Annals 2/Ross & Ross

Total Page:16

File Type:pdf, Size:1020Kb

Annals 2/Ross & Ross Paper in: Patrick N. Wyse Jackson & Mary E. Spencer Jones (eds) (2008) Annals of Bryozoology 2: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp. viii+442. TWO HUNDRED YEARS OF AUSTRALIAN BRYOZOOLOGY 271 Two hundred years of Australian bryozoology June R.P. Ross* and Charles A. Ross† *Department of Biology, MS 9160 Western Washington University, Bellingham, WA 98225, USA. †Department of Geology, MS 9080 Western Washington University, Bellingham, WA 98225, USA. 1. Introduction 1.1 Development of Australian bryozoology 1.2 Stratigraphic Distribution of Studies 1.3 Geographic Distribution of Studies 2. Tertiary and Recent Bryozoologists 2.1 Early Discoveries 2.2 Second half of the 19th century 3. Twentieth century 3.1 Further Exploration of Coastal Seas 3.2 Western Australia 3.3 Introduced bryozoans 3.4 Bryozoan sediment facies 4. Paleozoic Bryozoa 4.1 Late Paleozoic 4.2 Lower Paleozoic 4.3 Current Knowledge 5. Acknowledgements 6. Bibliography of Australian bryozoology and selected references 1. Introduction 1.1 Development of Australian bryozoology In the 18th and 19th centuries the southern seas remained one of the vast unknown areas of the world as explorers sought to discover new regions of the globe. Australia remained a largely poorly known region; its continental coasts unmapped except in the vaguest outline. Flinder’s survey in 1825 in the small vessel ‘Tom Thumb’ succeeded in mapping the entire coast line. Early Australian bryozoan studies up until about 1850 parallel these explorations and are from collections that were returned to Europe by French and British 272 ANNALS OF BRYOZOOLOGY 2 Figure 1.—Map of Australia showing various basins and ‘basement’ areas. Names of basins and outline of basins change with time so that a Cambrian-Ordovician basin may have a different shape and name than a Late Paleozoic or Cenozoic basins in roughly the same general geographic place. Some ‘basement’ areas, such as in eastern Victoria, eastern New South Wales, and eastern Queensland, are folded and faulted Paleozoic geosynclinal areas. exploratory excursions (Dunmore, 1969) and studied there by European workers. After the 1850s, and until just after the turn of the century, Australians working on bryozoans had various backgrounds and most were ‘amateurs’ in that they had other work for making a livelihood. Some were medical doctors, many were clerics, and some had other work, but they all shared an excitment about the natural history of Australia and several had a great interest in bryozoans. Many had been formally trained in natural history and they formed local natural history study groups, helped each other through discussions and supported local and other publications with information and articles. Only a few were zoologists and paleontologists who occupied positions in the universities. TWO HUNDRED YEARS OF AUSTRALIAN BRYOZOOLOGY 273 After about 1900 and through about 1950, zoologists and paleontologists were scattered at various institutions, universities, natural history museums, and at several strong state geological surveys, such as the geological surveys in New South Wales, Queensland, Victoria, Western Australia, and, to a lesser extent, South Australia, and they remained strong until the depression of the 1930s and the Second World War (1939-1946). The Commonwealth of Australia was formed only in 1901 and, faced with strong state geological surveys, the federal government did not pursue a strong, organized, national geological and paleontological presence for a number of years. There were a succession of national Australian geological and paleontological surveys, often short term and created for specific purposes, but these were not organized into one cohesive organization until after the Second World War. In Canberra (Australian Capital Territory) the first of these included a 1945 Commonwealth Resources Survey and, in 1946, the Bureau of Mineral Resources, Geology, and Geophysics, and its successor, in 1992, the Australia Geological Survey Organisation. The book ‘Geology of the Commonwealth of Australia’ by T.W. Edgeworth David (1950) formed a detailed summary of Australian geology up to about the time of the initiation of a national geological effort. David died in 1934 with his text nearly complete at that time. The depression and World War II intervened and, after the war, W. R. Brown made changes to update the text and saw the three volume work through publication. 1.2 Stratigraphic Distribution of Studies Studies about Australian bryozoans are conveniently grouped into two major categories: Cenozoic (Recent and Tertiary) studies and Paleozoic studies. The history of both Australian Cenozoic and Paleozoic bryozoans studies have taken similar paths. There are few, if any, Mesozoic bryozoans recognized from Australian outcrops because marine sediments of Mesozoic age are limited and poorly known and are unfavorable for bryozoans. 1.3 Geographic Distribution of Studies Figure 1 shows the sedimentary basins of Australia including its continental shelves. At different times in the geologic past, the boundaries of these basins have changed to include more or less area and the names of the basins often are changed to reflect these differences. Also, separate names are often given to the shelf areas to distinguish them from the basins, particularly the Tertiary basins. Many of the basins in the center of Australia are late Precambrian to Devonian in age. ‘Basement’ areas in Figure 1 include some with Paleozoic sediments which have been deformed in geosynclinal fold belts, for example, the ‘basement’ in the Victoria-New South Wales-southern and eastern Queensland, includes lower and middle Paleozoic sediments, along with older rocks. 274 ANNALS OF BRYOZOOLOGY 2 2. Tertiary and Recent Bryozoologists 2.1 Early Discoveries Early exploration of the southern seas around the Australian continent led to extensive dredging and sampling of the oceans. Bryozoans were among the faunas that were harvested. The earliest bryozoan collections were made during the 1800-1804 French expedition of Captain Nicolas Baudin and subsequently described by J. B. P. A. de Lamarck (1816) and J. V. F. Lamouroux (1816). And d’Orbigny (1849) included some bryozoans from Australia. The material was collected from the southeastern and northwestern regions off the Australian coastline. George Busk. George Busk at the British Museum of Natural History studied the ‘Beagle’ collections and other material that was gradually arriving at the British Museum. He published a series of fine papers on Recent Australian bryozoans between 1852 and 1884. Bryozoans collected during the H.M.S. Rattlesnake expedition of 1837 were also described by Busk (1852a, b, 1854, and subsequently in 1875). Busk was a leading bryozoologists with more than 40 publications. He possessed a good command of bryozoan systematics world-wide and extensively described many genera and species. P.H. MacGillivray (1859) also reported on samples collected by the H.M.S. Rattlesnake. William Henry Harvey. Collections made by William Henry Harvey between 1854 and 1856 were subsequently described by Thomson (1858) at the British Museum. Harvey was an Irish Quaker, interested in seaweeds and he travelled to Australia between 1853 and 1856. He made numerous collections of Recent bryozoans in his collecting forays for seaweeds. His travels took him to Perth, Fremantle, and Albany in Western Australia, Point Fairy in South Australia, Melbourne in Victoria, Sydney in New South Wales, and Georgetown and Port Arthur in Tasmania (then known as Van Diemen’s Land). Subsequently, the bryozoans in Harvey’s collections were studied by numerous bryozoologists. Early in these investigations were detailed reports on the cheilostomes prepared by Wyville Thomson (1858, 1859). An updating on Thomson’s species is discussed in Wyse Jackson and Spencer Jones (1996). 2.2 Second half of the 19th century Paul H. MacGillivary. Beginning in 1858 (1859), working in Victoria, Paul H. MacGillivray, a medical doctor and naturalist, started publishing results of his studies on mainly Recent bryozoans along the southeastern portion of the Australian coast (Otway and Gippsland Basins) with a description of a new species of Plumatella. MacGillivray lived in Bendigo, Victoria, and many of his collections came from Queenscliff, Victoria. Some collections were sent to him or made by others, particularly J. Bracebridge Wilson, Maplestone, H. Watts, Baron von Mueller, Hincks, Waters and Miss Jelly. MacGillivray’s TWO HUNDRED YEARS OF AUSTRALIAN BRYOZOOLOGY 275 continued description of Australian Bryozoa. for more than forty years made him an important authority of southern Australian bryozoans until his death in 1895. He was in contact with the British zoologist and bryozoan worker Thomas Hincks (1884) to whom he sent collections. One of his prinicipal publication outlets was in M’Coy’s [McCoy’s] ‘Prodromus of the Zoology of Victoria’, a serial work in which about 300 species of bryozoans were described and illustrated between 1879 and 1895. This has been recently reviewed by Bock (2001). The following, extracted, paraphased, and summarized from two obituaries for MacGillivray notes the high regard his collegues had for his studies. Paul Howard MacGillivray (1834-1895) . A famous scientist and medical practitioner, he was born in Edinburgh, son of William MacGillivray and his wife Marion. Paul was educated at Marishal College (and King’s College) at the University of Aberdeen (M.A.,1859),
Recommended publications
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Palaeontologia Electronica DISCRIMINATION OF
    Palaeontologia Electronica http://palaeo-electronica.org DISCRIMINATION OF FENESTRATE BRYOZOAN GENERA IN MORPHOSPACE Steven J. Hageman and Frank K. McKinney ABSTRACT Concepts for generic diagnoses and discrimination of biserial fenestrate Bryozoa (Fenestellidae) have varied historically, but have largely been based on specialized colony forms (e.g., Archimedes), the shape and budding arrangement of chambers and other internal skeletal features such as hemisepta, and occasionally on the pres- ence or absence of discrete characters, such as placement of nodes on the frontal sur- face (e.g., Minilya). The question remains as to whether biserial fenestrate genera represent real biological clades, or whether they are convenient groupings of morpho- types based on untested characters. This study evaluates the distribution of 1075 operational taxonomic units (OTUs) from 15 fenestrate genera with measurements for nine morphometric characters – external features are not emphasized in most generic diagnoses. Here, each OTU represents a composite or idealized individual from a col- ony. Results show that OTUs plotted in principal component space do largely form coherent clusters based on a priori generic assignments. Thus the groupings based on characters other than the ones used to originally define them, add support to the notion of biological significance for recognized genera. The exceptions actually highlight and help resolve known issues. Therefore, we recognize Alternifenestella as a junior syn- onym of the genus Spinofenestella, and propose reassignment of Laxifenestella serrat- ula in Snyder (1991) to Fenestella serratula, and Fenestella sp. 1 in Ernst and Schroeder (2007) as Rectifenestella. We do not advocate that biserial fenestrate generic concepts should be based on the nine external characters used in this study, but rather that they can be used independently to evaluate the coherence of genera based on other discrete characters.
    [Show full text]
  • Sponges and Bryozoans of Sandusky Bay
    Ohio Naturalist. [Vol. 1, No. SPONGES AND BRYOZOANS OF SANDUSKY BAY. F. L. LANDACRE. The two small groups of fresh water sponges and Bryozoa re- ceived some attention at the Lake laboratory during the summer of 1900 All our fresh water sponges belong to one family, the SpongiUidae, which has about seven genera. They differ from the marine sponges- in two particulars. They form skeletons of silicon only, while marine sponges may form silicious or limy or spongin skeletons. The spongin skeleton-is the-one that gives the bath sponge its value.. They also form winter buds or statoblasts which carry the sponge over the winter and reproduce it again in the spring. This peculiar process was probably acquired on account of the changes in temperature and in amount of moisture to which animals living in fresh water streams are subjected. The sponge dies in the fall of the year and its skeleton of silicious spines or spicules can be found with no protoplasm. The character of the spines in the body of the sponge and those surrounding the statoblast differ greatly, and those around the statoblast are the main reliance in identifying sponges. So that if a statoblast is found the sponge from which it came can be determined, and on the other hand it is frequently very difficult to determine the species of a sponge if it has not yet formed its stato- blast. The statoblast is a globular or disc-shaped, nitroginous cell with a chimney-like opening where the protoplasm escapes in the spring. The adult sponge is non-sexual but the statoblasts give rise to ova and spermatozoa which unite and produce a new sponge.
    [Show full text]
  • Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 1975 Band/Volume: 32 Autor(en)/Author(s): Fuchs Gerhard Artikel/Article: Contributions to the Geology of the North-Western Himalayas 1-59 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Contributions to the Geology of the North-Western Himalayas GERHARD FUCHS 64 Figures and 5 Plates BAND 32 • WIEN 1975 EIGENTÜMER, HERAUSGEBER UND VERLEGER: GEOLOGISCHE BUNDESANSTALT, WIEN SCHRIFTLEITUNG: G.WOLETZ DRUCK: BRÜDER HOLLINEK, WIENER NEUDORF ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at 3 Abh. Geol. B.-A. Band 32 59 Seiten 64 Fig., 5 Beilagen Wien, Feber 1975 Contribution to the Geology of the North-Western Himalayas By GERHARD FUCHS With 64 figures and 5 plates (= Beilage 1—5) Data up to 1972, except PI. 1 'I NW-Himalaya U Stratigraphie i3 Tektonik £ Fazies Contents Zusammenfassung 3 1.3.1. The Hazara Slates 40 Abstract 4 1.3.2. The Tanol Formation 40 Preface 5 1.3.3. The Sequence Tanakki Boulder Bed — Introduction 5 Sirban Formation 41 1. Descriptive Part 6 1.3.4. The Galdanian and Hazira Formations 42 1.1. Kashmir 6 1.3.5. The Meso-Cenozoic Sequence 44 1.1.1. The Riasi-Gulabgarh Pass Section 6 1.4. Swabi — Nowshera 46 1.1.2. The Apharwat Area . 11 1.4.1. Swabi 46 1.1.3. The Kolahoi-Basmai Anticline (Liddar valley) ... 17 1.4.2.
    [Show full text]
  • Colony-Wide Water Currents in Living Bryozoa
    COLONY-WIDE WATER CURRENTS IN LIVING BRYOZOA by Patricia L Cook British Museum (Natural History), Cromwell Rd., London, SW7 5BD, Gt.Brltain. Résumé Les divers types de courants d'eau des colonies de Bryozoaires sont décrits et analysés. Pour les formes encroûtantes, il en existe au moins trois à l'heure actuelle. Pour les petites colonies de Cyclostomes (Lichenopora), il n'existe qu'un courant centripète se dirigeant vers l'extérieur. Chez certaines Chéilostomes (Hippoporidra) et Cténostomes (Alcyonidium nodosum), des «monticules» sont formés par des groupes de zoïdes dont les couronnes de tentacules sont absentes, réduites ou ne se nourrissent pas. Les « monticules » sont le siège de courants passifs, dirigés vers l'extérieur. Chez d'autres Chéilostomes (Schizoporella, Hippo- porina et Cleidochasma) et des Cténostomates (Flustrellidra hispida), des groupes de zoïdes à couronnes de tentacules hétéromorphes constituent des « cheminées » produisant des courants actifs se dirigeant vers l'extérieur. Des suggestions sont faites concernant une suite d'observations sur les colonies vivantes. Introduction Observation of living colonies is increasingly becoming an essential feature in the study of Bryozoa. Not only is it the primary method of discovering the function of zooids or parts of zooids, it is the first step in testing the established inferences about analogous and homologous structures in preserved material. The study of the functions of whole colonies and the degree and kind of integrative factors contributing to colony-control of these functions is in its early stages. These primary observations can only be made on living colonies. The wide variation in astogeny and ontogeny of structures and their functions in Bryozoa require much further work on many species before any general patterns may become obvious.
    [Show full text]
  • Mode of Growth and Functional Morphology of Autozooids in Some Recent and Paleozoic Tubular Bryozoa
    Mode of Growth and Functional Morphology of Autozooids in Some Recent and Paleozoic Tubular Bryozoa SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY NUMBER 8 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti­ tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, com­ mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of profes­ sional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. These publications are distributed by mailing lists to libraries, laboratories, and other in­ terested institutions and specialists throughout the world. Individual copies may be obtained from the Smithsonian Institution Press as long as stocks are available. S.
    [Show full text]
  • The Principal Fouling Organisms
    CHAPTER 9 The Principal Fouling Organisms The purpose of this chapter is to present an ele- an introduction to the scientific literature wil find mentary account of the principal organisms found references at the end of the chapter. When identi- in fouling communities in order that those un- fication to the scientific name is essential, speci- trained in zoology may observe fouling with mens should be sent to the United States National greater understanding. It contains an account of Museum, Washington, D. C., or to a museum of the appearance, habits, mode of dispersal, and natural history where they can be classified by ex- relative importance of these forms. perts. The descriptions are intended only to enable practical workers to recognize the commoner or- MICROSCOPIC FOULING ORGANISMS ganisms by the name of the group to which they The microscopic fouling organisms include bac- A B FIGURE 1. Photomicrographs of slime Elm organisms. A. A type of bacteria from a bacterial slime film. From Dobson (5). B. A diatom slime film. belong. In the case of the barnacles, the more com- tcria, diatoms, protozoa, and rotifers. The bacteria mon North American species are described in suf- aLd diatoms produce slime films which form ficient detail to indicate how species may be iden- promptly on submerged surfaces. The protozoa are tified, but the descriptions are inadequate to per- commonly associated with these films though they mit the inexperienced worker to classify barnacles take no part in their production. The successive to the species with certainty. The identification changes in these populations on a submerged sur- and naming of the species of all fouling organisms face are shown in Figure 1, Chapter 4.
    [Show full text]
  • Alien Species of Bugula (Bryozoa) Along the Atlantic Coasts of Europe
    Aquatic Invasions (2011) Volume 6, Issue 1: 17–31 doi: 10.3391/ai.2011.6.1.03 Open Access © 2011 The Author(s). Journal compilation © 2011 REABIC Research Article Alien species of Bugula (Bryozoa) along the Atlantic coasts of Europe John S. Ryland1*, John D.D. Bishop2, Hans De Blauwe3, Aliya El Nagar2, Dan Minchin4, Christine A. Wood2 and Anna L.E. Yunnie2 1Department of Pure and Applied Ecology, Swansea University, Swansea SA2 8PP, UK 2Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK 3Watergang 6, 8380 Dudzele, Belgium 4Marine Organism Investigations, Ballina, Killaloe, Co. Clare, Ireland E-mail: [email protected] (JSR), [email protected] (JDDB), [email protected] (HDeB), [email protected] (AEN), [email protected] (DM), [email protected] (CAW), [email protected] (ALEY) *Corresponding author Received: 22 June 2010 / Accepted: 9 November 2010 / Published online: 9 December 2010 Abstract Three apparently non-native species of Bugula occur in marinas and harbours in Atlantic Europe. The most common, B. neritina, was known from a few sites in southern Britain and northern France during the 20th century, following its discovery at Plymouth by 1911. During the 1950-60s it was abundant in a dock heated by power station effluent at Swansea, south Wales, where it flourished until the late 1960s, while water temperatures were 7-10°C above ambient. It disappeared after power generation ceased, when summer temperatures probably became insufficient to support breeding. Details of disappearances have not been recorded but B. neritina was not seen in Britain between c1970 and 1999.
    [Show full text]
  • Upper Ordovician Bryozoa from the Montagne De Noire, Southern France
    Journal of Systematic Palaeontology 5 (4): 359–428 Issued 19 November 2007 doi:10.1017/S1477201907002155 Printed in the United Kingdom C The Natural History Museum Upper Ordovician Bryozoa from the Montagne de Noire, southern France Andrej Ernst∗ Institut f¨ur Geowissenschaften der Christian-Albrechts-Universit¨at zu Kiel, Ludewig-Meyn-Str. 10, D-24118 Kiel, Germany Marcus Key† Department of Geology, P.O. Box 1773, Dickinson College, Carlisle, PA 17013-2896, USA SYNOPSIS This study focuses on bryozoans from the Upper Ordovician rocks of the Montagne de Noire, southern France and additional material from contemporary rocks of the Carnic Alps. Based on museum collections, 68 bryozoan species were identified with 18 species being new: Ceramo- porella grandis sp. nov., Crassalina fungiforme sp. nov., Lichenalia nodata sp. nov., Atactoporella magnopora sp. nov., Dekayia buttleri sp. nov., Stigmatella carnica sp. nov., Trematopora gracile sp. nov., Bythopora tenuis sp. nov., Nicholsonella divulgata sp. nov., N. recta sp. nov., Matsutrypa elegantula sp. nov., M. rogeri sp. nov., Nematotrypa punctata sp. nov., Stellatodictya valentinae sp. nov., Ptilodictya feisti sp. nov., Pseudohornera dmitrii sp. nov., Ralfinella elegantula sp. nov. and Moorephylloporina contii sp. nov. Trepostomes are the most abundant and diverse group with 40 of the total 68 species, but cyclostomes, cystoporates and cryptostomes are also present. The age of the fauna is Caradoc to Ashgill, according to the distribution of species and genera. The fauna has palaeogeographical
    [Show full text]
  • Marine Bryozoans (Ectoprocta) of the Indian River Area (Florida)
    MARINE BRYOZOANS (ECTOPROCTA) OF THE INDIAN RIVER AREA (FLORIDA) JUDITH E. WINSTON BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 173 : ARTICLE 2 NEW YORK : 1982 MARINE BRYOZOANS (ECTOPROCTA) OF THE INDIAN RIVER AREA (FLORIDA) JUDITH E. WINSTON Assistant Curator, Department of Invertebrates American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 173, article 2, pages 99-176, figures 1-94, tables 1-10 Issued June 28, 1982 Price: $5.30 a copy Copyright © American Museum of Natural History 1982 ISSN 0003-0090 CONTENTS Abstract 102 Introduction 102 Materials and Methods 103 Systematic Accounts 106 Ctenostomata 106 Alcyonidium polyoum (Hassall), 1841 106 Alcyonidium polypylum Marcus, 1941 106 Nolella stipata Gosse, 1855 106 Anguinella palmata van Beneden, 1845 108 Victorella pavida Saville Kent, 1870 108 Sundanella sibogae (Harmer), 1915 108 Amathia alternata Lamouroux, 1816 108 Amathia distans Busk, 1886 110 Amathia vidovici (Heller), 1867 110 Bowerbankia gracilis Leidy, 1855 110 Bowerbankia imbricata (Adams), 1798 Ill Bowerbankia maxima, New Species Ill Zoobotryon verticillatum (Delle Chiaje), 1828 113 Valkeria atlantica (Busk), 1886 114 Aeverrillia armata (Verrill), 1873 114 Cheilostomata 114 Aetea truncata (Landsborough), 1852 114 Aetea sica (Couch), 1844 116 Conopeum tenuissimum (Canu), 1908 116 IConopeum seurati (Canu), 1908 117 Membranipora arborescens (Canu and Bassler), 1928 117 Membranipora savartii (Audouin), 1926 119 Membranipora tuberculata (Bosc), 1802 119 Membranipora tenella Hincks,
    [Show full text]
  • The Geology of the Country Between Arthur's Lakes and the Lake Rivel', Tasmania
    The Geology of the Country between Arthur's Lakes and the Lake Rivel', Tasmania By ALAN H. VOISEY Departnwnl: of GCO/ogN and Geo!TI'(lphy, the New Enylond University College, ArmJrtnle (Communicated by Professor S. W. Carey) PLATE IV and FlO. 1 INTRODUCTION The country between Arthur'~ Lakes and the Lake HiveI' shown on Plate IV is drained in the western part by Tumbledown Creek and .Tones Rivulet which flow into the Eastern Lake, and in the eastern by the tributaries of the Lab' River. The escarpment of the Western Tiers marks the eastem margin of the Central Plateau of Tasmania. Mapping was carried out with the assistance of aerial photographs and the structure-l ines of the dolerites were (,btained from them, This paper is submitted as a small contribution to the aerial mapping of Tasmania. GENERAL GEODOGY Three main groups of rocks were found outcropping in the area mapped. (i) A series of metamorphosed rocks of probable Cambrian age consisting of slates, quartzites and 'porphyroids' which is laced by quartz veins. (ii) A series of fossiliferous sandstones, shales and glacial beds of Permian age. (iii) The .T urassic dolerites which are in the form of sills i11j eded into the other formations, There are also deposits of glacial material resulting from the presence of the Pleistocene Ice sheets and masseR of dolerite talus of more recent origin., Alluvium occupies areas marginal to the main streams. (1) CAMBRIAN No fossils have been found in the metarYlorphosed rocks assigned to this system but S. W. Carey (verbal communication) regards them as being the equivalents of similar bcds of Cambrian age elsevvhere in Tasmania.
    [Show full text]
  • Bryozoans, Brachiopods, and Phoronida Originate from the Common Ancestor 31 January 2018
    Bryozoans, brachiopods, and phoronida originate from the common ancestor 31 January 2018 similar to cnidarian polyps and sometimes form moss-like carpets; Phoronida resemble annelid worms, and brachiopods have shells that make them look like clams. Even the lophophore organs are organized differently—some have just a crown of tentacles; in others, tentacles are located spirally or form a helicoidal coils. But all these animals have a sessile lifestyle, are attached to substrate, and feed in similar manner. Different types of animals from the Lophophorata group. From left to right: bryozoans (Bryozoa), brachiopods For many years, scientists have argued whether (Brachiopoda), phoronids (Phoronida). Credit: Alexander these types are related. In the past 20 years, Semyonov/MSU genetics and molecular biology were included into the range of zoological methods. The genomes of bryozoans were slightly different from those of Phoronida and brachiopds, and biologists started to A biologist from Lomonosov Moscow State believe that the former type was unlikely to be University has studied the nervous system of the closely related to the latter two. Still, they did not adult phoronida using modern methods and know how to regard bryozoans. Some considered presented new facts regarding the taxonomy of them as sister group of all bilaterians, which have invertebrates, proving that phoronids, barchiopods symmetrical bodies, and others included them with and bryozoans are relatives contrary to earlier other small, colonial animals. conclusions. The results of the work were published in Scientific Reports. Elena Temereva used modern methods of immunocytochemistry and studied the innervation Phoronida is a poorly studied phylum of of the lophophore and tentacles in adult phoronid invertebrates.
    [Show full text]