Faliscan the Alphabet
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Origin of the Peculiarities of the Vietnamese Alphabet André-Georges Haudricourt
The origin of the peculiarities of the Vietnamese alphabet André-Georges Haudricourt To cite this version: André-Georges Haudricourt. The origin of the peculiarities of the Vietnamese alphabet. Mon-Khmer Studies, 2010, 39, pp.89-104. halshs-00918824v2 HAL Id: halshs-00918824 https://halshs.archives-ouvertes.fr/halshs-00918824v2 Submitted on 17 Dec 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in Mon-Khmer Studies 39. 89–104 (2010). The origin of the peculiarities of the Vietnamese alphabet by André-Georges Haudricourt Translated by Alexis Michaud, LACITO-CNRS, France Originally published as: L’origine des particularités de l’alphabet vietnamien, Dân Việt Nam 3:61-68, 1949. Translator’s foreword André-Georges Haudricourt’s contribution to Southeast Asian studies is internationally acknowledged, witness the Haudricourt Festschrift (Suriya, Thomas and Suwilai 1985). However, many of Haudricourt’s works are not yet available to the English-reading public. A volume of the most important papers by André-Georges Haudricourt, translated by an international team of specialists, is currently in preparation. Its aim is to share with the English- speaking academic community Haudricourt’s seminal publications, many of which address issues in Southeast Asian languages, linguistics and social anthropology. -
F(P,Q) = Ffeic(R+TQ)
674 MATHEMA TICS: N. H. McCOY PR.OC. N. A. S. ON THE FUNCTION IN QUANTUM MECHANICS WHICH CORRESPONDS TO A GIVEN FUNCTION IN CLASSICAL MECHANICS By NEAL H. MCCoy DEPARTMENT OF MATHEMATICS, SMrTH COLLEGE Communicated October 11, 1932 Let f(p,q) denote a function of the canonical variables p,q of classical mechanics. In making the transition to quantum mechanics, the variables p,q are represented by Hermitian operators P,Q which, satisfy the com- mutation rule PQ- Qp = 'y1 (1) where Y = h/2ri and 1 indicates the unit operator. From group theoretic considerations, Weyll has obtained the following general rule for carrying a function over from classical to quantum mechanics. Express f(p,q) as a Fourier integral, f(p,q) = f feiC(r+TQ) r(,r)d(rdT (2) (or in any other way as a linear combination of the functions eW(ffP+T)). Then the function F(P,Q) in quantum mechanics which corresponds to f(p,q) is given by F(P,Q)- ff ei(0P+7Q) t(cr,r)dodr. (3) It is the purpose of this note to obtain an explicit expression for F(P,Q), and although we confine our statements to the case in which f(p,q) is a polynomial, the results remain formally correct for infinite series. Any polynomial G(P,Q) may, by means of relation (1), be written in a form in which all of the Q-factors occur on the left in each term. This form of the function G(P,Q) will be denoted by GQ(P,Q). -
Umbria from the Iron Age to the Augustan Era
UMBRIA FROM THE IRON AGE TO THE AUGUSTAN ERA PhD Guy Jolyon Bradley University College London BieC ILONOIK.] ProQuest Number: 10055445 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10055445 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract This thesis compares Umbria before and after the Roman conquest in order to assess the impact of the imposition of Roman control over this area of central Italy. There are four sections specifically on Umbria and two more general chapters of introduction and conclusion. The introductory chapter examines the most important issues for the history of the Italian regions in this period and the extent to which they are relevant to Umbria, given the type of evidence that survives. The chapter focuses on the concept of state formation, and the information about it provided by evidence for urbanisation, coinage, and the creation of treaties. The second chapter looks at the archaeological and other available evidence for the history of Umbria before the Roman conquest, and maps the beginnings of the formation of the state through the growth in social complexity, urbanisation and the emergence of cult places. -
0. Introduction L2/12-386
Doc Type: Working Group Document Title: Revised Proposal to Encode Additional Old Italic Characters Source: UC Berkeley Script Encoding Initiative (Universal Scripts Project) Author: Christopher C. Little ([email protected]) Status: Liaison Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Replaces: N4046 (L2/11-146R) Date: 2012-11-06 0. Introduction The existing Old Italic character repertoire includes 31 letters and 4 numerals. The Unicode Standard, following the recommendations in the proposal L2/00-140, states that Old Italic is to be used for the encoding of Etruscan, Faliscan, Oscan, Umbrian, North Picene, and South Picene. It also specifically states that Old Italic characters are inappropriate for encoding the languages of ancient Italy north of Etruria (Venetic, Raetic, Lepontic, and Gallic). It is true that the inscriptions of languages north of Etruria exhibit a number of common features, but those features are often exhibited by the other scripts of Italy. Only one of these northern languages, Raetic, requires the addition of any additional characters in order to be fully supported by the Old Italic block. Accordingly, following the addition of this one character, the Unicode Standard should be amended to recommend the encoding of Venetic, Raetic, Lepontic, and Gallic using Old Italic characters. In addition, one additional character is necessary to encode South Picene inscriptions. This proposal is divided into five parts: The first part (§1) identifies the two unencoded characters (Raetic Ɯ and South Picene Ũ) and demonstrates their use in inscriptions. The second part (§2) examines the use of each Old Italic character, as it appears in Etruscan, Faliscan, Oscan, Umbrian, South Picene, Venetic, Raetic, Lepontic, Gallic, and archaic Latin, to demonstrate the unifiability of the northern Italic languages' scripts with Old Italic. -
21Ia'b;Q'c/Ablc (C/A)(C/B).__(C)(C/Ab)
ON THE q-ANALOG OF KUMMER’$ THEOREM AND APPLICATIONS GEORGE E. ANDREWS 1. Introduction. The q-analogs for Gauss’s summation of 2Fl[a, b; c; 1] and Saalschutz’s summation of 3F2[a, b, -n; c, a b c n 1; 1] are well known, namely, E. Heine [8; p. 107, Equation (6)] showed that (1.1) 21Ia’ b;q’c/ablc (c/a)(c/b).__(c)(c/ab) where - - and (a). (a; q), (1 -a)(1 -aq) (1 -aq-a), (a) (a; q),(R) lim,. (a),. (See also [12; p. 97, Equation (3.3.2.2)].) F. H. Jackson [9; p. 145] showed that b, q-"; q, (c/a),,(c/b). (c),,(c/ab), a2ia, c, abq/cq ql The q-analog of Dixon’s summation of 3F[a, b, c; 1 a b, 1 -[- a c; 1] was more difficult to find, and indeed only a partial analog is true; namely, W. N. Bailey [5] and F. tI. Jackson [10; p. 167, Equation (2)] proved that if a where n is a positive integer, then b, c; q, qa[ bc | (b/a),(c/a)(qa)(bca-). (1.3) 34 | ba-)-(ai (a- qa) bca-1), b,c There are three other well-known summations for the .F1 series, namely, Kummer’s theorem [12; p. 243, Equation (III. 5)] r(1%a-- b) (1.4) 2F[a, b; 1 a- b;--1] r(1 Gauss’s second theorem [12; p. 243, Equation III. 6)] Received December 23, 1972. The author ws partiMly supported by NtioaM Science Foundation Grat GP-23774. -
Three Main Groups of People Settled on Or Near the Italian Peninsula and Influenced Roman Civilization
Three main groups of people settled on or near the Italian peninsula and influenced Roman civilization. The Latins settled west of the Apennine Mountains and south of the Tiber River around 1000 B.C.E. While there were many advantages to their location near the river, frequent flooding also created problems. The Latin’s’ settlements were small villages built on the “Seven Hills of Rome”. These settlements were known as Latium. The people were farmers and raised livestock. They spoke their own language which became known as Latin. Eventually groups of these people united and formed the city of Rome. Latin became its official language. The Etruscans About 400 years later, another group of people, the Etruscans, settled west of the Apennines just north of the Tiber River. Archaeologists believe that these people came from the eastern Mediterranean region known as Asia Minor (present day Turkey). By 600 B.C.E., the Etruscans ruled much of northern and central Italy, including the town of Rome. The Etruscans were excellent builders and engineers. Two important structures the Romans adapted from the Etruscans were the arch and the cuniculus. The Etruscan arch rested on two pillars that supported a half circle of wedge-shaped stones. The keystone, or center stone, held the other stones in place. A cuniculus was a long underground trench. Vertical shafts connected it to the ground above. Etruscans used these trenches to irrigate land, drain swamps, and to carry water to their cities. The Romans adapted both of these structures and in time became better engineers than the Etruscans. -
Speech Sound Programme for 'K' / 'C' at the Start of Words
Speech Sound Programme for ‘k’ / ‘c’ at the start of words This programme is for children who are producing a ‘t’ sound in place of a ‘k’ / ‘c’ sound at the start of words. For example, ‘cat’ is produced ‘tat’ and ‘cup’ is produced ‘tup’. ‘k’ is the target sound. ‘t’ is the produced sound. Below are a set of stages to work through with the child. Start with Stage 1 and only move up to the next stage when you are confident that the child has achieved the current stage. It is recommended that the programme is carried out for 15 minutes three times a week. If you would like any advice or you feel that the child is not making progress, please contact the Speech and Language Therapy team on 0151 514 2334. Stage 1 - Listening for the target sound 1. See ‘Picture Set 1’ for sound cue pictures that represent the target sound ‘k’ and the produced sound ‘t’. 2. Place the two pictures (‘k’ and ‘t’) in front of the child. 3. Teach the child the sounds, not the letter names, e.g., say ‘k’ and not ‘k-uh’. 4. Say the two sounds at random and ask the child to point or place a counter on which sound they hear. 5. Repeat this activity a number of times until you are sure the child can consistently hear the difference between the two sounds. Stage 2 - Sorting pictures by their first sound. 1. Now that the child can hear the difference between the two sounds (‘k’ and ‘t’) on their own, try the same with words. -
THE ZEROS of QUASI-ANALYTIC FUNCTIONS1 (3) H(V) = — F U-2 Log
THE ZEROS OF QUASI-ANALYTICFUNCTIONS1 ARTHUR O. GARDER, JR. 1. Statement of the theorem. Definition 1. C(Mn, k) is the class of functions f(x) ior which there exist positive constants A and k and a sequence (Af„)"_0 such that (1) |/(n)(x)| ^AknM„, - oo < x< oo,» = 0,l,2, • • • . Definition 2. C(Mn, k) is a quasi-analytic class if 0 is the only element / of C(Mn, k) ior which there exists a point x0 at which /<">(*„)=0 for « = 0, 1, 2, ••• . We introduce the functions (2) T(u) = max u"(M„)_l, 0 ^ m < oo, and (3) H(v) = — f u-2 log T(u)du. T J l The following property of H(v) characterizes quasi-analytic classes. Theorem 3 [5, 78 ].2 Let lim,,.,*, M„/n= °o.A necessary and sufficient condition that C(Mn, k) be a quasi-analytic class is that (4) lim H(v) = oo, where H(v) is defined by (2) and (3). Definition 4. Let v(x) be a function satisfying (i) v(x) is continuously differentiable for 0^x< oo, (ii) v(0) = l, v'(x)^0, 0^x<oo, (iii) xv'(x)/v(x)=0 (log x)-1, x—>oo. We shall say that/(x)GC* if and only if f(x)EC(Ml, k), where M* = n\[v(n)]n and v(n) satisfies the above conditions. Definition 5. Let Z(u) be a real-valued function which is less Received by the editors November 29, 1954 and, in revised form, February 24, 1955. 1 Presented to the Graduate School of Washington University in partial fulfill- ment of the requirements for the degree of Doctor of Philosophy. -
Changes in the Risk of Stroke in Dialysis Patients: a Retrospective Analysis Over the Last 40 Years
toxins Article Changes in the Risk of Stroke in Dialysis Patients: A Retrospective Analysis over the Last 40 Years Toshiya Aono 1,†, Yuki Shinya 1,2,*,† , Satoru Miyawaki 2 , Takehiro Sugiyama 3,4, Isao Kumagai 5, Atsumi Takenobu 1, Masahiro Shin 2 , Nobuhito Saito 2 and Akira Teraoka 1 1 Department of Neurosurgery, Teraoka Memorial Hospital, Hiroshima 729-3103, Japan; [email protected] (T.A.); [email protected] (A.T.); [email protected] (A.T.) 2 Department of Neurosurgery, The University of Tokyo Hospital, Tokyo 113-8655, Japan; [email protected] (S.M.); [email protected] (M.S.); [email protected] (N.S.) 3 Diabetes and Metabolism Information Center, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; [email protected] 4 Department of Health Services Research, Faculty of Medicine, University of Tsukuba, Ibaraki 305-8575, Japan 5 Department of Nephrology, Teraoka Memorial Hospital, Hiroshima 729-3103, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-5800-8853 † These two authors have contributed equally to this study and are thus co-first authors. Abstract: The stroke incidence in hemodialysis (HD) patients is high, but the associated factors remain largely unknown. This study aimed to analyze stroke incidence in HD patients and changes in risk factors. Data of 291 patients were retrospectively analyzed. The cumulative stroke incidences were 21.6% at 10 years and 31.5% at 20. Diabetic nephropathy (DN) significantly increased overall stroke (hazard ratio (HR), 2.24; 95% confidence interval (CI), 1.21–4.12; p = 0.001) and ischemic p stroke (HR, 2.16; 95% CI, 1.00–4.64; = 0.049). -
CONDITIONAL EXPECTATION Definition 1. Let (Ω,F,P)
CONDITIONAL EXPECTATION 1. CONDITIONAL EXPECTATION: L2 THEORY ¡ Definition 1. Let (,F ,P) be a probability space and let G be a σ algebra contained in F . For ¡ any real random variable X L2(,F ,P), define E(X G ) to be the orthogonal projection of X 2 j onto the closed subspace L2(,G ,P). This definition may seem a bit strange at first, as it seems not to have any connection with the naive definition of conditional probability that you may have learned in elementary prob- ability. However, there is a compelling rationale for Definition 1: the orthogonal projection E(X G ) minimizes the expected squared difference E(X Y )2 among all random variables Y j ¡ 2 L2(,G ,P), so in a sense it is the best predictor of X based on the information in G . It may be helpful to consider the special case where the σ algebra G is generated by a single random ¡ variable Y , i.e., G σ(Y ). In this case, every G measurable random variable is a Borel function Æ ¡ of Y (exercise!), so E(X G ) is the unique Borel function h(Y ) (up to sets of probability zero) that j minimizes E(X h(Y ))2. The following exercise indicates that the special case where G σ(Y ) ¡ Æ for some real-valued random variable Y is in fact very general. Exercise 1. Show that if G is countably generated (that is, there is some countable collection of set B G such that G is the smallest σ algebra containing all of the sets B ) then there is a j 2 ¡ j G measurable real random variable Y such that G σ(Y ). -
ARIC Surveillance Variable Dictionary Incident Stroke
ARIC Surveillance Variable Dictionary Incident Stroke April 2002 j:\aric\admin\vardict\stroke_inc ARIC Surveillance Variable Dictionary – Incidenta Stroke Table of Contents for Year YYb Alphabetical Index .....................................................................................................................................ii 1. Classification Variable COMPDIAG (Computer Diagnosis) ............................................................................................... 1 COMP_DX (Computer Diagnosis – Format Value) ....................................................................... 2 FINALDX (Final Diagnosis) .......................................................................................................... 3 FINAL_DX (Final Diagnosis – Format Value) .............................................................................. 4 2. Event Time/Type & Eligibility Variable DISDATE (Discharge/Death Date) ................................................................................................5 EVENTYPE (Event Type) .............................................................................................................. 6 YEAR (Event Year) ........................................................................................................................ 7 SK_ELIG2 (Stoke Eligibility) ........................................................................................................ 8 3. Incidence* Stroke Variable 3.1 Incident Event CENSORYY (Censoring Date) ..................................................................................................... -
Proposal for Generation Panel for Latin Script Label Generation Ruleset for the Root Zone
Generation Panel for Latin Script Label Generation Ruleset for the Root Zone Proposal for Generation Panel for Latin Script Label Generation Ruleset for the Root Zone Table of Contents 1. General Information 2 1.1 Use of Latin Script characters in domain names 3 1.2 Target Script for the Proposed Generation Panel 4 1.2.1 Diacritics 5 1.3 Countries with significant user communities using Latin script 6 2. Proposed Initial Composition of the Panel and Relationship with Past Work or Working Groups 7 3. Work Plan 13 3.1 Suggested Timeline with Significant Milestones 13 3.2 Sources for funding travel and logistics 16 3.3 Need for ICANN provided advisors 17 4. References 17 1 Generation Panel for Latin Script Label Generation Ruleset for the Root Zone 1. General Information The Latin script1 or Roman script is a major writing system of the world today, and the most widely used in terms of number of languages and number of speakers, with circa 70% of the world’s readers and writers making use of this script2 (Wikipedia). Historically, it is derived from the Greek alphabet, as is the Cyrillic script. The Greek alphabet is in turn derived from the Phoenician alphabet which dates to the mid-11th century BC and is itself based on older scripts. This explains why Latin, Cyrillic and Greek share some letters, which may become relevant to the ruleset in the form of cross-script variants. The Latin alphabet itself originated in Italy in the 7th Century BC. The original alphabet contained 21 upper case only letters: A, B, C, D, E, F, Z, H, I, K, L, M, N, O, P, Q, R, S, T, V and X.