Litter Dynamics and Phenology of Melaleuca Quinquenervia in South Florida

Total Page:16

File Type:pdf, Size:1020Kb

Litter Dynamics and Phenology of Melaleuca Quinquenervia in South Florida J. Aquat. Plant Manage. 40: 22-27 Litter Dynamics and Phenology of Melaleuca quinquenervia in South Florida T. K. VAN1, M. B. RAYACHHETRY2, T. D. CENTER1 AND P. D. PRATT1 ABSTRACT and extended into the spring. Very little new growth was ob- served in melaleuca forests during the summer months, We monitored litterfall biomass at six different sites of from May to August, in South Florida. In contrast, the fall of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forest- leaves and small wood was recorded in every month of the ed wetlands in South Florida from July 1997 to June 1999. year, but generally increased during the dry season with Annual litterfall of melaleuca varied between sites from 6.5 higher levels observed from February to April. Also, no sea- to 9.9 t dry wt ha-1 yr-1 over the two-year period. Litterfall was sonality was recorded in the fall of seed capsules, which ap- significantly higher (P < 0.001) in seasonally flooded habitats parently resulted from the continual self-thinning of small (9.3 t ha-1 yr-1) than in non-flooded (7.5 t ha-1 yr-1) and perma- branches and twigs inside the forest stand. In planning man- nently flooded habitats (8.0 t ha-1 yr-1). Leaf fall was the major agement for perennial weeds, it is important to determine component forming 70% of the total litter, woody material the period during its annual growth cycle when the plant is 16%, and reproductive material 11%. Phenology of flower- most susceptible to control measures. These phenological ing and leaf flush was investigated by examination of the tim- data suggest that the appropriate time for melaleuca control ing and duration of the fall of different plant parts in the in South Florida might be during late winter and early litter traps, coupled with monthly field observations during spring, when the plant is most active. the two-year study. In both years, flowering began in October Key words: Litterfall; Biomass; Productivity; Biological con- and November, with peak flower production around Decem- trol; Paperbark tree. ber, and was essentially completed by February and March. New shoot growth began in mid winter after peak flowering, INTRODUCTION Melaleuca, often referred to as paperbark or broad-leaved 1U.S. Department of Agriculture, Agricultural Research Service, Invasive paperbark tree, is native to Australia. It is highly invasive in Plant Research Laboratory, 3205 College Avenue, Fort Lauderdale, FL 33314. wetland habitats of South Florida where it has infested about 2University of Florida, Fort Lauderdale Research and Education Center, 3205 College Avenue, Fort Lauderdale, FL 33314. Received for publication 200,000 ha (Bodle et al. 1994). Vast areas of wetlands, includ- October 30, 2000 and in revised form November 13, 2001. ing parts of the Florida Everglades, have been converted 22 J. Aquat. Plant Manage. 40: 2002. from marshes to closed-canopy melaleuca forests, with major environmental and economic impacts (O’Hare and Dalrym- ple 1997). As part of a biological control program, the Aus- tralian melaleuca snout beetle (Oxyops vitiosa Pascoe) and other natural enemies specific to M. quinquenervia are being imported into the U.S. (Center et al. 2000). This study was designed to obtain quantitative information on melaleuca productivity in terms of litterfall, and the relative propor- tions of the litter components, prior to the impact of the re- leased biological control agents. Litterfall collection is a standard non-destructive tech- nique for assessing productivity, phenology, and turnover of biomass in a forest (Newbould 1967). In general, net produc- tivity of woody trees such as melaleuca, is difficult to measure because a large proportion of the plant material exists in the trees for a long time before entering other parts of the eco- system. Much of the short-term input from a melaleuca forest to the ecosystem is as the litter falling from the tree canopy to the forest floor, and incorporated into the rest of the system by detritus feeders and decomposer organisms. This com- partment of net productivity is relatively easy to measure. In particular, the amount of leaf material falling reflects a for- est’s productivity. Rainforests, with their dense leaf canopies and high rates of leaf fall, are considered among the most highly productive plant communities (Proctor 1983). Annual litter production varies primarily with latitude, and ranges from 0.6 t ha-1 yr-1 in the arctic tundra to 25.4 t ha-1 yr-1 in a tropical lowland forest of eastern Australia (Lowman 1988). In addition to latitude, the amount of litterfall is affected by Figure 1. A map of South Florida showing location of the six study sites and precipitation and various attributes of the vegetation (Bray their grouping into three different habitats. The Holiday Park sites (1 and and Gorham 1964). No information is available on litterfall 2) were non-flooded, Krome (Site 3) and Clewiston (Site 4) seasonally flooded, and the Conservation Area sites (5 and 6) permanently flooded. or turnover of melaleuca forests in South Florida. Measure- ments in its native range in Australia (Finlayson et al. 1993, Greenway 1994) however, have indicated that annual litter- fall in melaleuca forests was the highest recorded among oth- of heavy rainfall; however, this flooding is usually of short er Australian temperate/subtropical forest types, suggesting duration and may not happen every year, and thus cannot that these woody wetlands form highly productive ecosys- be considered as seasonal flooding. Therefore, in this study tems. This paper presents data on litterfall biomass from six the term ‘non-flooded’ means ‘not flooded seasonally’ rather sites representing different hydrological conditions within than ‘never flooded’. melaleuca forested wetlands in South Florida. The objectives Mean annual rainfall of the study area was 1420 mm were to report the first measurements of litter production by (NOAA).3 The area received most (75%) rainfall during the melaleuca in South Florida, and secondly to describe impor- months of May through October in the form of convective tant phenological events of flowering and growth of melaleu- storms. Mean rainfall during those months was 178 mm per ca through records of the seasonal patterns exhibited by the month. Mean monthly temperatures ranged from 19.5C in different components of the litter. January to 28.2C in August. Vegetation at all six selected sites consisted of dense, MATERIALS AND METHODS closed-canopy melaleuca stands similar to those described by O’Hare and Dalrymple (1997) as ‘75-100% dense, mature Six permanent study sites were established throughout the melaleuca (DMM)’. The forest under-story was generally geographic range of melaleuca in the Everglades in South sparse, and consisted of shade-adapted shrubs (e.g., Myrica Florida (Figure 1). The sites were selected to encompass dif- cerifera L., Myrsine guianensis (Aubl.) Kuntz., Baccharis sp.), ferent hydrological conditions, as hydro-pattern has been several ferns (e.g., Thalypteris sp., Osmunda sp.), sedges (e.g., considered as a strong determinant of wetland species and Cladium jamaicense Crantz.), and grasses. their performance (Mitsch and Gosselink 1986). The sites Four 10 by 10 m plots were established in a stratified ran- consist of typical ‘glades’ characterized by high organic dom design at each of the six study sites. In each plot, all (muck) soils, and were grouped into three habitat catego- woody individuals >1.3 m tall were identified, counted, and ries: seasonally flooded, permanently flooded, and non- flooded (Table 1). There were two sites for each habitat. It should be noted that non-flooded melaleuca forests in the 3National Oceanic and Atmospheric Administration (NOAA), 1997- Everglades can still be covered by flood water during periods 1999, Local Climatological Data Monthly Summary. J. Aquat. Plant Manage. 40: 2002. 23 TABLE 1. ABOVEGROUND BIOMASS AND OTHER STRUCTURAL CHARACTERISTICS OF MELALEUCA FORESTS AT THE STUDY SITES. HOLIDAY PARK SITES WERE NON- FLOODED, KROME AND CLEWISTON SEASONALLY FLOODED, AND CONSERVATION AREAS PERMANENTLY FLOODED. DATA ARE MEANS ± STANDARD ERROR OF FOUR 100-M2 PLOTS FOR EACH SITE, OR EIGHT PLOTS FOR EACH HABITAT. BIOMASS WAS CALCULATED USING REGRESSIONS ON DBH (VAN ET AL. 2000) DBH Distribution Description < 10 cm 10-20 cm >20 cm Density Biomass By Sites: (Trees 100m-2 plot) (Trees ha-1) (t ha-1) Holiday Park 1 171 ± 49 19 ± 63 ± 2 19225 ± 4559 141 ± 27 Holiday Park 2 192 ± 67 19 ± 52 ± 1 21375 ± 6349 146 ± 25 Krome 238 ± 43 36 ± 59 ± 4 28225 ± 3635 302 ± 53 Clewiston 82 ± 41 21 ± 8 12 ± 6 11450 ± 4394 294 ± 77 Conservation Area 2B1 331 ± 127 25 ± 88 ± 4 36275 ± 11658 265 ± 50 Conservation Area 2B2 242 ± 65 34 ± 38 ± 3 28400 ± 6120 304 ± 30 By Habitats: Non-flooded 181 ± 39 19 ± 43 ± 1 20300 ± 3641 144 ± 17 Seasonally flooded 159 ± 40 29 ± 5 10 ± 3 19837 ± 4125 298 ± 44 Permanently flooded 286 ± 68 30 ± 48 ± 2 32337 ± 6274 285 ± 27 their stem diameters at breast height (dbh) recorded. lations involved, it was assumed that daily litterfall rates did Shrubs and herbaceous cover were also enumerated by spe- not change during collection intervals. cies for use in vegetation inventory for the plots. Phenology of melaleuca was determined by examination Aboveground biomass and its distribution (wood, leaves, of the litter components coupled with monthly field observa- and reproductive parts) were estimated using least-squares tions. For example, different reproductive structures in the regressions on dbh. The regression equations for total bio- litter traps provided empirical data to support visual field ob- mass (Van et al. 2000) and biomass components (Rayach- servation on the timing and duration of flowering. Floral hetry et al. 2001) were developed previously using nearby bracts shed during the early phase of flowering, generally melaleuca trees in the same populations.
Recommended publications
  • Wetland Vegetation Monitoring, 2000/2001 (Salinity Action Plan)
    Edith Cowan University Research Online ECU Publications Pre. 2011 2001 Wetland vegetation monitoring, 2000/2001 (Salinity Action Plan) B. Franke R. Gurner R. Froend Follow this and additional works at: https://ro.ecu.edu.au/ecuworks Part of the Environmental Sciences Commons Franke, B., Gurner, R., & Froend, R. (2001). Wetland vegetation monitoring, 2000/2001 (Salinity Action Plan). Perth, Australia: Edith Cowan University. This Report is posted at Research Online. https://ro.ecu.edu.au/ecuworks/7084 Edith Cowan University Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorize you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. Where the reproduction of such material is done without attribution of authorship, with false attribution of authorship or the authorship is treated in a derogatory manner, this may be a breach of the author’s moral rights contained in Part IX of the Copyright Act 1968 (Cth). Courts have the power to impose a wide range of civil and criminal sanctions for infringement of copyright, infringement of moral rights and other offences under the Copyright Act 1968 (Cth). Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
    [Show full text]
  • Their Botany, Essential Oils and Uses 6.86 MB
    MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy, Lyndley A. Craven and John C. Doran MELALEUCAS THEIR BOTANY, ESSENTIAL OILS AND USES Joseph J. Brophy School of Chemistry, University of New South Wales Lyndley A. Craven Australian National Herbarium, CSIRO Plant Industry John C. Doran Australian Tree Seed Centre, CSIRO Plant Industry 2013 The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. ACIAR operates as part of Australia's international development cooperation program, with a mission to achieve more productive and sustainable agricultural systems, for the benefit of developing countries and Australia. It commissions collaborative research between Australian and developing-country researchers in areas where Australia has special research competence. It also administers Australia's contribution to the International Agricultural Research Centres. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by ACIAR. ACIAR MONOGRAPH SERIES This series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research and development objectives. The series is distributed internationally, with an emphasis on developing countries. © Australian Centre for International Agricultural Research (ACIAR) 2013 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from ACIAR, GPO Box 1571, Canberra ACT 2601, Australia, [email protected] Brophy J.J., Craven L.A. and Doran J.C. 2013. Melaleucas: their botany, essential oils and uses. ACIAR Monograph No. 156. Australian Centre for International Agricultural Research: Canberra.
    [Show full text]
  • Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
    Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................
    [Show full text]
  • COST COMPARISON of Melaleuca Treatment Methods by Francois B
    COST COMPARISON OF Melaleuca Treatment Methods by Francois B. Laroche and Jennifer McKim Introduction Melaleuca (Melaleuca quinquenervia) is an exotic invasive plant species that was introduced to South Florida in the late 19th century Melaleuca seeds were offered for sale in Florida in 1887 (Serbesoff-King, 2003), and the tree has been distributed throughout South Florida since that time. Around 1937, during the historic rush to drain swamps in the state of Florida, seeds from the native Australian tree were disbursed over the eastern portion of South Florida’s Everglades. The tree was believed to be beneficial for drying wetlands for farming and development. In 1941, the United States Army Corps of Engineers planted M. quinquenervia on levees south of Lake Okeechobee for erosion control (Bramlage, 2000). Melaleuca was widely planted, and recommended as late as 1970, as “one of Florida’s best landscape trees” (Watkins, 1970). Melaleuca grows extremely fast in a variety of conditions. Wetlands, seasonal wetlands, and well- drained uplands offer excellent growing conditions for the tree. Melaleuca is particularly a concern for South Florida because it is highly invasive and has the ability to adapt and flourish in a variety of ecological conditions. The high production of viable seeds helps this species to establish and disperse and makes control a difficult challenge. Regardless of the method of removal, millions of viable seeds are left behind to re-establish melaleuca populations following any control initiatives. Current methods of control used for melaleuca include integrated strategies of herbicide application, limited mechanical means, and biological controls (Laroche, 1998). Control with herbicides is the most economical and most researched method.
    [Show full text]
  • EPBC Act Referral
    Submission #3141 - Southern Forests Irrigation Scheme – Project 2: Irrigation Pipeline Network, South West region, WA Title of Proposal - Southern Forests Irrigation Scheme – Project 2: Irrigation Pipeline Network, South West region, WA Section 1 - Summary of your proposed action Provide a summary of your proposed action, including any consultations undertaken. 1.1 Project Industry Type Water Management and Use 1.2 Provide a detailed description of the proposed action, including all proposed activities. The Southern Forests Irrigation Scheme (SFIS) involves water offtake from the Donnelly River to irrigate approximately 1700 ha of land for horticultural and agricultural production in the Southern Forests region around Manjimup and Pemberton in the South-West of Western Australia. The SFIS has been developed to support the Manjimup SuperTowns vision of expanding the area’s horticulture industry and doubling the population over the next 15 years. The Manjimup SuperTown Agriculture Strategy (2014) and The Value of Horticulture Production in the Manjimup-Pemberton Area report (2014) highlighted the need to secure additional water to supply horticultural areas currently subject to water shortages. The SFIS will be constructed and operated by the Southern Forests Irrigation Cooperative (SFIC), which will operate as a water supply and trading. This referral is for the SFIS Project 2, which comprises (see Figure 1): 1. Approximately 253 km of water distribution pipelines between the Donnelly River offtake pump station to property outlets (irrigator connection points). The network will be split between the Middlesex line (southern network) and Graphite line (northern network). 2. Pipelines will generally be installed below ground but may potentially be above ground due to site constraints such as waterway crossings.
    [Show full text]
  • Litter Dynamics and Phenology of Melaleuca Quinquenervia in South Florida T
    J Aquat. Plant Manage. 40: 22-27 Litter Dynamics and Phenology of Melaleuca quinquenervia in South Florida T. K. VAN', M. B. RAYACHHETR"Yl,T. D. CENTER! AND P. D. PRATI' ABSTRACT and extended into the spring. Very little new growth was ob- served in melaleuca forests during the summer months, We monitored litterfall biomass at six different sites of from May to August, in South Florida. In contrast, the fall of melaleuca (Melaleuca quinquenervia (Cav.) S.T. Blake) forest- leaves and small wood was recorded in every month of the ed wetlands in South Florida from July 1997 to June 1999. year, but generally increased during the dry season with Annual litterfall of melaleuca varied between sites from 6.5 higher levels observed from February to April. Also, no sea- to 9.9 t dry wt ha-' yr! over the two-year period. Litterfall was sonality was recorded in the fall of seed capsules, which ap- significantly higher (P < 0.001) in seasonally flooded habitats parently resulted from the continual self-thinning of small (9.3 t ha-1yrl) than in non-flooded (7.5 t ha" yr') and perma- branches and twigs inside the forest stand. In planning man- nently flooded habitats (8.0 t ha-'yr'). Leaf fall was the major agement for perennial weeds, it is important to determine component forming 70% of the total litter, woody material the period during its annual growth cycle when the plant is 16%, and reproductive material 11%. Phenology of flower- most susceptible to control measures. These phenological ing and leaf flush was investigated by examination of the tim- data suggest that the appropriate time for melaleuca control ing and duration of the fall of different plant parts in the in South Florida might be during late winter and early litter traps, coupled with monthly field observations during spring, when the plant is most active.
    [Show full text]
  • Species: Melaleuca Quinquenervia
    Species: Melaleuca quinquenervia http://www.fs.fed.us/database/feis/plants/tree/melqui/all.html SPECIES: Melaleuca quinquenervia Introductory Distribution and occurrence Botanical and ecological characteristics Fire ecology Fire effects Management considerations References INTRODUCTORY SPECIES: Melaleuca quinquenervia AUTHORSHIP AND CITATION FEIS ABBREVIATION SYNONYMS NRCS PLANT CODE COMMON NAMES TAXONOMY LIFE FORM FEDERAL LEGAL STATUS OTHER STATUS AUTHORSHIP AND CITATION: Munger, Gregory T. 2005. Melaleuca quinquenervia. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: http://www.fs.fed.us/database/feis/ [2007, September 24]. FEIS ABBREVIATION: MELQUI SYNONYMS: None NRCS PLANT CODE [98]: MEQU COMMON NAMES: melaleuca cajeput paperbark tree punktree TAXONOMY: The currently accepted scientific name for melaleuca is Melaleuca quinquenervia (Cav.) S. T. Blake (Mytraceae) [9,30,31,37,41,42,94,115,116]. Turner and others [96] provide a brief review of the Melaleuca genus in Australia, indicating that all known Melaleuca spp. (up to 250) are native, and all but 9 are endemic. Boland and others [9] suggest there are about 1 of 50 9/24/2007 4:51 PM Species: Melaleuca quinquenervia http://www.fs.fed.us/database/feis/plants/tree/melqui/all.html 150 described species of Melaleuca. The name melaleuca is of Greek origin, meaning "black and white", presumably referring to the white bark that is often charred black by fire (Debenham 1962 as cited in [96]. LIFE FORM: Tree Tree-shrub FEDERAL LEGAL STATUS: Noxious weed [97] OTHER STATUS: Florida Department of Environmental Quality lists melaleuca as a Class I Prohibited aquatic plant ("under no circumstances...permitted for possession, collection, transportation, cultivation, and importation...") [27].
    [Show full text]
  • Native Trees and Shrubs for Seaside Areas
    NATIVE TREES & SHRUBS RECOMMENDED FOR SEASIDE AREAS NOOSA & DISTRICT LANDCARE GROUP STATION STREET, POMONA PH: 5485 2468 PLANTS SUITABLE FOR SEASIDE AREAS This list has been prepared as a guide to the selection of trees and shrubs suitable for planting on the coastal areas of Queensland. Most species are available from Noosa Landcare’s nurseries. Others listed are generally available from nurseries specializing in native plants. The problems of seaside plantings are mainly concerned with salt-laden winds which burn the foliage of tender plants. For such exposed sites the following plants will provide a resistant windbreak. SPECIES COMMON NAME (SHRUBS – Up to 5 metres) Acacia podalryiifolia Queensland silver wattle Acacia spectabilis Glory or Mudgee wattle Acacia suaveolens Sweet wattle Alectryon coriaceous Beach bird’s eye Baeckea frutescens Weeping baeckea Banksia ericiifolia Heath-leaved banksia Banksia oblingifolia Dwarf banksia Banksia spinulosa var. spinulosa Spiny-leaved honeysuckle Banksia spinulosa var. collina Hair-pin banksia Callistemon citrinus Crimson bottlebrush Callistemon pachyphyllus Wallum bottlebrush Callistemon rigidus Stiff bottlebrush Grevillea banksii Bank’s grevillea Hakea sericea White hakea Leptospermum brachyandrum Weeping tea-tree Leptospermum laevigatum Coast tea-tree Leptospermum petersonii Lemon-scented tea-tree Leptospermum polygalyfolium Wild may Melaleuca armillaris Bracelet honey myrtle Melaleuca alternifolia Paperbark Melaleauca bracteata River tea-tree Melaleuca nodosa Prickly-leaved paperbark Petalostigma
    [Show full text]
  • Recent Discovery of Small Naturalised Populations of Melaleuca Quinquenervia (Cav.) S.T
    BioInvasions Records (2015) Volume 4, Issue 1: 53–59 Open Access doi: http://dx.doi.org/10.3391/bir.2015.4.1.09 © 2015 The Author(s). Journal compilation © 2015 REABIC Rapid Communication Recent discovery of small naturalised populations of Melaleuca quinquenervia (Cav.) S.T. Blake in South Africa Llewellyn E. O. Jacobs1,2,3*, Ernita van Wyk1 and John R. U. Wilson1,3 1Invasive Species Programme, South African National Biodiversity Institute, Kirstenbosch Research Centre, P/Bag X7. Claremont 3357. Cape Town. South Africa 2CapeNature. Scientific Services. Private Bag X5014. Stellenbosch 7599, South Africa 3Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa E-mail: [email protected] (LJ), [email protected] (EVW), [email protected] (JW) *Corresponding author Received: 15 July 2014 / Accepted: 24 November 2014 / Published online: 3 February 2015 Handling editor: Vadim Panov Abstract The discovery of a naturalised population of Melaleuca quinquenervia in South Africa in 2009 prompted an evaluation of the species’ distribution across South Africa. We found records at seven localities in two of the nine provinces of South Africa, with naturalised populations at two sites — ~300 plants were discovered over 0.3ha in a confined-seep on a mountain slope, while at an old arboretum 12 large, planted trees and 9 naturalised trees were found. An additional herbarium record from Mozambique suggests that this global invader is present at other sites within the sub-region, and so while the extirpation of populations in South Africa is recommended and looks feasible, further work is required to determine the status and evaluate whether eradication from the sub-region as a whole is possible.
    [Show full text]
  • Swamp Sclerophyll Forest on Coastal Floodplains
    Where fire has been excluded for long periods in Swamp Sclerophyll Forest, it may contain many species typical of the EEC, Littoral Rainforest, and on the NSW North Coast where substrates are volcanically derived it may adjoin with the EEC, Swamp Sclerophyll Forest Lowland Rainforest on Floodplains. Lucas McKinnon Determining the on Coastal Floodplains conservation value of remnants Introduction The degree of disturbance (i.e. the site condition) These guidelines provide background information of any remnant of Swamp Sclerophyll Forest may to assist land managers and approval authorities vary dependant on past land use, management Swamp Sclerophyll Forest in Wollongong LGA, showing the to identify remnants of Swamp Sclerophyll Forest practices and/or natural disturbance and this Lucas McKinnon transition between 3 components of the community, reedland, on Coastal Floodplains (hereafter referred to should be considered at the time of assessment. shrubland and sclerophyll forest. as Swamp Sclerophyll Forest), an Endangered Whilst not exhaustive, the following are a Ecological Community (EEC). For more detailed number of variations of Swamp Sclerophyll Forest information refer to the Swamp Sclerophyll Forest you may encounter: Profile and the NSW Scientific Committee Final It is important to take these factors into account Determination at: 1. Tree canopy intact with limited native when determining the conservation significance threatenedspecies.environment.nsw.gov.au vegetation in the understorey due to of remnants. underscrubbing, stock grazing pressure or too What is an Endangered Paperbark Forest on the NSW North Coast, a component frequent fire; For further assistance Ecological Community? of Swamp Sclerophyll Forest 2. Tree canopy intact (+/– reduced cover) with This and other EEC guidelines are available limited native vegetation in the understorey on DECC Threatened Species website: An ecological community is an assemblage dense and the community takes on the structure due to lack of fire or weed infestation (e.g.
    [Show full text]
  • Chemistry and Biological Activities of Essential Oils from Melaleuca L
    REVIEW ARTICLE 11 Chemistry and Biological Activities of Essential Oils from Melaleuca L. Species Luiz Claudio Almeida BARBOSA 1, 2 ( ) Cleber José SILVA 3 Róbson Ricardo TEIXEIRA 1 Renata Maria Strozi Alves MEIRA 4 Antônio Lelis PINHEIRO 5 Summary Essential oils from species Melaleuca genus, especially M. alternifolia (Maiden & Betche) Cheel, have been widely used worldwide in various industries. Th is review is a contribution to Melaleuca knowledge and describes fi ve important essential oil-producing species and two subspecies of Melaleuca in terms of their essential oil chemical composition, medicinal applications, and leaf morphoanatomy. Some relationships between essential oil composition of these species and important biological activities are presented. Useful parameters for the certifi cation of the essential oils are also highlighted. Key words Melaleuca, Myrtaceae, volatile oils, biological activities, leaf morphoanatomy 1 Federal University of Viçosa, Chemistry Department, 36570-000 Viçosa, MG, Brazil e-mail: [email protected] 2 Universidade Federal de Minas Gerais, Department of Chemistry, (ICEx), Av. Pres. Antônio Carlos, 6627, Campus Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil 3 Federal University of São João Del-Rei, Campus de Sete Lagoas, 35701-970, Sete Lagoas-MG, Brazil 4 Federal University of Viçosa, Plant Biology Department, 36570-000, Viçosa, MG, Brazil 5 Federal University of Viçosa, Forest Engineering Department, 36570-000, Viçosa, MG, Brazil Received: October 27, 2011 | Accepted: December 18, 2012 ACKNOWLEDGEMENTS We thank the Brazilian Agencies Coordenação de Aperfeiçoamento de Pessoal de Nível Supe- rior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for their financial support.
    [Show full text]
  • 2018 Recommended Street Tree Species List San Francisco Urban Forestry Council Approved [Date]
    2018 Recommended Street Tree Species List San Francisco Urban Forestry Council Approved [date] The Urban Forestry Council annually reviews and updates this list of trees in collaboration with public and non-profit urban forestry stakeholders, including San Francisco Public Works – Bureau of Urban Forestry and Friends of the Urban Forest. While this list recommends species that are known to do well in many locations in San Francisco, no tree is perfect for every potential tree planting location. This list should be used as a guideline for choosing which street tree to plant but should not be used without the help of an arborist or other tree professional. All street trees must be approved by Public Works before planting. The application form to plant a street tree can be found on their website: http://sfpublicworks.org/plant-street-tree Photo by Scott Szarapka on Unsplash 1 Section 1: Tree species, varieties, and cultivars that do well in most locations in San Francisco. Size Evergreen/ Species Notes Deciduous Small Evergreen Laurus nobilis ‘Saratoga’ Saratoga bay laurel Uneven performer, prefers heat, needs some Less than wind protection, susceptible to pests 20’ tall at Magnolia grandiflora ‘Little Gem’ Little Gem magnolia maturity Deciduous Crataegus phaenopyrum Washington hawthorn Subject to pests, has thorns, may be susceptible to fireblight. Medium Evergreen Agonis flexuosa (green) peppermint willow Standard green-leaf species only. ‘After Dark’ 20-35’ tall variety NOT recommended. Fast grower – at more than 12” annually, requires extensive maturity maintenance when young. Callistemon viminalis weeping bottlebrush Has sticky flowers Magnolia grandiflora ‘St. Mary,’ southern magnolia Melaleuca quinquenervia broad-leaf paperbark Grows fast, dense, irregular form, prefers wind protection Olea europaea (any fruitless variety) fruitless olive Needs a very large basin, prefers wind protection Podocarpus gracilior/Afrocarpus falcatus fern pine Slow rooter.
    [Show full text]