TEXTURES and COMPOSITIONAL VARIABILITY in GERSDORFFITE from the CRESCENCIA Ni–(Co–U) SHOWING, CENTRAL PYRENEES, SPAIN: PRIMARY DEPOSITION OR RE-EQUILIBRATION?

Total Page:16

File Type:pdf, Size:1020Kb

TEXTURES and COMPOSITIONAL VARIABILITY in GERSDORFFITE from the CRESCENCIA Ni–(Co–U) SHOWING, CENTRAL PYRENEES, SPAIN: PRIMARY DEPOSITION OR RE-EQUILIBRATION? 1513 The Canadian Mineralogist Vol. 44, pp. 1513-1528 (2006) TEXTURES AND COMPOSITIONAL VARIABILITY IN GERSDORFFITE FROM THE CRESCENCIA Ni–(Co–U) SHOWING, CENTRAL PYRENEES, SPAIN: PRIMARY DEPOSITION OR RE-EQUILIBRATION? ISABEL FANLO§ AND IGNACIO SUBÍAS Cristalografía y Mineralogía, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/ Pedro Cerbuna 12, E–50009 Zaragoza, Spain FERNANDO GERVILLA Instituto Andaluz de Ciencias de la Tierra y Departamento de Mineralogía y Petrología, Facultad de Ciencias, C.S.I.C.–Universidad de Granada, E–18002 Granada, Spain JOSE MANUEL Cristalografía y Mineralogía, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, C/ Pedro Cerbuna 12, E–50009 Zaragoza, Spain ABSTRACT At the Crescencia showing in the Pyrenees, Spain, three stages of mineral deposition can be distinguished: stage I: nickeline and pararammelsbergite, stage II: gersdorffi te, and stage III: uraninite. Gersdorffi te has been subdivided into seven groups on the basis of textural and compositional criteria. Some of these groups of gersdorffi te clearly show disequilibrium processes that may have been induced by secondary reactions associated with a re-equilibration of the system during cooling. Formation and subsequent growth of gersdorffi te nuclei on the nickeline (0001) surface, self-organization, or a coupled dissolution-and-repre- cipitation moving interface through pararammelsbergite or nickeline are some of the processes invoked during the re-equilibra- tion. Thus, the compositional variations found in the seven groups of gersdorffi te are likely due to intermediate steps during the bulk of the replacement and re-equilibration processes at low temperature, rather than a direct precipitation from the ore-forming fl uids under different conditions. Keywords: gersdorffi te, nickeline, pararammelsbergite, uraninite, mineral replacement, dissolution–precipitation, recrystallization front, reaction rims, self-organization, Pyrenees, Spain. SOMMAIRE A l’indice minéralisé de Crescencia, dans les Pyrénées espagnoles, nous distinguons trois stades de déposition du minerai: Stade I: nickeline et pararammelsbergite, stade II: gersdorffi te, et stade III: uraninite. La gersdorffi te est subdivisée en sept groupes selon des critères texturaux et compositionnels. Certains de ces groupes de gersdorffi te mettent clairement en évidence un déséquilibre, dû peut-être à des réactions secondaires associées à un ré-équilibrage du système au cours du refroidissement. La formation et la croissance de nucléi de gersdorffi te sur la surface (0001) de la nickeline, une auto-organisation, et un front de dissolution et reprécipitation couplées traversant la pararammelsbergite ou la nickeline seraient des processus possibles invoqués lors du ré-équilibrage. Les variations en composition que nous documentons parmi les sept groupes de gersdorffi te témoigne- raient de stades intermédiaires au cours des processus de remplacement et de ré-équilibrage à faible température, plutôt que de précipitation directe à partir des fl uides formateurs du minerai à de diverses conditions. (Traduit par la Rédaction) Mots-clés: gersdorffi te, nickeline, pararammelsbergite, uraninite, remplacement de minéraux, dissolution–reprécipitation, front de recristallisation, couronnes de réaction, auto-organisation, Pyrénées, Espagne. § E-mail address: [email protected] 1514 THE CANADIAN MINERALOGIST INTRODUCTION limestones have been strongly deformed during Alpine thrusting and locally possess a mylonitic fabric. In the foothills of the Pyrenees belt in northeastern The Crescencia ore is hosted by limestone of the Spain, we have found two groups of small-scale Ni–Co early Devonian sequence, which alternates with black deposits hosted by metasomatized Paleozoic lime- shale. This ore-bearing unit is extensively dolomitized. stones, depending on whether Co or Ni is dominant: The deposit consists of a horizontal east–west-striking cobalt is dominant in the San Juan de Plan deposit vein, 50 m long and 10 cm wide, located along the studied by Fanlo et al. (2004), whereas nickel is domi- contact between the limestone and black shale. An nant at the Crescencia showing, the subject of this irregular and discordant zone of disseminated mineral- communication. ization occurs along the vein. The Hercynian structure Deposits of Ni–Co ore minerals are widespread, and of both host rocks and ore is disrupted by an east–west they have been extensively studied in the literature. Alpine thrust fault verging to the south. The deposit is Recent investigations have focused on the composi- not obviously related to an intrusive body. Nickel was tional variations in sulfarsenides, arsenides and diar- extracted from artisanal workings toward the end of the senides, with studies of natural compositional trends, 19th century and the beginning of the 20th century. bonding models and schemes of coupled substitution, and descriptions of the phase relations involving the MINERALOGY AND PETROGRAPHY solid solutions at high temperatures (Yund 1962, Klemm 1965, Petruk et al. 1971, Maurel & Picot 1974, Ixer The mineral assemblage at the Crescencia showing et al. 1979, Fukuoka & Hirowatari 1980, Oen et al. is characterized by Ni sulfarsenides, arsenides and 1984, Béziat et al. 1996, Gervilla et al. 1996, Hem et diarsenides, together with late uraninite. The gangue al. 2001, Wagner & Lorenz 2002, Hem & Makovicky minerals consist of ankerite and dolomite. 2004, Fanlo et al. 2004). Three stages of mineral deposition can be distin- In general, the infl uence of mineral replacement guished on the basis of mineralogical and textural as a consequence of re-equilibration processes is studies: Stage I: nickeline (NiAs, Nc) and pararam- not considered as a major process in explaining the melsbergite (NiAs2, Prr); Stage II: gersdorffi te (ideally composition of minerals. In this paper, we focus on NiAsS, Gdf), and Stage III: uraninite (UO2, Urn). The textures and compositional variations of gersdorffi te at black shales adjacent to the vein contain a dissemina- the Crescencia showing. These features may provide tion of pyrite (Py) rimmed by gersdorffi te, although a evidence for a series of re-equilibration processes at relation between these minerals in the shale and in the low temperature, rather than a direct precipitation from vein assemblage is not evident. the ore-forming fl uids of different composition under Stage I comprises masses of allotriomorphic- distinct conditions of temperature. granular aggregates of nickeline, showing a random orientation and variable grain-size. The nickeline GEOLOGY OF THE DEPOSIT shows a distinct (0001) cleavage and, occasionally, an incipient lamellar twinning. In some crystals, this The Crescencia showing is located in the central part lamellar twinning is made more prominent by alteration of the Pyrenees (longitude 42°31’53.8” N, and latitude or destabilization of the grains (Fig. 1A). Pararammels- 00°34’17.5” E), a doubly verging collisional mountain bergite occurs as roundish, poorly developed crystals belt that resulted from the interaction between the Ibero- included in nickeline or along the contact between African and European plates in Mesozoic and Cenozoic nickeline and gersdorffite. The pararammelsbergite times. Even now, the Ibero-African plate margin is does not show twinning and exhibits rotation tints rich converging at a rate of 4 mm/year. in various shades of brown. Both nickeline and para- The oldest rocks in the area comprise a monotonous rammelsbergite are found as remnants of resorption in sequence of sedimentary rocks of Cambrian–Ordovician gersdorffi te. age. Pre-Variscan augen gneisses and granitic gneisses Stage II is dominated by gersdorffi te, which over- occur as elongate east–west domes surrounded by grows or replaces grains of nickeline and fi lls small Variscan aureoles. An overlying Devonian sequence cracks in them. We recognize seven groups of gersdorf- consists of grey limestone and shale, locally calcareous. fi te on the basis of mode of occurrence and composi- These rocks are conformably overlain by Carboniferous tional variability. The groups are named gersdorffi te A, chert, nodular limestone and, unconformably, by dark B, C, D, E and F throughout the text, tables and fi gures. shale and fl ysch sequences. Batholiths of granodiorite The black-shale-hosted gersdorffi te overgrowing pyrite were emplaced in the Paleozoic rocks. Triassic redbeds crystals is described as gersdorffi te G. lie unconformably on the Hercynian basement, with a Euhedral grains of gersdorffi te A, generally of small basal conglomerate horizon fi lling an erosional surface. size (<20 ␮m), are scattered in the masses of nickeline Limestones of Cretaceous age rest unconformably on (Fig. 1B), or aligned among the grains of nickeline the Triassic redbeds or directly on the basement. These (Figs. 1C, D). Along the contact between the relics of VARIABILITY IN GERSDORFFITE FROM THE CRESCENCIA Ni–(Co–U) SHOWING, SPAIN 1515 nickeline and the euhedral gersdorffi te, resorbed remains 20 kV and a beam current of 20 nA. The counting times of pararammelsbergite are observed. As the euhedral were 20 s on TAP/PET and 30 s on LiF crystals. ZAF crystals replaced nickeline and, locally, pararammels- corrections were performed using the program supplied bergite, they coalesced, growing outward and leading by CAMECA. Pyrite, GaAs, NiO, as well as pure Co to irregular and inhomogeneous masses of gersdorffi te metal were used as primary standards. Chemical compo- enclosing the relics of nickeline and pararammelsbergite
Recommended publications
  • Asociaciones Por Municipios
    ASOCIACIONES POR MUNICIPIOS MUNICIPIO NOMBRE AÍNSA-SOBRARBE CRUZ ROJA ESPAÑOLA EN AÍNSA-SOBRARBE AÍNSA-SOBRARBE JAZZTAMOS EN SOBRARBE AÍNSA-SOBRARBE ASOCIACIÓN DE PADRES DE GUARDERIA INFANTIL DE AÍNSA AÍNSA-SOBRARBE ASOCIACIÓN DE VECINOS DE LATORRE AÍNSA-SOBRARBE ASOCIACIÓN CULTURAL RÍO SUSÍA AÍNSA-SOBRARBE ASOCIACIÓN DE PADRES LOS PALACIOS AÍNSA-SOBRARBE FUNDACIÓN PÚBLICA LA MORISMA AÍNSA-SOBRARBE ASOCIACIÓN DE ENTIDADES LOCALES DEL PIRINEO ARAGONÉS (ADELPA) AÍNSA-SOBRARBE ASOCIACIÓN DE VECINOS Y PROPIETARIOS DE ARCUSA "ALTO SOBRARBE" AÍNSA-SOBRARBE ASOCIACIÓN DE VECINOS Y AMIGOS DE GUASO AÍNSA-SOBRARBE ASOCIACIÓN DE VECINOS URBANIZACIÓN DE PARTARA AÍNSA-SOBRARBE ASOCIACIÓN DE VECINOS DE COSCOJUELA DE SOBRARBE AÍNSA-SOBRARBE ASOCIACIÓN PARA EL DESARROLLO COMUNITARIO "ARROK" AÍNSA-SOBRARBE UN PASO ATRÁS. ARTO. A Att Luis Lascorz AÍNSA-SOBRARBE ASOCIACIÓN EMPRESARIAL TURÍSTICA DE SOBRARBE AÍNSA-SOBRARBE LA ALDEA DE TOU AÍNSA-SOBRARBE ASOCIACIÓN CASTILLON DO BIELLO SOBRARBE AÍNSA-SOBRARBE ASOCIACIÓN DE VECINOS Y AMIGOS DE ARRO (AVAA) AÍNSA-SOBRARBE ASOCIACIÓN DE MUJERES EL ECO AÍNSA-SOBRARBE FUNDACIÓN PARA LA CONSERVACIÓN DEL QUEBRANTAHUESOS AÍNSA-SOBRARBE ASOCIACIÓN DE VECINOS Y AMIGOS DE BANASTÓN AÍNSA-SOBRARBE ASOCIACIÓN MICOLÓGICA Y DE PLANTAS MEDICINALES DE SOBRARBE BÁRCABO ASOCIACIÓN DE AMIGOS DEL SANTUARIO DE SANTA MARIA DE LA NUEZ BÁRCABO ASOCIACIÓN DE VECINOS MONTES DE ALMAZORRE BÁRCABO ASOCIACIÓN DE HIJOS Y AMIGOS DE ERIPOL BÁRCABO ASOCIACIÓN DE VECINOS DE BÁRCABO BOLTAÑA ASOCIACIÓN DE MUJERES SANTA ÁGUEDA BOLTAÑA ASOCIACIÓN DE
    [Show full text]
  • LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
    Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Rediscovery of the Elements — a Historical Sketch of the Discoveries
    REDISCOVERY OF THE ELEMENTS — A HISTORICAL SKETCH OF THE DISCOVERIES TABLE OF CONTENTS incantations. The ancient Greeks were the first to Introduction ........................1 address the question of what these principles 1. The Ancients .....................3 might be. Water was the obvious basic 2. The Alchemists ...................9 essence, and Aristotle expanded the Greek 3. The Miners ......................14 philosophy to encompass a obscure mixture of 4. Lavoisier and Phlogiston ...........23 four elements — fire, earth, water, and air — 5. Halogens from Salts ...............30 as being responsible for the makeup of all 6. Humphry Davy and the Voltaic Pile ..35 materials of the earth. As late as 1777, scien- 7. Using Davy's Metals ..............41 tific texts embraced these four elements, even 8. Platinum and the Noble Metals ......46 though a over-whelming body of evidence 9. The Periodic Table ................52 pointed out many contradictions. It was taking 10. The Bunsen Burner Shows its Colors 57 thousands of years for mankind to evolve his 11. The Rare Earths .................61 thinking from Principles — which were 12. The Inert Gases .................68 ethereal notions describing the perceptions of 13. The Radioactive Elements .........73 this material world — to Elements — real, 14. Moseley and Atomic Numbers .....81 concrete basic stuff of this universe. 15. The Artificial Elements ...........85 The alchemists, who devoted untold Epilogue ..........................94 grueling hours to transmute metals into gold, Figs. 1-3. Mendeleev's Periodic Tables 95-97 believed that in addition to the four Aristo- Fig. 4. Brauner's 1902 Periodic Table ...98 telian elements, two principles gave rise to all Fig. 5. Periodic Table, 1925 ...........99 natural substances: mercury and sulfur.
    [Show full text]
  • Polymetallic Mineralization in Ediacaran Sediments in the Żarki-Kotowice Area, Poland
    MINERALOGIA, 43, No 3-4: 199-212 (2012) DOI: 10.2478/v10002-012-0008-0 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Polymetallic mineralization in Ediacaran sediments in the Żarki-Kotowice area, Poland Łukasz KARWOWSKI1*, Marek MARKOWIAK2 1University of Silesia, Faculty of Earth Sciences, ul. Będzińska 60, 41-200 Sosnowiec, Poland; e-mail: [email protected] 2Polish Geological Institute - Research and Development Unit, Upper Silesian Branch, ul. Królowej Jadwigi 1, 41-200 Sosnowiec, Poland; e-mail: [email protected] * Corresponding author Received: September 5, 2012 Received in revised form: February 20, 2013 Accepted: March 17, 2013 Available online: March 30, 2013 Abstract. In one small mineral vein in core from borehole 144-Ż in the Żarki-Kotowice area, almost all of the ore minerals known from related deposits in the vicinity occur. Some of the minerals in the vein described in this paper, namely, nickeline, hessite, native silver and minerals of the cobaltite-gersdorffite group, have not previously been reported from elsewhere in the Kraków-Lubliniec tectonic zone. The identified minerals are chalcopyrite, pyrite, marcasite, sphalerite, Co-rich pyrite, tennantite, tetrahedrite, bornite, galena, magnetite, hematite, cassiterite, pyrrhotite, wolframite (ferberite), scheelite, molybdenite, nickeline, minerals of the cobaltite- gersdorffite group, carrollite, hessite and native silver. Moreover, native bismuth, bismuthinite, a Cu- and Ag-rich sulfosalt of Bi (cuprobismutite) and Ni-rich pyrite also occur in the vein. We suggest that, the ore mineralization from the borehole probably reflects post-magmatic hydrothermal activity related to an unseen granitic intrusion located under the Mesozoic sediments in the Żarki-Pilica area.
    [Show full text]
  • Discussion Paper on Mineral Groups by E. H. Nickel
    Discussion Paper on Mineral Groups by E. H. Nickel INTRODUCTION There are two aspects to the compilation of mineral groups. One is the criteria to be used in defining a group. In a recent meeting of the CCM in Melbourne, it was generally agreed that the main criteria defining a group are that it should comprise at least two species, and that the species comprising the group should be isostructural, as indicated by similarity of space group and unit-cell parameters. An important additional consideration is the need to develop an arrangement of the groups in a way that makes it relatively easy to find the group to which a particular mineral species should be consigned. There are many ways in which mineral groups can be classified, and I have looked at four different possibilities with the aim of initiating discussion on this topic. To illustrate the four different classification systems, I have applied them to the sulfide and sulfosalt minerals. The four systems, demonstrated below, are as follows: I) Alphabetical; II) Hey’s chemical classification; III) A combination of Hey’s chemical classification and Smith’s structural formulae; and IV) Strunz’s chemical-structural classification. Comments and suggestions are welcomed. I) SULFIDE AND SULFOSALT GROUPS ALPHABETICAL LISTING Argyrodite Group: Orthorhombic, Pna21 (33). Argyrodite structure type Arsenopyrite Group: Monoclinic, P21/c (14). Related to marcasite structure. Berthierite Group: Orthorhombic, Pnam (62). Berthierite structure type. Bournonite Group: Orthorhombic, Pn21m (31). Bournonite structure type Bowieite Group: Orthorhombic, Pbcn (60). Bowieite structure type. Braggite Group: Tetragonal, P42/m (84). Braggite structure type. Brezinaite Group: Monoclinic, I2/m (12).
    [Show full text]
  • Índice De Riesgo Por Uso Del Fuego En Aragón Para El 14 De Febrero De
    Índice de Riesgo por uso del fuego en Aragón para el 14 de Febrero de 2018 Índice de Riesgo por uso del fuego en Aragón elaborado por la Dirección General de Gestión Forestal, Caza y Pesca del Gobierno de Aragón en virtud de la normativa vigente en materia de prevención y lucha contra los incendios forestales en la Comunidad Autónoma de Aragón Condiciones desfavorables para el uso del fuego. Condiciones aceptables para el uso del fuego, siempre y cuando cumplan los demás requisitos de la citada Orden y no haya viento local en la zona. Listado de Municipios englobados dentro de las comarcas divididas en Norte/Sur: Cinco Villas Norte: Undués de Lerda, Los Pintanos, Bagüés, Urriés, Sos del rey Católico, Navardún, Lobera de Onsella, Isuerre, Uncastillo, Luesia, Biel, Castiliscar, Orés, El Frago, Asín, Longás. Cinco Villas Sur: Resto de municipios. Sobrarbe Norte: Gistaín, Fanlo, Bielsa, San Juan de Plan, Puértolas, Tella Sin, Broto, Plan, Laspuña, Fiscal, Torla. Sobrarbe Sur: Resto de municipios. Ribagorza Norte: Benasque, Montanuy, Sahún, Chía, Castejón de Sos, Sesué, LasPaúles, Seira, Bisaurri, Foradada del Toscar, Valle de Bardají, Campo, Bonansa, Torre La Ribera, Veracruz, Valle de Lierp, Villanova, Beranuy Ribagorza Sur: Resto de municipios. Hoya de Huesca Norte: Agüero, La Sotonera, Nueno, Murillo de Gállego, Loarre, casbas de Huesca, Santa Eulalia de Gállego, Loporzano, Las Peñas de Riglos y Arguis. Hoya de Huesca Sur: Resto de municipios. Somontano de Barbastro Norte: Bierge, Adahuesca, Naval, Alquézar, Hoz y Costean, Colungo, Abiego, El Grado, Salas Altas, Santa María de Dulcis, Azlor, Olvena, Estada, Estadilla. Somontano de Barbastro Sur: Resto de municipios.
    [Show full text]
  • Nickeline Nias C 2001-2005 Mineral Data Publishing, Version 1
    Nickeline NiAs c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Hexagonal. Point Group: 6/m 2/m 2/m. Commonly in granular aggregates, reniform masses with radial structure, and reticulated and arborescent growths. Rarely as distorted, horizontally striated, {1011} terminated crystals, to 1.5 cm. Twinning: On {1011} producing fourlings; possibly on {3141}. Physical Properties: Fracture: Conchoidal. Tenacity: Brittle. Hardness = 5–5.5 VHN = n.d. D(meas.) = 7.784 D(calc.) = 7.834 Optical Properties: Opaque. Color: Pale copper-red, tarnishes gray to blackish; white with strong yellowish pink hue in reflected light. Streak: Pale brownish black. Luster: Metallic. Pleochroism: Strong; whitish, yellow-pink to pale brownish pink. Anisotropism: Very strong, pale greenish yellow to slate-gray in air. R1–R2: (400) 39.2–45.4, (420) 38.0–44.2, (440) 36.8–43.5, (460) 36.2–43.2, (480) 37.2–44.3, (500) 39.6–46.4, (520) 42.3–48.6, (540) 45.3–50.7, (560) 48.2–52.8, (580) 51.0–54.8, (600) 53.7–56.7, (620) 55.9–58.4, (640) 57.8–59.9, (660) 59.4–61.3, (680) 61.0–62.5, (700) 62.2–63.6 Cell Data: Space Group: P 63/mmc. a = 3.621(1) c = 5.042(1) Z = 2 X-ray Powder Pattern: Unknown locality. 2.66 (100), 1.961 (90), 1.811 (80), 1.071 (40), 1.328 (30), 1.033 (30), 0.821 (30) Chemistry: (1) (2) Ni 43.2 43.93 Co 0.4 Fe 0.2 As 55.9 56.07 Sb 0.1 S 0.1 Total 99.9 100.00 (1) J´achymov, Czech Republic; by electron microprobe, corresponds to (Ni0.98Co0.01 Fe0.01)Σ=1.00As1.00.
    [Show full text]
  • Manual Para Ibonear En El Pirineo Los Ibones Son Los Lagos Que Espejean Entre Las Grandes Cimas Del Pirineo Aragonés
    CASTELLANO ARAGÓN / MANUAL PARA IBONEAR EN EL PIRINEO LOS IBONES SON LOS LAGOS QUE ESPEJEAN ENTRE LAS GRANDES CIMAS DEL PIRINEO ARAGONÉS. ALGUNOS SON MUY ACCESIBLES Y OTROS ESTÁN EN ESCARPADOS PARAJES. BOSQUES, PRADOS Y ROCAS ENVUELVEN SUS LÁMINAS DE AGUA, COMO PRECIADAS JOYAS. / IBONES DE ARAGÓN 01/ ¿QUÉ ES UN IBÓN? ................................................................................... 2 02/ ¿TE ATREVES A IBONEAR? ........................................................... 4 03/ UN IBÓN EN TRES SENCILLOS PASOS ............................. 6 04/ AGUA, VIDA Y PROTECCIÓN ........................................................ 8 05/ EL TOP 10 ............................................................................................................ 10 06/ IBONES PARA TODOS ....................................................................... 16 07/ IBONES PARA FAMILIAS ................................................................. 18 08/ IBONES PARA FAMILIAS MONTAÑERAS ................... 20 09/ IBONES DESDE UN REFUGIO DE MONTAÑA .......... 22 10/ IBONES DE COLORES .......................................................................... 26 11/ IBONES CON HISTORIAS ................................................................ 28 12/ IBONES CHELAUS .................................................................................... 30 PLANIFICA la actividad Para disfrutar con seguridad de la montaña sigue estos EQUIPA sencillos tu mochila 3pasos ACTÚA con prudencia CONSULTA: www.montanasegura.com Realiza: PRAMES Fotografía:
    [Show full text]
  • Relación De Las Coordenadas UTM, Superficie Municipal, Altitud Del Núcleo Capital De Los Municipios De Aragón
    DATOS BÁSICOS DE ARAGÓN · Instituto Aragonés de Estadística Anexo: MUNICIPIOS Relación de las coordenadas UTM, superficie municipal, altitud del núcleo capital de los municipios de Aragón. Superficie Altitud Municipio Núcleo capital Comarca Coordenada X Coordenada Y Huso (km 2) (metros) 22001 Abiego 22001000101 Abiego 07 Somontano de Barbastro 742146,4517 4667404,7532 30 38,2 536 22002 Abizanda 22002000101 Abizanda 03 Sobrarbe 268806,6220 4680542,4964 31 44,8 638 22003 Adahuesca 22003000101 Adahuesca 07 Somontano de Barbastro 747252,4904 4670309,6854 30 52,5 616 22004 Agüero 22004000101 Agüero 06 Hoya de Huesca / Plana de Uesca 681646,6253 4691543,2053 30 94,2 695 22006 Aísa 22006000101 Aísa 01 La Jacetania 695009,6539 4727987,9613 30 81,0 1.041 22007 Albalate de Cinca 22007000101 Albalate de Cinca 08 Cinca Medio 262525,9407 4622771,7775 31 44,2 189 22008 Albalatillo 22008000101 Albalatillo 10 Los Monegros 736954,9718 4624492,9030 30 9,1 261 22009 Albelda 22009000101 Albelda 09 La Litera / La Llitera 289281,1932 4637940,5582 31 51,9 360 22011 Albero Alto 22011000101 Albero Alto 06 Hoya de Huesca / Plana de Uesca 720392,3143 4658772,9789 30 19,3 442 22012 Albero Bajo 22012000101 Albero Bajo 10 Los Monegros 716835,2695 4655846,0353 30 22,2 408 22013 Alberuela de Tubo 22013000101 Alberuela de Tubo 10 Los Monegros 731068,1648 4643335,9332 30 20,8 352 22014 Alcalá de Gurrea 22014000101 Alcalá de Gurrea 06 Hoya de Huesca / Plana de Uesca 691374,3325 4659844,2272 30 71,4 471 22015 Alcalá del Obispo 22015000101 Alcalá del Obispo 06 Hoya de Huesca
    [Show full text]
  • The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn
    minerals Article The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece † Panagiotis Voudouris 1,* , Constantinos Mavrogonatos 1 , Branko Rieck 2, Uwe Kolitsch 2,3, Paul G. Spry 4 , Christophe Scheffer 5, Alexandre Tarantola 6 , Olivier Vanderhaeghe 7, Emmanouil Galanos 1, Vasilios Melfos 8 , Stefanos Zaimis 9, Konstantinos Soukis 1 and Adonis Photiades 10 1 Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] (C.M.); [email protected] (E.G.); [email protected] (K.S.) 2 Institut für Mineralogie und Kristallographie, Universität Wien, 1090 Wien, Austria; [email protected] 3 Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, 1010 Wien, Austria; [email protected] 4 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA; [email protected] 5 Département de Géologie et de Génie Géologique, Université Laval, Québec, QC G1V 0A6, Canada; [email protected] 6 Université de Lorraine, CNRS, GeoRessources UMR 7359, Faculté des Sciences et Technologies, F-54506 Vandoeuvre-lès-Nancy, France; [email protected] 7 Université de Toulouse, Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, F-31400 Toulouse, France; [email protected] 8 Department of Mineralogy-Petrology-Economic Geology, Faculty of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 9 Institut für Mineralogie, TU Bergakademie Freiberg, 09599 Freiberg, Germany; [email protected] 10 Institute of Geology and Mineral Exploration (I.G.M.E.), 13677 Acharnae, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-7274129 † The paper is an extended version of our paper published in 1st International Electronic Conference on Mineral Science.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]