Agaricales) Reveals Polyphyly of Agaricoid Members

Total Page:16

File Type:pdf, Size:1020Kb

Agaricales) Reveals Polyphyly of Agaricoid Members Mycologia, 108(5), 2016, pp. 860–868. DOI: 10.3852/15-370 # 2016 by The Mycological Society of America, Lawrence, KS 66044-8897 Multilocus phylogenetic reconstruction of the Clavariaceae (Agaricales) reveals polyphyly of agaricoid members Joshua M. Birkebak is a single club-shaped (clavarioid) or branched (coral- Slavomír Adamcˇík1,2 loid) basidiome represented by the genera Clavaria L.: Brian P. Looney Fr. (abbreviated Cl.), Clavulinopsis Overeem, Ramariop- P. Brandon Matheny sis (Donk) Corner and Mucronella Fr. Mucronella occu- Department of Ecology and Evolutionary Biology, University pies a well-supported position sister to the remaining of Tennessee, 332 Hesler, Biology Building, Knoxville, groups in the family (Birkebak et al. 2013). Clavulinop- Tennessee 37996-1610 sis and Ramariopsis form a well-supported monophylet- ic group. All agaricoid members of the family (with a differentiated pileus, stipe, and lamellate hymeno- Abstract: The genus Camarophyllopsis contains species phore) are currently classified in the single genus with lamellate (agaricoid) basidiomes in the family Cla- Camarophyllopsis Doty. The genus Hyphodontiella Å. variaceae (Agaricales), a group otherwise dominated Strid produces resupinate morphotypes and, accord- by club-like (clavarioid) or branched (coralloid) ing to Birkebak et al. (2013), is poorly supported as forms. Previous studies have suggested that species the sister group to a clade of Clavicorona-Clavaria- classified in Camarophyllopsis occur in two independent Camarophyllopsis. The genus Clavicorona produces basi- lineages. We reconstructed a multilocus phylogeny of diomes that are inflated upward and have a sterile the Clavaria-Camarophyllopsis-Clavicorona clade in the upper surface but lack lamellar modification of the Clavariaceae using RNA polymerase II second largest hymenophore. Although traditionally classified in the subunit (rpb2), nuclear ribosomal 28S, and nuclear Hygrophoraceae Lotsy, the agaricoid genus Camaro- ribosomal ITS1-5.8S-ITS2 regions data and detected phyllopsis has a phylogenetic affinity with the Clavaria- three independent groups of agaricoid fungi, includ- ceae (Matheny et al. 2006) and was later shown as ing the genera Camarophyllopsis, Hodophilus, and Lamel- nested within the genus Clavaria (Birkebak et al. loclavaria gen. nov, which distinctly differ in their 2013). In the latter work, Camarophyllopsis was recov- pileipellis structure. In all, nine major lineages within ered in two separate clades, but resolution and support the Clavaria-Camarophyllopsis-Clavicorona clade were were insufficient in this single gene study to reject the recovered: Clavaria sensu stricto, Camarophyllopsis monophyly of Camarophyllopsis. The two clades recov- sensu stricto, Hodophilus, the Clavaria pullei clade, the ered corresponded to Camarophyllopsis subgenus Clavaria fumosa clade, Lamelloclavaria gen. nov., the Camarophyllopsis and Camarophyllopsis subgenus Hodo- Clavaria atrofusca clade, Holocoryne (5 Clavaria sect. philus (Singer) Arnolds, which can be separated by Holocoryne), and Clavicorona. Clavaria is paraphyletic the structure of the pileipellis. and represented by five clades. Additional gene sam- The aims of this study are to investigate the systemat- pling is necessary to determine and confirm related- ics of the genus Camarophyllopsis further with the fol- ness of these lineages before splitting Clavaria into lowing objectives: (i) to produce a supermatrix to test additional genera. the monophyly of the genus Camarophyllopsis; (ii) to Key words: Agaricomycetes, Basidiomycota, evolu- assess the taxonomic relationships between agaricoid tion, systematics Clavariaceae members and other genera of the family; and (iii) to propose a modified taxonomic arrange- INTRODUCTION ment based on these new evolutionary relationships. The family Clavariaceae Chevall. sensu stricto, com- prising seven genera and at least ca. 125 species (Birke- MATERIALS AND METHODS bak et al. 2013), contains a diverse assemblage of Morphological examinations.—Macromorphological descrip- basidiome morphologies (FIG. 1) (Dentinger and tions were prepared from fresh collections. Color nomencla- McLaughlin 2006, Matheny et al. 2006, Larsson 2007, ture standards followed Kornerup and Wanscher (1967). All Birkebak et al. 2013). The most frequent morphotype micro-morphological characters were observed under an Olympus CX-41 light microscope with an oil-immersion lens at a magnification of 10006. All drawings of microscopic Submitted 23 Dec 2015; accepted for publication 20 Apr 2016. structures, with the exception of basidiospores, were made 1 Corresponding author. E-mail: [email protected] 2 with a camera lucida using an Olympus U-DA drawing attach- Current address: Department of Cryptogams, Institute of Botany, 6 Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 23 Bratislava, ment at a projection scale of 2000 . Basidiospores were Slovakia. scanned with an Artray Artcam 300MI camera and measured 860 BIRKEBAK ET AL.: PHYLOGENY OF AGARICOID CLAVARIACEAE 861 FIG. 1. Diversity of basidiome morphology in the Clavaria-Camarophyllopsis-Clavicorona clade of the Clavariaceae. A. Clavicorona taxophila (cantharelloid, photograph by Sava Kristic). B. Camarophyllopsis schulzeri (agaricoid, photograph by Soňa Jancˇovicˇová). C. Lamelloclavaria petersenii (agaricoid, photograph by Stefan Jacobsson). D. Clavaria fragilis group (clavarioid, photograph by Mike Wood). E. Hodophilus foetens group (agaricoid, photograph by Zuzana Egertová). Scale bar 5 1 cm. by QuickPHOTO MICRO 2.1. Enlarged scanned pictures of et al. (2013). The supermatix consisted of a total of 299 basidiospores were used for measuring with an accuracy of DNA sequences, of which 193 were newly produced by this 0.1 mm and for making line drawings. Microscopic structures study (41 rpb2, 77 28S, 75 ITS). The majority of the remain- were examined on desiccated herbarium specimens in ing sequences were included from previous works by Birke- Congo red solution with ammonia after a short treatment bak et al. (2013) and Kautmanová et al. (2012). Twenty-one in warm aqueous 10% KOH. Q-value is the length/width percent of individuals are represented by three loci, 31% by ratio of the basidiospores. Measurements exclude ornamen- two loci, and 48% by 28S only. Specimens were identified tation. Statistics for measurements of microscopic characters morphologically based on most recent key to identification are based on 30 measurements and given as a mean value (Petersen 1988, Knudsen and Vesterholt 2012). Morpho- plus/minus standard deviation; values in parentheses pro- types showing discrepancies with the phylogenetic analysis vide measured minimum or maximum values. Amyloidity (showing polyphyly or with uncertain delimitation) are and dextrinoidity of basidiospores were tested in Melzer’s labelled as species groups or complexes. reagent (Moser 1978). Phylogenetic analysis.—Alignments for individual regions were DNA extraction, PCR, and sequencing.—Protocols of Birkebak assembled using ClustalX (Larkin et al. 2007) and manually et al. (2013) were followed for DNA extraction, PCR, and adjusted by eye in MacClade 4.08 (Maddison and Maddison sequencing. The primer pairs ITS1F-ITS4 (White et al. 2005). Individual alignments were concatenated in SeaView 1990, Gardes and Bruns 1993) were used to amplify the ITS 4 (Gouy et al. 2010). gBlocks 0.91 (Castresana 2000, Talavera region. Combinations of LR0R-LR7, LR0R-LR5, or LR0R- and Castresana 2007) was used to exclude ambiguously LR16 (http://sites.biology.duke.edu/fungi/mycolab/primers. aligned sites. PartitionFinder (Lanfear et al. 2014) was used htm) were used to amplify and sequence the 28S region. to identify the best partition scheme and molecular models The primer pair b6F and b7.1R (Matheny 2005) were used under the AIC criterion. The sequence alignment files have to amplify and sequence the most variable region of the been deposited in TreeBASE (19107). Maximum likelihood rpb2 gene. (ML) phylogenetic reconstruction was performed with RAxML 7.4.2 (Stamatakis 2006) implemented in RAxML Taxon sampling.—171 total taxa were analyzed as a superma- GUI (Silvestro and Michalak 2012) with 1000 bootstrap repli- trix, 167 of which are in the Clavaria-Camarophyllopsis-Clavicor- cates. Bayesian inference (BI) was performed in MrBayes ona clade as recovered by Birkebak et al. (2013) 3.2.2 (Ronquist et al. 2011) running 10 000 000 generations (SUPPLEMENTARY TABLE I). Two species of Clavulinopsis and and sampling parameter states and trees every 10 000 genera- Ramariopsis each were used as outgroups based on Birkebak tions. To ensure that convergence had been reached, the 862 MYCOLOGIA average standard deviation of split frequencies was moni- The resulting clavarioid clades are not all well sup- tored to ensure that it fell below 0.01, and trace files of all ported in their placement in both phylogenetic recon- parameters were examined to ensure proper mixing. A structions. However, Clavaria sensu stricto (typified by 25% burn-in was used. The approximately unbiased test Cl. fragilis Holmsk.: Fr.) is well supported as the sister (AU test, Shimodaira 2002) was performed in CONSEL (Shi- group to Camarophyllopsis sensu stricto. The Cl. pullei modaira and Hasegawa 2001) to evaluate whether agaricoid clade (containing species identified as Cl. pullei Donk taxa could constitute a monophyletic group and whether spe- cies assigned to the genus Clavaria could also form a mono- and Cl. atroumbrina Corner) is sister to Hodophilus
Recommended publications
  • Species Concepts Should Not Conflict with Evolutionary History, but Often Do
    ARTICLE IN PRESS Stud. Hist. Phil. Biol. & Biomed. Sci. xxx (2008) xxx–xxx Contents lists available at ScienceDirect Stud. Hist. Phil. Biol. & Biomed. Sci. journal homepage: www.elsevier.com/locate/shpsc Species concepts should not conflict with evolutionary history, but often do Joel D. Velasco Department of Philosophy, University of Wisconsin-Madison, 5185 White Hall, 600 North Park St., Madison, WI 53719, USA Department of Philosophy, Building 90, Stanford University, Stanford, CA 94305, USA article info abstract Keywords: Many phylogenetic systematists have criticized the Biological Species Concept (BSC) because it distorts Biological Species Concept evolutionary history. While defences against this particular criticism have been attempted, I argue that Phylogenetic Species Concept these responses are unsuccessful. In addition, I argue that the source of this problem leads to previously Phylogenetic Trees unappreciated, and deeper, fatal objections. These objections to the BSC also straightforwardly apply to Taxonomy other species concepts that are not defined by genealogical history. What is missing from many previous discussions is the fact that the Tree of Life, which represents phylogenetic history, is independent of our choice of species concept. Some species concepts are consistent with species having unique positions on the Tree while others, including the BSC, are not. Since representing history is of primary importance in evolutionary biology, these problems lead to the conclusion that the BSC, along with many other species concepts, are unacceptable. If species are to be taxa used in phylogenetic inferences, we need a history- based species concept. Ó 2008 Elsevier Ltd. All rights reserved. When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical Sciences 1.
    [Show full text]
  • Major Clades of Agaricales: a Multilocus Phylogenetic Overview
    Mycologia, 98(6), 2006, pp. 982–995. # 2006 by The Mycological Society of America, Lawrence, KS 66044-8897 Major clades of Agaricales: a multilocus phylogenetic overview P. Brandon Matheny1 Duur K. Aanen Judd M. Curtis Laboratory of Genetics, Arboretumlaan 4, 6703 BD, Biology Department, Clark University, 950 Main Street, Wageningen, The Netherlands Worcester, Massachusetts, 01610 Matthew DeNitis Vale´rie Hofstetter 127 Harrington Way, Worcester, Massachusetts 01604 Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708 Graciela M. Daniele Instituto Multidisciplinario de Biologı´a Vegetal, M. Catherine Aime CONICET-Universidad Nacional de Co´rdoba, Casilla USDA-ARS, Systematic Botany and Mycology de Correo 495, 5000 Co´rdoba, Argentina Laboratory, Room 304, Building 011A, 10300 Baltimore Avenue, Beltsville, Maryland 20705-2350 Dennis E. Desjardin Department of Biology, San Francisco State University, Jean-Marc Moncalvo San Francisco, California 94132 Centre for Biodiversity and Conservation Biology, Royal Ontario Museum and Department of Botany, University Bradley R. Kropp of Toronto, Toronto, Ontario, M5S 2C6 Canada Department of Biology, Utah State University, Logan, Utah 84322 Zai-Wei Ge Zhu-Liang Yang Lorelei L. Norvell Kunming Institute of Botany, Chinese Academy of Pacific Northwest Mycology Service, 6720 NW Skyline Sciences, Kunming 650204, P.R. China Boulevard, Portland, Oregon 97229-1309 Jason C. Slot Andrew Parker Biology Department, Clark University, 950 Main Street, 127 Raven Way, Metaline Falls, Washington 99153- Worcester, Massachusetts, 01609 9720 Joseph F. Ammirati Else C. Vellinga University of Washington, Biology Department, Box Department of Plant and Microbial Biology, 111 355325, Seattle, Washington 98195 Koshland Hall, University of California, Berkeley, California 94720-3102 Timothy J.
    [Show full text]
  • Basidiomycota: Agaricales) Introducing the Ant-Associated Genus Myrmecopterula Gen
    Leal-Dutra et al. IMA Fungus (2020) 11:2 https://doi.org/10.1186/s43008-019-0022-6 IMA Fungus RESEARCH Open Access Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) introducing the ant-associated genus Myrmecopterula gen. nov., Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov. Caio A. Leal-Dutra1,5, Gareth W. Griffith1* , Maria Alice Neves2, David J. McLaughlin3, Esther G. McLaughlin3, Lina A. Clasen1 and Bryn T. M. Dentinger4 Abstract Pterulaceae was formally proposed to group six coralloid and dimitic genera: Actiniceps (=Dimorphocystis), Allantula, Deflexula, Parapterulicium, Pterula, and Pterulicium. Recent molecular studies have shown that some of the characters currently used in Pterulaceae do not distinguish the genera. Actiniceps and Parapterulicium have been removed, and a few other resupinate genera were added to the family. However, none of these studies intended to investigate the relationship between Pterulaceae genera. In this study, we generated 278 sequences from both newly collected and fungarium samples. Phylogenetic analyses supported with morphological data allowed a reclassification of Pterulaceae where we propose the introduction of Myrmecopterula gen. nov. and Radulomycetaceae fam. nov., the reintroduction of Phaeopterula, the synonymisation of Deflexula in Pterulicium, and 53 new combinations. Pterula is rendered polyphyletic requiring a reclassification; thus, it is split into Pterula, Myrmecopterula gen. nov., Pterulicium and Phaeopterula. Deflexula is recovered as paraphyletic alongside several Pterula species and Pterulicium, and is sunk into the latter genus. Phaeopterula is reintroduced to accommodate species with darker basidiomes. The neotropical Myrmecopterula gen. nov. forms a distinct clade adjacent to Pterula, and most members of this clade are associated with active or inactive attine ant nests.
    [Show full text]
  • LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N
    Journal of the Lundy Field Society, 2, 2010 LUNDY FUNGI: FURTHER SURVEYS 2004-2008 by JOHN N. HEDGER1, J. DAVID GEORGE2, GARETH W. GRIFFITH3, DILUKA PEIRIS1 1School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1M 8JS 2Natural History Museum, Cromwell Road, London, SW7 5BD 3Institute of Biological Environmental and Rural Sciences, University of Aberystwyth, SY23 3DD Corresponding author, e-mail: [email protected] ABSTRACT The results of four five-day field surveys of fungi carried out yearly on Lundy from 2004-08 are reported and the results compared with the previous survey by ourselves in 2003 and to records made prior to 2003 by members of the LFS. 240 taxa were identified of which 159 appear to be new records for the island. Seasonal distribution, habitat and resource preferences are discussed. Keywords: Fungi, ecology, biodiversity, conservation, grassland INTRODUCTION Hedger & George (2004) published a list of 108 taxa of fungi found on Lundy during a five-day survey carried out in October 2003. They also included in this paper the records of 95 species of fungi made from 1970 onwards, mostly abstracted from the Annual Reports of the Lundy Field Society, and found that their own survey had added 70 additional records, giving a total of 156 taxa. They concluded that further surveys would undoubtedly add to the database, especially since the autumn of 2003 had been exceptionally dry, and as a consequence the fruiting of the larger fleshy fungi on Lundy, especially the grassland species, had been very poor, resulting in under-recording. Further five-day surveys were therefore carried out each year from 2004-08, three in the autumn, 8-12 November 2004, 4-9 November 2007, 3-11 November 2008, one in winter, 23-27 January 2006 and one in spring, 9-16 April 2005.
    [Show full text]
  • A Phylogenomic Analysis of Turtles ⇑ Nicholas G
    Molecular Phylogenetics and Evolution 83 (2015) 250–257 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A phylogenomic analysis of turtles ⇑ Nicholas G. Crawford a,b,1, James F. Parham c, ,1, Anna B. Sellas a, Brant C. Faircloth d, Travis C. Glenn e, Theodore J. Papenfuss f, James B. Henderson a, Madison H. Hansen a,g, W. Brian Simison a a Center for Comparative Genomics, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA 94118, USA b Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA c John D. Cooper Archaeological and Paleontological Center, Department of Geological Sciences, California State University, Fullerton, CA 92834, USA d Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA e Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA f Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA g Mathematical and Computational Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 9171, USA article info abstract Article history: Molecular analyses of turtle relationships have overturned prevailing morphological hypotheses and Received 11 July 2014 prompted the development of a new taxonomy. Here we provide the first genome-scale analysis of turtle Revised 16 October 2014 phylogeny. We sequenced 2381 ultraconserved element (UCE) loci representing a total of 1,718,154 bp of Accepted 28 October 2014 aligned sequence. Our sampling includes 32 turtle taxa representing all 14 recognized turtle families and Available online 4 November 2014 an additional six outgroups. Maximum likelihood, Bayesian, and species tree methods produce a single resolved phylogeny.
    [Show full text]
  • Congruence of Morphologically-Defined Genera with Molecular Phylogenies
    Congruence of morphologically-defined genera with molecular phylogenies David Jablonskia,1 and John A. Finarellib,c aDepartment of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637; bDepartment of Geological Sciences, University of Michigan, 2534 C. C. Little Building, 1100 North University Avenue, Ann Arbor, MI 48109; and cUniversity of Michigan Museum of Paleontology, 1529 Ruthven Museum, 1109 Geddes Road, Ann Arbor, MI 48109 Communicated by James W. Valentine, University of California, Berkeley, CA, March 24, 2009 (received for review December 4, 2008) Morphologically-defined mammalian and molluscan genera (herein ‘‘morphogenera’’) are significantly more likely to be mono- ABCDEHI J GFKLMNOPQRST phyletic relative to molecular phylogenies than random, under 3 different models of expected monophyly rates: Ϸ63% of 425 surveyed morphogenera are monophyletic and 19% are polyphyl- etic, although certain groups appear to be problematic (e.g., nonmarine, unionoid bivalves). Compiled nonmonophyly rates are probably extreme values, because molecular analyses have fo- cused on ‘‘problem’’ taxa, and molecular topologies (treated herein as error-free) contain contradictory groupings across analyses for 10% of molluscan morphogenera and 37% of mammalian mor- phogenera. Both body size and geographic range, 2 key macro- evolutionary and macroecological variables, show significant rank correlations between values for morphogenera and molecularly- defined clades, even when strictly monophyletic morphogenera EVOLUTION are excluded from analyses. Thus, although morphogenera can be imperfect reflections of phylogeny, large-scale statistical treat- ments of diversity dynamics or macroevolutionary variables in time and space are unlikely to be misleading. biogeography ͉ body size ͉ macroecology ͉ macroevolution ͉ systematics Fig. 1. Diagrammatic representations of monophyletic, uniparaphyletic, multiparaphyletic, and polyphyletic morphogenera.
    [Show full text]
  • Fruiting Body Form, Not Nutritional Mode, Is the Major Driver of Diversification in Mushroom-Forming Fungi
    Fruiting body form, not nutritional mode, is the major driver of diversification in mushroom-forming fungi Marisol Sánchez-Garcíaa,b, Martin Rybergc, Faheema Kalsoom Khanc, Torda Vargad, László G. Nagyd, and David S. Hibbetta,1 aBiology Department, Clark University, Worcester, MA 01610; bUppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, SE-75005 Uppsala, Sweden; cDepartment of Organismal Biology, Evolutionary Biology Centre, Uppsala University, 752 36 Uppsala, Sweden; and dSynthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, 6726 Szeged, Hungary Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved October 16, 2020 (received for review December 22, 2019) With ∼36,000 described species, Agaricomycetes are among the and the evolution of enclosed spore-bearing structures. It has most successful groups of Fungi. Agaricomycetes display great di- been hypothesized that the loss of ballistospory is irreversible versity in fruiting body forms and nutritional modes. Most have because it involves a complex suite of anatomical features gen- pileate-stipitate fruiting bodies (with a cap and stalk), but the erating a “surface tension catapult” (8, 11). The effect of gas- group also contains crust-like resupinate fungi, polypores, coral teroid fruiting body forms on diversification rates has been fungi, and gasteroid forms (e.g., puffballs and stinkhorns). Some assessed in Sclerodermatineae, Boletales, Phallomycetidae, and Agaricomycetes enter into ectomycorrhizal symbioses with plants, Lycoperdaceae, where it was found that lineages with this type of while others are decayers (saprotrophs) or pathogens. We constructed morphology have diversified at higher rates than nongasteroid a megaphylogeny of 8,400 species and used it to test the following lineages (12).
    [Show full text]
  • New Species and New Records of Clavariaceae (Agaricales) from Brazil
    Phytotaxa 253 (1): 001–026 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2016 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.253.1.1 New species and new records of Clavariaceae (Agaricales) from Brazil ARIADNE N. M. FURTADO1*, PABLO P. DANIËLS2 & MARIA ALICE NEVES1 1Laboratório de Micologia−MICOLAB, PPG-FAP, Departamento de Botânica, Universidade Federal de Santa Catarina, Florianópolis, Brazil. 2Department of Botany, Ecology and Plant Physiology, Ed. Celestino Mutis, 3a pta. Campus Rabanales, University of Córdoba. 14071 Córdoba, Spain. *Corresponding author: Email: [email protected] Phone: +55 83 996110326 ABSTRACT Fourteen species in three genera of Clavariaceae from the Atlantic Forest of Brazil are described (six Clavaria, seven Cla- vulinopsis and one Ramariopsis). Clavaria diverticulata, Clavulinopsis dimorphica and Clavulinopsis imperata are new species, and Clavaria gibbsiae, Clavaria fumosa and Clavulinopsis helvola are reported for the first time for the country. Illustrations of the basidiomata and the microstructures are provided for all taxa, as well as SEM images of ornamented basidiospores which occur in Clavulinopsis helvola and Ramariopsis kunzei. A key to the Clavariaceae of Brazil is also included. Key words: clavarioid; morphology; taxonomy Introduction Clavariaceae Chevall. (Agaricales) comprises species with various types of basidiomata, including clavate, coralloid, resupinate, pendant-hydnoid and hygrophoroid forms (Hibbett & Thorn 2001, Birkebak et al. 2013). The family was first proposed to accommodate mostly saprophytic club and coral-like fungi that were previously placed in Clavaria Vaill. ex. L., including species that are now in other genera and families, such as Clavulina J.Schröt.
    [Show full text]
  • Olympic Mushrooms 4/16/2021 Susan Mcdougall
    Olympic Mushrooms 4/16/2021 Susan McDougall With links to species’ pages 206 species Family Scientific Name Common Name Agaricaceae Agaricus augustus Giant agaricus Agaricaceae Agaricus hondensis Felt-ringed Agaricus Agaricaceae Agaricus silvicola Forest Agaric Agaricaceae Chlorophyllum brunneum Shaggy Parasol Agaricaceae Chlorophyllum olivieri Olive Shaggy Parasol Agaricaceae Coprinus comatus Shaggy inkcap Agaricaceae Crucibulum laeve Common bird’s nest fungus Agaricaceae Cyathus striatus Fluted bird’s nest Agaricaceae Cystoderma amianthinum Pure Cystoderma Agaricaceae Cystoderma cf. gruberinum Agaricaceae Gymnopus acervatus Clustered Collybia Agaricaceae Gymnopus dryophilus Common Collybia Agaricaceae Gymnopus luxurians Agaricaceae Gymnopus peronatus Wood woolly-foot Agaricaceae Lepiota clypeolaria Shield dapperling Agaricaceae Lepiota magnispora Yellowfoot dapperling Agaricaceae Leucoagaricus leucothites White dapperling Agaricaceae Leucoagaricus rubrotinctus Red-eyed parasol Agaricaceae Morganella pyriformis Warted puffball Agaricaceae Nidula candida Jellied bird’s-nest fungus Agaricaceae Nidularia farcta Albatrellaceae Albatrellus avellaneus Amanitaceae Amanita augusta Yellow-veiled amanita Amanitaceae Amanita calyptroderma Ballen’s American Caesar Amanitaceae Amanita muscaria Fly agaric Amanitaceae Amanita pantheriana Panther cap Amanitaceae Amanita vaginata Grisette Auriscalpiaceae Lentinellus ursinus Bear lentinellus Bankeraceae Hydnellum aurantiacum Orange spine Bankeraceae Hydnellum complectipes Bankeraceae Hydnellum suaveolens
    [Show full text]
  • Novosti Sist. Nizsh. Rast. 43
    ISSN 0568-5435 ÐÎÑÑÈÉÑÊÀß ÀÊÀÄÅÌÈß ÍÀÓÊ ÁÎÒÀÍÈ×ÅÑÊÈÉ ÈÍÑÒÈÒÓÒ èì. Â. Ë. ÊÎÌÀÐÎÂÀ ACADEMIA SCIENTIARUM ROSSICA INSTITUTUM BOTANICUM NOMINE V. L. KOMAROVII ÍÎÂÎÑÒÈ ÑÈÑÒÅÌÀÒÈÊÈ ÍÈÇØÈÕ ÐÀÑÒÅÍÈÉ ÒÎÌ 43 NOVITATES SYSTEMATICAE PLANTARUM NON VASCULARIUM TOMUS XLIII Òîâàðèùåñòâî íàó÷íûõ èçäàíèé KMK Ñàíêò-Ïåòåðáóðã Ìîñêâà v 2009 À. Ã. Øèðÿåâ A. G. Shiryaev ÊËÀÂÀÐÈÎÈÄÍÛÅ ÃÐÈÁÛ ÒÓÍÄÐÎÂÎÉ È ËÅÑÎÒÓÍÄÐÎÂÎÉ ÇÎÍ ÊÎËÜÑÊÎÃÎ ÏÎËÓÎÑÒÐÎÂÀ (ÌÓÐÌÀÍÑÊÀß ÎÁËÀÑÒÜ) CLAVARIOID FUNGI OF THE TUNDRA AND FOREST-TUNDRA ZONES OF KOLA PENINSULA (MURMANSK REGION) Èíñòèòóò ýêîëîãèè ðàñòåíèé è æèâîòíûõ ÓðÎ ÐÀÍ Ëàáîðàòîðèÿ ôèòîìîíèòîðèíãà è îõðàíû ðàñòèòåëüíîãî ìèðà 620144, Åêàòåðèíáóðã, óë. 8 Ìàðòà, ä. 202 [email protected] Ïÿòüäåñÿò øåñòü âèäîâ êëàâàðèîèäíûõ ãðèáîâ èç 14 ðîäîâ îòìå÷åíû â âû- ñîêîøèðîòíûõ ðàéîíàõ Êîëüñêîãî ïîëóîñòðîâà, èç íèõ 55 âûÿâëåíû â ëåñîòóí- äðå è 30 â þæíûõ òóíäðàõ. Äâà âèäà (Mucronella flava è Ramaria testaceoflava) âïåðâûå îòìå÷åíû â ëåñîòóíäðîâîé çîíå Ðîññèè. Íàèáîëüøåå âèäîâîå áîãàòñòâî îòìå÷åíî äëÿ ðîäà Typhula (19 âèäîâ), à òðè êðóïíåéøèõ ðîäà Typhula, Ramaria è Clavaria âêëþ÷àþò â ñóììå 53.6% âñåõ âûÿâëåííûõ âèäîâ. Êîýôôèöèåíò âè- äîâîé íàñûùåííîñòè ðîäà â ëåñîòóíäðå ðàâåí 4.0, à â þæíûõ òóíäðàõ 3.7. Óðîâåíü âèäîâîãî áîãàòñòâà, ðàçíîîáðàçèÿ (èíäåêñ Øåííîíà) è äîìèíèðîâàíèÿ (èíäåêñ Ñèìïñîíà) ñõîäíû ñ òàêîâûìè äëÿ äðóãèõ âûñîêîøèðîòíûõ ðåãèîíîâ Åâðîïû, îäíàêî íåñêîëüêî îòëè÷àþòñÿ îò àíàëîãè÷íûõ ïîêàçàòåëåé äëÿ Ïîëÿð- íîãî Óðàëà è ßìàëà. Íàèáîëåå îáèëüíûìè âèäàìè ÿâëÿþòñÿ ñàïðîòðîôû, ðàç- âèâàþùèåñÿ íà òðàâÿíèñòîì îïàäå Typhula variabilis, T. lutescens è T. sclero- tioides. Ïî ñðàâíåíèþ ñ àíàëîãè÷íûìè êîìïëåêñàìè Ïîëÿðíîãî Óðàëà è ßìàëà íà Êîëüñêîì ïîëóîñòðîâå çíà÷èòåëüíà ðîëü ãóìóñîâûõ ñàïðîòðîôîâ (Clavulina cinerea, Clavaria argillacea, C. falcata). Êñèëîòðîôíûå âèäû îòìå÷åíû ëèøü â ëåñîòóíäðå.
    [Show full text]
  • Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) Introducing the Ant-Associated Genus Myrmecopterula Gen
    bioRxiv preprint doi: https://doi.org/10.1101/718809; this version posted September 27, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Reclassification of Pterulaceae Corner (Basidiomycota: Agaricales) introducing the ant-associated genus Myrmecopterula gen. nov., Phaeopterula Henn. and the corticioid Radulomycetaceae fam. nov. Caio A. Leal-Dutra1,5, Gareth W. Griffith1, Maria Alice Neves2, David J. McLaughlin3, Esther G. McLaughlin3, Lina A. Clasen1 & Bryn T. M. Dentinger4 1 Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DD WALES 2 Micolab, Departamento de Botânica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil 3 Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St. Paul, Minnesota 55108, USA 4 Natural History Museum of Utah & Biology Department, University of Utah, 301 Wakara Way, Salt Lake City, Utah 84108, USA 5 CAPES Foundation, Ministry of Education of Brazil, P.O. Box 250, Brasília – DF 70040-020, Brazil ABSTRACT Pterulaceae was formally proposed to group six coralloid and dimitic genera [Actiniceps (=Dimorphocystis), Allantula, Deflexula, Parapterulicium, Pterula and Pterulicium]. Recent molecular studies have shown that some of the characters currently used in Pterulaceae Corner do not distin- guish the genera. Actiniceps and Parapterulicium have been removed and a few other resupinate genera were added to the family. However, none of these studies intended to investigate the relation- ship between Pterulaceae genera.
    [Show full text]
  • Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill
    diversity Article Genetic Divergence and Polyphyly in the Octocoral Genus Swiftia [Cnidaria: Octocorallia], Including a Species Impacted by the DWH Oil Spill Janessy Frometa 1,2,* , Peter J. Etnoyer 2, Andrea M. Quattrini 3, Santiago Herrera 4 and Thomas W. Greig 2 1 CSS Dynamac, Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA 2 Hollings Marine Laboratory, NOAA National Centers for Coastal Ocean Sciences, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Rd, Charleston, SC 29412, USA; [email protected] (P.J.E.); [email protected] (T.W.G.) 3 Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Ave NW, Washington, DC 20560, USA; [email protected] 4 Department of Biological Sciences, Lehigh University, 111 Research Dr, Bethlehem, PA 18015, USA; [email protected] * Correspondence: [email protected] Abstract: Mesophotic coral ecosystems (MCEs) are recognized around the world as diverse and ecologically important habitats. In the northern Gulf of Mexico (GoMx), MCEs are rocky reefs with abundant black corals and octocorals, including the species Swiftia exserta. Surveys following the Deepwater Horizon (DWH) oil spill in 2010 revealed significant injury to these and other species, the restoration of which requires an in-depth understanding of the biology, ecology, and genetic diversity of each species. To support a larger population connectivity study of impacted octocorals in the Citation: Frometa, J.; Etnoyer, P.J.; GoMx, this study combined sequences of mtMutS and nuclear 28S rDNA to confirm the identity Quattrini, A.M.; Herrera, S.; Greig, Swiftia T.W.
    [Show full text]