) in front of the child. 3. Teach the child the sounds, not the letter names, e.g., say ‘k’ and not ‘k-uh’. 4. Say the two sounds at random and ask the child to point or place a counter on which sound they hear. 5. Repeat this activity a number of times until you are sure the child can consistently hear the difference between the two sounds. Stage 2 - Sorting pictures by their first sound. 1. Now that the child can hear the difference between the two sounds (‘k’ and ‘t’) on their own, try the same with words.
    [Show full text]
  • Changes in the Risk of Stroke in Dialysis Patients: a Retrospective Analysis Over the Last 40 Years
    toxins Article Changes in the Risk of Stroke in Dialysis Patients: A Retrospective Analysis over the Last 40 Years Toshiya Aono 1,†, Yuki Shinya 1,2,*,† , Satoru Miyawaki 2 , Takehiro Sugiyama 3,4, Isao Kumagai 5, Atsumi Takenobu 1, Masahiro Shin 2 , Nobuhito Saito 2 and Akira Teraoka 1 1 Department of Neurosurgery, Teraoka Memorial Hospital, Hiroshima 729-3103, Japan; [email protected] (T.A.); [email protected] (A.T.); [email protected] (A.T.) 2 Department of Neurosurgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan; [email protected] (S.M.); [email protected] (M.S.); [email protected] (N.S.) 3 Diabetes and Metabolism Information Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; [email protected] 4 Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan 5 Department of Nephrology, Teraoka Memorial Hospital, Hiroshima 729-3103, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5800-8853 † These two authors have contributed equally to this study and are thus co-first authors. Abstract: The stroke incidence in hemodialysis (HD) patients is high, but the associated factors remain largely unknown. This study aimed to analyze stroke incidence in HD patients and changes in risk factors. Data of 291 patients were retrospectively analyzed. The cumulative stroke incidences were 21.6% at 10 years and 31.5% at 20. Diabetic nephropathy (DN) significantly increased overall stroke (hazard ratio (HR), 2.24; 95% confidence interval (CI), 1.21–4.12; p = 0.001) and ischemic p stroke (HR, 2.16; 95% CI, 1.00–4.64; = 0.049).
    [Show full text]
  • Chemical Kinetics [A][B] [D] [C] [A][B] [B] [A] K R Dt D Dt D K R Dt D Dt D
    Chemical kinetics (Nazaroff & Alvarez-Cohen, Section 3.A.2) This is the answer to what happens when chemical equilibrium is not reached. For example, take the two-way reaction A + B ↔ C + D As A and B come into contact with each other, they start to react with each other, and the reaction rate can be expressed as Rforward = kf [A] [B]. This expression reflects the fact that the more of A and B there is, the more encounters occur, and the more reactions take place. This rate depletes the amounts of both A and B, and generates amounts of C and D: d[A] d[B] R k [A][B] dt dt forward f d[C] d[D] R k [A][B] dt dt forward f But, at the same time, C and D come in contact, too, and carry their own, reverse reaction, at a rate proportional to their amounts Rreverse = kr [C] [D] . This rate depletes the amounts of both C and D, and adds to the amounts of A and B: d[A] d[B] R k [C][D] dt dt reverse r d[C] d[D] R k [C][D] dt dt reverse r Because the two reactions occur simultaneously, we subtract the rate of one from the other: d[A] d[B] R R k [A][B] k [C][D] dt dt forward reverse f r d[C] d[D] R R k [A][B] k [C][D] dt dt forward reverse f r 1 Finally, in a system with open boundaries, we can add the imports and exports: d[A] V Qin [A]in Qout [A]out krV[C][D] kfV[A][B] dt inlets outlets d[B] V Qin [B]in Qout [B]out krV[C][D] kfV[A][B] dt inlets outlets d[C] V Qin [C]in Qout [C]out kfV[A][B] krV[C][D] dt inlets outlets d[D] V Qin [D]in Qout [D]out kfV[A][B] krV[C][D] dt inlets outlets imports exports sources sinks where V is the volume of the system for which the budget is written.
    [Show full text]
  • Afdnk Kz K‚ Jkkkkk Kj J J J J Afdn K Kz K‚J Kk Kkk Kk Kn Kk K K Jj Am
    A Little Pretty Bonny Lass John Farmer f n ‚ J k j Cantus a D k kz k k k k k k j j j j A lit-tle pret-ty bon-ny lass was walk- ing in midst of f n J n Altus a D k kz k‚ k k k k k k k k k k k k j j A lit-tle pret-ty bon-ny lass was walk- ing, was walk-ing in midst of ‚ k k j j Tenor a f D n k kz k J k k k j k j j M A lit-tle pret-ty bon-ny lass was walk - ing in midst of k kz k k Bassus b f D n ‡ J k k k k k k j jz j j A lit-tle pret-ty bon-ny lass was walk- ing in midst of 6 1. 2. a f jz k kz k‚ k k i n k kz k‚J kz k‚ k k i May be- fore the sun 'gan rise. A lit-tle -fore the sun 'gan rise. f 1. J 2. a djz ek k k k k k k j k k k kz k‚ k k k k k k j k May be- fore the sun 'gan rise. A lit-tle -fore the sun 'gan 1. 2. f z k kz k k k z ‚ J k kz k k k a j k k ‡ k j k k k k k ‡ k j M May be- fore the sun 'gan rise.
    [Show full text]
  • K .B. NO. 'K a BILL for AN
    .B. NO. ‘k K A BILL FOR AN ACT RELATING TO THE COMPACT FOR EDUCATION. BE IT ENACTED BY THE LEGISLATURE OF THE STATE OF HAWAI’I: 1 SECTION 1. The guiding principle for the composition of 2 the membership on the Education Commission of the States from 3 each party state is that the members representing such state 4 shall, by virtue of their training, experience, knowledge, or 5 affiliations be in a position collectively to reflect broadly 6 the interests of the state government, higher education, the 7 state education system, local education, lay and professional, 8 and public and nonpublic educational leadership. In an effort 9 to follow the guiding principle and increase education expertise 10 on the Commission, the number of members appointed by the 11 Governor will increase and the Governor will be removed from the 12 Commission. The purpose of this act is to remove the Governor 13 from the Commission and replace the Governor with a fourth 14 member appointed by the Governor. 15 SECTION 2. Section 311—2(a), Hawaii Revised Statutes, is 16 amended to read as follows: 17 “311—2 State commissioners. (a) Notwithstanding section 18 A of Article III, of the Compact for Education, as enacted in GOV—02 (21) ______________________________ Page 2 .B. E\Jc. 1 section 311—1, Hawaii’s representatives to the Education 2 Commission of the States, hereinafter called the “commission”, 3 shall consist of seven members. [The govcrnor; two] Two members 4 of the legislature selected by its respective houses and serving 5 in such manner as the legislature may determine[*] and the head 6 of a state agency or institution, designated by the governor, 7 having one or more programs of public education, shall be ex 8 officio members of the commission.
    [Show full text]
  • The Alphabets of the Bible: Latin and English John Carder
    274 The Testimony, July 2004 The alphabets of the Bible: Latin and English John Carder N A PREVIOUS article we looked at the trans- • The first major change is in the third letter, formation of the Hebrew aleph-bet into the originally the Hebrew gimal and then the IGreek alphabet (Apr. 2004, p. 130). In turn Greek gamma. The Etruscan language had no the Greek was used as a basis for writing down G sound, so they changed that place in the many other languages. Always the spoken lan- alphabet to a K sound. guage came first and writing later. We complete The Greek symbol was rotated slightly our look at the alphabets of the Bible by briefly by the Romans and then rounded, like the B considering Latin, then our English alphabet in and D symbols. It became the Latin letter C which we normally read the Bible. and, incidentally, created the confusion which still exists in English. Our C can have a hard From Greek to Latin ‘k’ sound, as in ‘cold’, or a soft sound, as in The Greek alphabet spread to the Romans from ‘city’. the Greek colonies on the coast of Italy, espe- • In the sixth place, either the Etruscans or the cially Naples and district. (Naples, ‘Napoli’ in Romans revived the old Greek symbol di- Italian, is from the Greek ‘Neapolis’, meaning gamma, which had been dropped as a letter ‘new city’). There is evidence that the Etruscans but retained as a numeral. They gave it an ‘f’ were also involved in an intermediate stage.
    [Show full text]
  • 1 Mol .08314 Bar L Mol K 298 K 12.2 Bar 2.03 L Nrt V P =
    University Chemistry Quiz 6 2015/01/08 1. (5%) Explain why the value of S° for graphite is greater than that for diamond at 298K (use table2). Would this inequality hold at 0 K? A diamond is essentially a macroscopic molecule with no internal rotational or translational states. Graphite consists of large sheets of carbon that are bound to each other via intermolecular interactions. Consequently, it also has no significant internal rotational or translational states. But, since the sheets in graphite are free to slide past one another with relative ease (graphite makes a fine dry-lubricant), it does exhibit modes that are less like vibrations and more like translations, and we expect then that 1 mol of graphite will have greater entropy than diamond at a fixed temperature and pressure. In the absence of frozen-in residual entropy, the molar entropies of the two substances will both approach zero as the temperature is lowered. 2. (10%) One mole of an ideal gas at 298K expands isothermally from 1.0 to 2.0 L (a) reversibly and (b) against a constant external pressure of 12.2 bar. Calculate ΔSsys, ΔSsurr, and ΔSuniv in both cases. Are your results consistent with the nature of the process? Sol. (a) Use equation 8.10: 푉2 −1 −1 2.0 퐿 −ퟏ ∆푆푠푦푠 = 푛푅 ln = 1 푚표푙 8.314 퐽 푚표푙 퐾 ln = ퟓ. ퟕퟔ 푱 푲 푉1 1.0 퐿 Since the process is reversible, Suniv = 0 and - 1 SSsurr= - sys = - 5.76 J K . (b) Use the ideal gas equation to find the volume of the final state: nRT V2 = P2 (1 mol)( .08314 bar L mol--11 K)( 298 K) = 12.2 bar = 2.03 L Next, use equation 8.10 to find the entropy change of the system: 푉2 −1 −1 2.03 퐿 −ퟏ ∆푆푠푦푠 = 푛푅 ln = 1 푚표푙 8.314 퐽 푚표푙 퐾 ln = ퟓ.
    [Show full text]
  • Rule 46. Admission to the Bar
    Rule 46. Admission to the Bar. (a) Committee on Admissions. (1) The court shall appoint a standing committee known as the Committee on Admissions (Committee) consisting of at least seven members of the Bar of this court, one of whom shall serve as counsel to the Committee. Each appointment shall be for a term of three years. In case of a vacancy arising before the end of a member’s term, the successor appointed shall serve the unexpired term of the predecessor member. When a member holds over after the expiration of the term for which that member was appointed, the time served after the expiration of that term shall be part of a new term. No member shall be appointed to serve longer than two consecutive regular three-year terms, unless an exception is made by the court. (2) Subject to the approval of the court, the Committee may adopt such rules and regulations as it deems necessary to implement the provisions of this rule. The members of the Committee shall receive such compensation and necessary expenses as the court may approve. (3) Members of the Committee and their lawfully appointed designees and staff are immune from civil suit for any conduct in the course of their official duties. (b) Admission to the Bar of this jurisdiction. Admission may be based on (1) examination in this jurisdiction; (2) transfer of a Uniform Bar Examination score attained in another jurisdiction; (3) the applicant’s qualifying score on the Multistate Bar Examination administered in another jurisdiction and membership in the bar of such other jurisdiction; or (4) membership in good standing in the bar of another jurisdiction for at least five years immediately prior to the application for admission.
    [Show full text]
  • Roman Numerals
    ROMAN NUMERALS Romans developed a different system of numeration about 2000 years ago Roman numerals. There are seven basic Roman numerals. These numerals and corresponding Hindu Arabic numerals are given below. Roman Numerals I V X L C D M Hindu- Arabic 1 5 10 50 100 500 1000 Numerals Writing Numbers in Roman Numerals You already know about the numerals I, V and X and the method to write numbers up to 39. Here, we will learn how to write large numbers using Roman numerals. Note! There is no symbol form in Roman system Rule 1 When a letter is used more than once, we add its value each time to get the number Examples: II= 1 + 1 = 2 XXX = 10 + 10 + 10 = 30 CCC = 100 + 100 + 100 MM = 1000 + 1000 = 2000 MMM = 1000 + 1000 + 1000 = 3000 Note! 1. The some symbol cannot be repeated more than 3 times together 2. The symbol V, L ond ore never repeated Rule 2 When a symbol of smaller value is written to the right of a symbol of larger value, add the two values. Examples: VII = 5 +1+1= 7 XXVII = 10 + 10 + 5 + 1 + 1 = 27 LXVI = 50 + 10 + 5+1 = 66 CLXV = 100 + 50 + 10 + 5 = 165 XII = 10 +1+1= 12 LVII = 50 + 5 + 1 + 1 = 57 CVII = 100 + 5 +1+1 = 107 DC = 500 + 100 = 600 MDCXVIII = 1000 + 500 + 100 + 10 + 5 +1+1 +1 = 1618 Rule 3 When a symbol of smaller value is written to the left of a symbol of larger value, the smaller value is subtracted from the larger value.
    [Show full text]
  • Faliscan the Alphabet
    W. D. C. de Melo Faliscan The alphabet General remarks The various alphabets of ancient Italy go back to a Western Greek alphabet, which in turn is derived from the Phoenician alphabet. The names of the letters make sense in Phoenician, but not in Greek: the second letter has the sound value b (Greek b¯eta) and is the word for ‘house’, a word which in Phoenician began with b (Hebrew bayit, st. constr. b¯et). In (most? all?) Semitic languages words cannot begin with a vowel; since the letter names are nouns in origin and the letters just stand for the first sound of these nouns, this may explain why ancient Semitic languages do not write vowels consistently. The great innovation in the Greek alphabets is that the old signs for pharyngeal and glottal consonants, for which Greek had no use, were redeployed as vowel signs. Learning the alphabet and the consequences The alphabet had a fixed order of letters. The names of the letters were learnt by heart in this fixed order and people also had tables with the letter forms, again in the same order, so that they could associate sound and shape. When people knew the alphabet, they could begin with simple syllables (con- sonant + vowel), after which they began to write more complex syllables, and finally words. Around 600BC, the Etruscans invented a teaching aid: simple syllables with a CV shape are left as they are, but around any letter that does not fit into this syllabe pattern dots are placed on either side. The speakers of Venetic adopted this system of syllabic punctuation (though not in their earliest inscriptions), which to us may seem bizarre: voto klutiiari.s.
    [Show full text]
  • K/ & /G/ ISOLATION & SYLLABLES /K/: to Produce the /K/ Sound, Open Your
    /k/ & /g/ ISOLATION & SYLLABLES /k/: To produce the /k/ sound, open your mouth, relax your tongue, and make a coughing sound as you push the air out of your mouth. The back of your tongue will come up as this happens and make contact with the roof of the mouth in the far back. Sometimes it is difficult to get little one’s to keep their tongue down to make a good /k/ sound. It often comes out sounding like a /t/ sound. I will use a tongue depressor to keep the front of their tongue down as we practice /k/ in isolation. If we still can’t get the sound, have them lie down on their backs and open their mouth. Their tongue falls in the back of their mouth naturally, which is the place for /k/. Add vowel sounds after the sound to produce syllables. (kay, key, kie, kou, coo) These still might have to be separated to get a good /k/ sound: ie. k—ay, k—ey) /g/: To produce the /g/ sound, repeat steps for /k/, but turn your voice on. You can put your fingers (or have them put their fingers) on their “adam’s apple” spot to feel their voice turn on for /g/ and off for /k/. Sometimes it is difficult to get little one’s to keep their tongue down to make a good /g/ sound. It often comes out sounding like a /d/ sound. I will use a tongue depressor to keep the front of their tongue down as we practice /g/ in isolation.
    [Show full text]
  • Efficient (K,R)-Core Computation on Social Networks
    When Engagement Meets Similarity: Efficient (k,r)-Core Computation on Social Networks Fan Zhang‡†, Ying Zhang†,LuQin†, Wenjie Zhang§, uXuemin Lin‡§ ‡East China Normal University, †CAI, University of Technology Sydney, §University of New South Wales [email protected], {ying.zhang, lu.qin}@uts.edu.au, {zhangw, lxue}@cse.unsw.edu.au ABSTRACT Engagement. It is a common practice to encourage the engage- In this paper, we investigate the problem of (k,r)-core which in- ment of the group members by using the positive influence from tends to find cohesive subgraphs on social networks considering their friends in the same group (e.g., [3, 11, 21, 22, 29]); that is, both user engagement and similarity perspectives. In particular, we ensure there are a considerable number of friends for each individ- adopt the popular concept of k-core to guarantee the engagement ual user (vertex) in the group (subgraph). In [3], Bhawalkar and of the users (vertices) in a group (subgraph) where each vertex in a Kleinberg et al. use the game-theory to formally demonstrate that (k,r)-core connects to at least k other vertices. Meanwhile, we con- the popular k-core model can lead to a stable group (i.e., a cohe- sider the pairwise similarity among users based on their attributes. sive subgraph regarding graph structure). In this paper, we adopt Efficient algorithms are proposed to enumerate all maximal (k,r)- the k-core model on the graph structure, where each vertex in the cores and find the maximum (k,r)-core, where both problems are subgraph has at least k neighbors (structure constraint).
    [Show full text]