How to Prepare the Final Version of Your Manuscript for The

Total Page:16

File Type:pdf, Size:1020Kb

How to Prepare the Final Version of Your Manuscript for The Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 17A Science in support of the Coral Triangle Initiative Genetic structure of Culcita sp. pincushion seastar in the Coral Triangle Nina Yasuda1, Coralie Taquet2, Satoshi Nagai3, Miguel Fortes4, Suharsono5, Handoko Adi Susanto6, Niphon Phongsuwan7 and Kazuo Nadaoka2 1University of Miyazaki, Faculty of Agriculture, Department of Marine Biology and Environmental Sciences, 2Tokyo Institute of Technology 3National Research Institute of Fisheries and Environment of Inland Sea (FEIS) Fisheries Research Agency 4Marine Science Institute CS University of the Philippines 5Indonesian Institute of Sciences (LIPI) 6Wildlife Conservation Society (WCS) 7 Marine and Coastal Biology and Ecology Unit Phuket Marine Biological Center Corresponding author: [email protected] Abstract. From the Coral Triangle, which is the global centre of marine biodiversity, species richness tends to decrease eastward across the Pacific Ocean and westward across the Indian Ocean. However, this region is severely threatened by both human and natural disturbances, calling for urgent conservation efforts. Conservation and management decisions inevitably require definition of the limits of population structure of each species as well as mechanisms that produce high biodiversity in the Coral Triangle. In this study we sequenced the mitochondrial COI region of the pincushion seastar, Culcita sp., a common coral reef seastar whose life history resembles other well-studied coral reef seastars. We found a large genetic difference between Indian (Culcita schmideliana) and Pacific Ocean (Culcita novaeguineae) lineages. All the populations (except from Thailand) had Pacific mtDNA haplotypes, while central and western Indonesian populations had both Indian and Pacific haplotypes, showing a sign of sympatric distribution of these two genetic lineages around these areas. Overall gene flow of Culcita sp. in the Coral Triangle was strong and resembled that of Acanthaster planci with similar life history traits. Further analysis using nuclear marker might reveal possible hybridization between the distinct genetic lineages of the species in this region. Key words: Coral Triangle, Culcita sp, mitochondrial DNA, CO1, speciation Introduction connectivity across the Indo-Pacific (e.g. (Uthicke The Coral Triangle, bounded by the Philippines, the and Benzie 2003) while Acanthaster planci showed Malay Peninsula, and Papua New Guinea, is the clear differentiation between Indian and Pacific global centre of marine biodiversity and species lineages in the Coral Triangle (Vogler et al. 2008; richness is known to decrease from this region Yasuda et al. 2011). Linckia laevigata also shows eastward across the Pacific Ocean and westward Indian and Pacific lineages (Williams 2000), however, across the Indian Ocean. However, this region is unlike A. planci two lineages of L .laevigata are severely threatened from both human and natural mixed in the Coral Triangle (Crandall et al.2008) disturbances, calling for urgent conservation efforts. Given these discrepancies, more studies on Because most marine species have pelagic larval echinoderm species with known larval ecology for dispersal, conservation management decisions comparative phylogeography will help to infer what inevitably require defining the limits of kinds of biological and ecological traits govern the population/species structure in the Coral Triangle. patterns of gene flow in in the Coral Triangle. Hence, phylogeographic and population genetic Culcita sp. is a good candidate for examining the analysis using mitochondrial DNA sequences are phylogeography in this area because we have regarded as one of the most powerful tools (Carpenter knowledge about larval ecology (Yamaguchi 1977) et al. 2011) towards these objectives. and it has similar ecological traits with well-studied A number of genetic studies were conducted using species A. planci, the notorious coral-eating seastar mitochondrial DNAin the Coral Triangle in the last that sometimes causes population outbreaks decade and some concordant phylogenetic breaks are (Birkeland and Lucas 1990). The habitat of Culcita sp identified in some taxa (Carpernter et al. 2011). is similar to that of A. planci, Both species have a However there is still lack of concordant phylogeny in similar summer spawning period (Yasuda et al. 2010, other marine invertebrates, especially in echinoderm Ohta et al. 2011) and similar larval ecology (16 days species. Holothuria nobilis showed broad for A. planci and 18 days for Culcita novaeguineae Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 17A Science in support of the Coral Triangle Initiative (Yamagushi 1977). The largest ecological difference NETWORK ver 4.6.1.0 with default setting. Pairwise between the two is that A. planci has higher fecundity comparisons between Culcita novaeguineae and sometimes causes population outbreaks while populations, Wright’s FST and an analogue of Culcita sp. does not (Birkeland and Lucas 1990). Wright’s FST (ΦST), which incorporates the model of In order to gain further insights on gene flow in the sequence evolution, were calculated only for Coral Triangle, we conducted a phylogeographic populations with N > 9 in ARLEQUIN. study of Culcita sp. using partial mitochondrial Cytochrome Oxidase subunit I (COI) region collected Results from the Coral Triangle as well as in its neighboring We obtained a 650 bp segment of mitochondrial COI countries including Thailand, Japan and Palau. in 273 individuals yielding 97 haplotypes with a total of 110 segregating sites. The basic polymorphism Material and Methods parameters for each population, including, haplotype We sampled a total of 273 individuals of Culcita sp. diversity (h) and nucleotide diversity (π) are provided by diving from 15 locations in Southeast Asia and in Table 1. Overall nucleotide diversity in Culcita sp. West Pacific regions collaborating with 5 different was 0.012 and corresponding haplotype diversity was countries between 2009 and 2011 (Fig.1). 0.880. The highest nucleotide diversity 0.03 was Abbreviations of sampling sites are shown in Table 1. found in KES, whereas the lowest value 0.0008 was There are two species in this region, Pacific species, found in CAL. The highest haplotype diversity 1.0 C. novaeguineae and Indian Ocean species, Culcita was found in THI and BOT and the lowest value schmideliana. In this paper, we use the term Culcita 0.464 was found in BOL. sp. including both two species because this study does Clade-B not include any detailed morphological analysis. All specimens were photo-vouchered and were returned to their original habitats after collecting a few tube 3 feet per individual. The tube feet were preserved in 39 2 micro tubes filled with 99.5% ethanol until they are used for genetic analysis. We amplified and Clade-C sequenced partial cytochrome c oxidase subunit I Clade-A gene (COI) from genomic DNA extracted using 5 % Chelex (Bio-rad, Hercules, CA) (Walsh et al. 1991) via polymerase chain reaction (PCR) using CO1EF AMM and CO1ER primers (Arndt et al. 1996) with thermocycling parameters of 35 cycles of 94 oC/30 o o sec, 45 C/30 sec, 72 C/30 sec. One microliter of BOL PCR product were cleaned using one unit of o exonuclease, and then incubated 37 C for 15 min and PAC Verde 80 oC for 15 min. Cleaned PCR products were sequenced on an ABI 3130xl automated sequencer THI PAU using BigDye ver.3 (Applied Biosystems, Foster DER BUN City,CA) terminator chemistry. Forward and Reverse BON sequences were proofread and subsequently aligned on GENETIX version 10 and then trimmed to 650 PAL base pairs. KES SPE We calculated haplotype diversity h and nucleotide diversity π (Nei 1987) with the program Arlequin ver. Figure 1: Haplotype network and geographic distribution of three 3.5. The null hypothesis of neutral evolution of the genetic clades marker was tested using Tajima’s D test (Tajima The median-joining network revealed three genetic 1989) and Fu’s Fs test (Fu 1997). Mismatch clusters of haplotypes (Fig. 1). The most distinct clade distribution and the model of sudden population C was diverged from clades A and B by more than 40 expansion (Rogers 1995) were also analyzed. We substitutions. Clade C was only found in Thailand and conducted all the sequence divergence and neutrality two sites in western and central Indonesia (KES and tests with 20,000 permutations as implemented in the SPE), corresponding to Culcita schmideliana Alrequin 3.5 (Excoffier and Lischer 2010). To sequences (Gustav Paulay unpublished data) while investigate the genetic structure of C. novaeguineae in clade A and B were distributed throughout central the Coral Triangle region, we first draw median- Indonesia and the Pacific populations, corresponding joining haplotype network (Bandelt et al. 1999) using Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9-13 July 2012 17A Science in support of the Coral Triangle Initiative to C. novaeguineae (Fig. 1, Table 1). Pairwise ΦST coastal marine species between the Oceans (Voris and FST values showed PAU and KES are 2000). significantly differentiated (p<0.05) from the other Neutrality tests showed either selection in form of populations in the Coral Triangle region (Table 2). genetic hitchhiking, or sudden population expansion Neutrality tests showed both Fu’s Fs (-78.33, p have occurred in recent history. Given the scenario of <0.0001) and Tajima’s D (-1.82, p <0.01). a population reduction due to sea level fluctuations, following population expansion might cause this Sampling sit es Abbr. Nind Nhaplo π h FS Tajima's D excess of low-frequency haplotypes. Similar Amami Ohshima AMM 5 4 0.0077 0.900 0.49 - 0.95 Verde Island Passage Anilao BAT 4 4 0.0041 1.000 - 1.41 - 0.21 population expansion is seen in other reef organisms Verde Island Passage Caban CAB 10 7 0.0030 0.867 - 3.35 - 1.69 such as reef fish and invertebrates in the Coral Verde Island Passage Calat agan CAL 4 2 0.0008 0.500 0.17 - 0.61 Verde Island Passage Maricaban MAR 6 5 0.0142 0.933 0.68 0.66 Triangle (Crandall et al.
Recommended publications
  • Juvenile Trapezia Spp. Crabs Can Increase Juvenile Host Coral Survival by Protection from Predation
    Vol. 515: 151–159, 2014 MARINE ECOLOGY PROGRESS SERIES Published November 18 doi: 10.3354/meps10970 Mar Ecol Prog Ser Juvenile Trapezia spp. crabs can increase juvenile host coral survival by protection from predation H. Rouzé1,2,*, G. Lecellier1,2,3, S. C. Mills2,4, S. Planes1,2, V. Berteaux-Lecellier1,2, H. Stewart1,5 1CRIOBE USR 3278 CNRS-EPHE-UPVD, BP 1013, Moorea, 98729 French Polynesia 2Laboratoire d’Excellence ‘CORAIL’, 58 avenue Paul Alduy, 66860 Perpignan, France 3Université de Versailles-Saint Quentin, 55 Avenue de Paris, Versailles Cedex, France 4CRIOBE USR 3278 CNRS-EPHE-UPVD, 58 Avenue Paul Alduy, 66860 Perpignan Cedex, France 5Department of Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, British Columbia V7V 1N6, Canada ABSTRACT:Adult crabs are known to play critical roles in the survival of their adult coral hosts, but little is known of the mutualism between juvenile crabs (≤0.5 cm) and their juvenile hosts. Field and laboratory experiments both demonstrated that the presence of juvenile crabs of the genus Trapezia in young host Pocillopora corals (2 to 3 cm diameter) increased coral survival by 32% and reduced consumption by the corallivorous seastar Acanthaster planci. These experi- ments also showed that juvenile Trapezia were not effective at deterring predation by another common predatory seastar, Culcita novaeguineae. Finally, our work highlights that the defensive ability of symbiotic crabs may be genus-specific, as juvenile Tetralia spp. crabs, obligate sym- bionts of Acropora spp., displayed no protection against either A. planci or C. novaeguineae. KEY WORDS: Juvenile · Trapeziid · Corals · Acanthaster planci · Culcita novaeguineae · Mutualism · Predation · Defence Resale or republication not permitted without written consent of the publisher INTRODUCTION fered the highest predation around Moorea (Leray et al.
    [Show full text]
  • The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/328063815 The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization OPEN ACCESS Article · January 2018 CITATIONS READS 0 6 5 authors, including: Ferdinard Olisa Megwalu World Fisheries University @Pukyong National University (wfu.pknu.ackr) 3 PUBLICATIONS 0 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Population Dynamics. View project All content following this page was uploaded by Ferdinard Olisa Megwalu on 04 October 2018. The user has requested enhancement of the downloaded file. Review Article Published: 17 Sep, 2018 SF Journal of Biotechnology and Biomedical Engineering The Sea Stars (Echinodermata: Asteroidea): Their Biology, Ecology, Evolution and Utilization Rahman MA1*, Molla MHR1, Megwalu FO1, Asare OE1, Tchoundi A1, Shaikh MM1 and Jahan B2 1World Fisheries University Pilot Programme, Pukyong National University (PKNU), Nam-gu, Busan, Korea 2Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna, Bangladesh Abstract The Sea stars (Asteroidea: Echinodermata) are comprising of a large and diverse groups of sessile marine invertebrates having seven extant orders such as Brisingida, Forcipulatida, Notomyotida, Paxillosida, Spinulosida, Valvatida and Velatida and two extinct one such as Calliasterellidae and Trichasteropsida. Around 1,500 living species of starfish occur on the seabed in all the world's oceans, from the tropics to subzero polar waters. They are found from the intertidal zone down to abyssal depths, 6,000m below the surface. Starfish typically have a central disc and five arms, though some species have a larger number of arms. The aboral or upper surface may be smooth, granular or spiny, and is covered with overlapping plates.
    [Show full text]
  • Research on Indian Echinoderms - a Review
    J. mar. biol Ass. India, 1983, 25 (1 & 2):91 -108 RESEARCH ON INDIAN ECHINODERMS - A REVIEW D. B. JAMES* Central Marine fisheries Research Institute, Cochin -682031 In the present paper research work so far done on Indian Echinoderms is reviewed. Various aspects such as history, taxonomy, anatomy, reproductive physiology, development and larval forms, ecology, animal associations, parasites, utility, distribution and zoogeography, toxicology and bibliography are reviewed in detail. Corrections to misidentifications in earlier papers have been made wherever possible and presented in the Appendix at the end of the paper. and help at every stage. He thanks Dr. INTRODUCTION P.S.B.R. James, Director, C.M.F.R. Institute for kindly suggesting to write this review and ECHINODERMS being common and conspicuous also for his kind interest and encouragement. organisms of the sea shore have attracted the He also thanks Miss A.M. Clark, British Museum attention of the naturalists since very early (Natural History), London for commenting times. Their btauty, more so their symmetry on the correct identity of some of the echino­ have attracted the attention of many a natura­ derms presented here. list. Although the first paper on Indian Echino- <jlerms was published as early as 1743 by Plan- HISTORY cus and Gaultire from Goa there was not much progress in the field except in the late nineteenth Most of the research work on Indian echino­ and early twentieth centuries when echinoderms derms relate only to taxonomy with little or no collected mostly by R.I.M.S. Investigator were information on the ecology and other aspects reported by several authors.
    [Show full text]
  • A General Ecological Survey of Some Shores in Northern Moçambique
    A GENERAL ECOLOGICAL SURVEY OF SOME SHORES IN NORTHERN MOÇAMBIQUE by MARGARET KALK (University of ?he Wilwciersrand, Johannesburg) /Hm*iW August, Ji, iQfS) CONTENTS h Introduction............................................................................................. 1 Li. General physical conditions in northern Mozambique . » . 2 iii. The fauna on the shores of Mozambique Island .... 3 iv. Strong wave action on the Isle of Goa mui at Chakos . « 8 v. Sheltered shores in northern Mozambique . • • 9 vi. Ecological patterns on shores of southern Mozambique . ■ IO vii, Discussion............................................................................................. in v iii. Acknowledgments * . * . *............................... 10 Appendix — A list of animals collected in northern Mozambique 11 References ............. 211 i. INTRODUCTION The shores of northern Moçambique are well within the tropics, reaching latitude IO0 S at the northern limit. Collections ol shore animals have been made from time to time and authors of taxonomic studies have frequently pointed out affinities of the fauna with that of the west Pacific. The coast is considered part of tile Indo-west-pacific province of Ekman. Tropical features such as confluent corai reefs, fields of Cymodocea on intertidal flats and zoned mangrove swamps persist as far south as Inhaca Island (latitude 26° S) in Southern Moçambique (Kalk, 1954 and 1958, Macxae and Kalk, 1958), aâ a result of the influence of the warm equatorial waters of the southward flowing Moçambique current. A number of tropical species intrude even into Natal in South Africa for the same reason (Stephexson 1944 and 1947, Smitii 1952 and 1959). But in Natal and to a lesser extent at Inhaca the gross facies of the upper levels of the rocky shores are not unlike wami temperate South African shores and might be termed sub-tropical in character.
    [Show full text]
  • Invertebrate Predators and Grazers
    9 Invertebrate Predators and Grazers ROBERT C. CARPENTER Department of Biology California State University Northridge, California 91330 Coral reefs are among the most productive and diverse biological communities on earth. Some of the diversity of coral reefs is associated with the invertebrate organisms that are the primary builders of reefs, the scleractinian corals. While sessile invertebrates, such as stony corals, soft corals, gorgonians, anemones, and sponges, and algae are the dominant occupiers of primary space in coral reef communities, their relative abundances are often determined by the activities of mobile, invertebrate and vertebrate predators and grazers. Hixon (Chapter X) has reviewed the direct effects of fishes on coral reef community structure and function and Glynn (1990) has provided an excellent review of the feeding ecology of many coral reef consumers. My intent here is to review the different types of mobile invertebrate predators and grazers on coral reefs, concentrating on those that have disproportionate effects on coral reef communities and are intimately involved with the life and death of coral reefs. The sheer number and diversity of mobile invertebrates associated with coral reefs is daunting with species from several major phyla including the Annelida, Arthropoda, Mollusca, and Echinodermata. Numerous species of minor phyla are also represented in reef communities, but their abundance and importance have not been well-studied. As a result, our understanding of the effects of predation and grazing by invertebrates in coral reef environments is based on studies of a few representatives from the major groups of mobile invertebrates. Predators may be generalists or specialists in choosing their prey and this may determine the effects of their feeding on community-level patterns of prey abundance (Paine, 1966).
    [Show full text]
  • From Mangroves to Coral Reefs; Sea Life and Marine Environments in Pacific Islands by Michael King Apia, Samoa: SPREP 2004
    SPREP fromto coral mangroves reefs sea life and marine environments in Pacific islands Michael King South Pacific Regional Environment Programme SPREP Cataloguing-in-Publication King, Michael From mangroves to coral reefs; sea life and marine environments in Pacific islands by Michael King Apia, Samoa: SPREP 2004 This handbook was commissioned by the South Pacific Regional Environment Programme with funding from the Canada South Pacific Ocean Development Program (C-SPODP) and the UN Foundation through the International Coral Reef Action Network (ICRAN) SPREP PO Box 240 Apia, Samoa Phone (685) 21929 Fax (685) 20231 Email: [email protected] Web site: www.sprep.org.ws From mangroves to coral reefs sea life and marine environments in Pacific islands ____________________________________________________________________________________________________ 1. Introduction 1 6. The classification and diversity of marine life 29 Biological classification – naming things 2. Coastal wetlands - estuaries and mangroves 5 Diversity – the numbers of species Estuaries – where rivers meet the sea 7. Crustaceans – shrimps to coconut crabs 33 Mangroves – coastal forests Smaller crustaceans 3. Shorelines – beaches and seaplants 9 Shrimps and prawns Beaches – rivers of sand Lobsters and slipper lobsters Seaweeds – large plants of the sea Crabs Seagrasses – underwater pastures Hermit crabs and stone crabs 4. Corals - from coral polyps to reefs 15 8. Molluscs – clams to octopuses 41 Stony corals and coral polyps Clams, oysters, and mussels (bivalves) Fire corals – stinging hydroids Sea snails (gastropods) Corals in deepwater Octopuses and their relatives (cephalopods) Soft corals and gorgonians - octocorals 9. Echinoderms – sea cucumbers to sand dollars 51 Coral reefs – the world’s Sea cucumbers largest natural structures Sea stars 5.
    [Show full text]
  • The Thermal Range of the Cushion Sea Star, [I]Culcita Novaeguineae
    The thermal range of the cushion sea star, Culcita novaeguineae, distribution and its behavioral response to warmer waters Alexandra G Yokley Corresp. 1 1 Environmental Science Policy and Management, University of California, Berkeley, Berkeley, California, United States Corresponding Author: Alexandra G Yokley Email address: [email protected] Overproduction of greenhouse gases is driving climate change and increasing the average temperature of oceans worldwide. As a result, organisms are exhibiting behavioral changes and species are shifting their natural distribution. This study aimed to assess the effects of temperature on C. novaeguineae distribution and movement in order to predict the effects of rising sea temperature on this echinoderm’s behavior and ecology. The distribution study measured the temperature gradient of the cushion star’s current habitat in order to determine how temperature changes with respect to depth. Additionally, the cushion star’s distribution range in relation to depth and sea temperature was examined to demonstrate how temperature influences cushion star range. The field experiment was conducted to determine the effects of increased temperature on C. novaeguineae behavior. Movement, a common mechanism used by ectotherms to escape heat stress, was measured as the response variable in cushion stars heat shocked in ocean waters 3°C above their expected upper thermal limit and in control organisms kept in ambient ocean waters of 31°C. The results of the distribution survey found that temperature decreased as depth increased. And cushion stars were generally found at 1, 2, and 3 meters and in temperatures between 29°C and 31°C. The field experiment revealed that the heat shocked individuals moved 3.2 times further than the control organisms and twice the number of heat shocked cushion stars moved into deeper waters than control organisms.
    [Show full text]
  • Echinodermata of Lakshadweep, Arabian Sea with the Description of a New Genus and a Species
    Rec. zool. Surv. India: Vol 119(4)/ 348-372, 2019 ISSN (Online) : 2581-8686 DOI: 10.26515/rzsi/v119/i4/2019/144963 ISSN (Print) : 0375-1511 Echinodermata of Lakshadweep, Arabian Sea with the description of a new genus and a species D. R. K. Sastry1*, N. Marimuthu2* and Rajkumar Rajan3 1Erstwhile Scientist, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016 and S-2 Saitejaswini Enclave, 22-1-7 Veerabhadrapuram, Rajahmundry – 533105, India; [email protected] 2Zoological Survey of India (Ministry of Environment, Forest and Climate Change), FPS Building, Indian Museum Complex, Kolkata – 700016, India; [email protected] 3Marine Biology Regional Centre, Zoological Survey of India (Ministry of Environment, Forest and Climate Change), 130, Santhome High Road, Chennai – 600028, India Zoobank: http://zoobank.org/urn:lsid:zoobank.org:act:85CF1D23-335E-4B3FB27B-2911BCEBE07E http://zoobank.org/urn:lsid:zoobank.org:act:B87403E6-D6B8-4ED7-B90A-164911587AB7 Abstract During the recent dives around reef slopes of some islands in the Lakshadweep, a total of 52 species of echinoderms, including four unidentified holothurians, were encountered. These included 12 species each of Crinoidea, Asteroidea, Ophiuroidea and eightspecies each of Echinoidea and Holothuroidea. Of these 11 species of Crinoidea [Capillaster multiradiatus (Linnaeus), Comaster multifidus (Müller), Phanogenia distincta (Carpenter), Phanogenia gracilis (Hartlaub), Phanogenia multibrachiata (Carpenter), Himerometra robustipinna (Carpenter), Lamprometra palmata (Müller), Stephanometra indica (Smith), Stephanometra tenuipinna (Hartlaub), Cenometra bella (Hartlaub) and Tropiometra carinata (Lamarck)], four species of Asteroidea [Fromia pacifica H.L. Clark, F. nodosa A.M. Clark, Choriaster granulatus Lütken and Echinaster luzonicus (Gray)] and four species of Ophiuroidea [Gymnolophus obscura (Ljungman), Ophiothrix (Ophiothrix) marginata Koehler, Ophiomastix elegans Peters and Indophioderma ganapatii gen et.
    [Show full text]
  • Persistent and Expanding Population Outbreaks of the Corallivorous Starfish Acanthaster Planci in the Northwestern Indian Ocean
    Zoological Studies 49(1): 108-123 (2010) Persistent and Expanding Population Outbreaks of the Corallivorous Starfish Acanthaster planci in the Northwestern Indian Ocean: Are They Really a Consequence of Unsustainable Starfish Predator Removal through Overfishing in Coral Reefs, or a Response to a Changing Environment? Vanda Mariyam Mendonça1,2,*, Musallam Mubarak Al Jabri3, Ibrahim Al Ajmi3, Mohamed Al Muharrami3, Mohamed Al Areimi3, and Hussain Ali Al Aghbari4 1Expeditions International (EI-EMC), P.O. Box 802, Sur 411, Oman 2Algarve Marine Sciences Centre (CCMAR), University of Algarve, Campus of Gambelas, Faro 8005-139, Portugal 3Ministry of Environment and Climate Affairs, P.O. Box 323, Muscat 113, Oman 4Ministry of Fisheries, P.O. Box 467, Muscat 113, Oman (Accepted August 14, 2009) Vanda Mariyam Mendonça, Musallam Al Jabri, Ibrahim Al Ajmi, Mohamed Al Muharrami, Mohamed Al Areimi, and Hussain Ali Al Aghbari (2010) Persistent and expanding population outbreaks of the corallivorous starfish Acanthaster planci in the northwestern Indian Ocean: are they really a consequence of unsustainable starfish predator removal through overfishing in coral reefs, or a response to a changing environment? Zoological Studies 49(1): 108-123. Population outbreaks of the starfish Acanthaster planci have been persisting for at least the past 25 yr on coral reefs in the Gulf of Oman, in the northwestern Indian Ocean. A survey conducted in 2001 showed that the A. planci population on the Dimaniyat Is. was as abundant (around 5 individuals (ind.)/transect; equivalent to 100 ind./ha) as that recorded during an outbreak in the early 1980s. Local authorities are controlling starfish populations by culling relatively large adult individuals.
    [Show full text]
  • Mechanisms Involved in Pearlfish Resistance to Holothuroid Toxins
    Mar Biol (2016) 163:129 DOI 10.1007/s00227-016-2901-3 ORIGINAL PAPER Mechanisms involved in pearlfish resistance to holothuroid toxins Lola Brasseur1 · Eric Parmentier2 · Guillaume Caulier1 · Maryse Vanderplanck3 · Denis Michez3 · Patrick Flammang1 · Pascal Gerbaux4 · Georges Lognay5 · Igor Eeckhaut1 Received: 28 October 2015 / Accepted: 15 April 2016 / Published online: 4 May 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract Holothuroids produce triterpenoid saponins that against the toxin constituted by a larger secretion of mucus act as chemical defenses against predators and parasites. than other fishes, (2) a bioactive barrier against the tox- These saponins interact with sterols of the plasma mem- ins constituted by a mucus effective on saponins and (3) a branes, inducing the formation of pores and then cell lysis. Δ7sterol tissue composition mimicking holothuroids that To avoid such harms from their own saponins, holothuroids enable them to resist to saponins. First experiments showed present specific sterols in their tissues. Despite the noxious that the mucus has no effective impact on saponin chemical cytotoxic effect of their chemical defenses, holothuroids structures. Mass spectrometry analyses showed that carap- host various associates that display specific adaptations to ids, similarly to non-symbiotic fishes but contrary to their resist to saponin toxicity. Among them, symbiotic carapid hosts, present a Δ5sterol tissue composition. However, two fishes (i.e., pearlfishes) are resistant to ichthyotoxic sapo- different procedures have shown that carapids produce six nins as they display no stress response and a survival time to ten times more mucus than control fishes, suggesting that 45 times longer than free-living fishes without any specific a great quantity of mucus can protect carapids from their gill adaptation.
    [Show full text]
  • Larval Behavior and Geographic Distribution of Coral Reef Asteroids in the Indo-W Est Pacific 1
    Larval Behavior and Geographic Distribution of Coral Reef Asteroids in the Indo-W est Pacific 1 MASASHL YAMAGU CHl 2 Marine Laboratory , University of Guam P.O . Box EK, Agaua , Guam 96910 Abstract. - Coral reef asteroids in the Indo-West Pacific fauna! region may be divided into two groups , one widely distributed from continental areas to out amo ng the scattered ocea nic island s (wide ly distributed species) and the other found on ly along the continental land mass and proximal islands (continent al species). A majo r difference in astero id faun.al composit ions between Palau and Guam is the absence of the common continenta l species on the oceanic island of Guam. Larva l development in four spec ies, Archa.vter typicu s and Protoreaster nodosus (cont inenta l species) and Culcita 11ovaeg11i11eae and Acanthaster p/a nci (wide ly distributed species) , shows mar ked similarit ies in morphology and rate of development when reared under similar conditio ns in the laboratory at Palau. The resu lts from larval cu ltivation of these com mon aste roid spec ies at Palau, Guam and in literatures suggest that the geographic distr ibution patterns might resu lt from the modes of larva l ~wimming behavior. Posi1ive geotaxis in the continental spec ies is in contrast with the negative geotax is in the widely distributed species during most of their pelagic life spa n. Introducti on The Jndo-West Pacific possesses the most extensive marine fauna! region with a homogeneous she lf fauna of high species diversity (Ekman , 1953).
    [Show full text]
  • Ian A· 0 a Ar S, a , Ay 0 E Ga
    o o L R o. 70 Ian a· 0 a ar s, A , ay 0 e ga ..v. 0 . S STRY ZO LOG C o DA OCCASIONAL PAPER No. 270 RECORDS OF THE ZOOLOGICAL SURVEY OF INDIA Fauna of Button Island National parks, South Andrunans, Bay of Bengal D.V. RAO AND D.R.K. SASTRY Zoological Survey of India, Andaman and Nicobar Regional Station, Port Blair-744 102 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Rao, D. V. and Sastry, D.R.K. 2007. Fauna of Button Island National Parks, South Andamans, Bay of Bengal, Rec. zool. Surv. India, Dcc. Paper No., 270 : 1-54, (Published by the Director, Zool. Surv. India, Kolkata) Published : August, 2007 ISBN 978-81-8171-165-6 © Govt. of India, 2007 ALL RIGHTS RESERVED • No part of this publication may be reproduced stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, resold hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which, it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE Indian Rs. 250 Foreign $ 20 £ 15 Published at the Publication Division, by the Director, Zoological Survey of India, 234/4 AJ.C.
    [Show full text]