Camila Monje Dussán

Inferindo o hábito hemiepífito em Ficus L. (Moraceae) por meio da anatomía do xilema secundário em espécies viventes e fósseis

Inferring the hemiepiphytic habit in Ficus L. (Moraceae) through wood anatomical characters in modern and fossil woods

São Paulo 2020

Camila Monje Dussán

Inferindo o hábito hemiepífito em Ficus L. (Moraceae) por meio da anatomía do xilema secundário em espécies viventes e fósseis

Inferring the hemiepiphytic habit in Ficus L. (Moraceae) through wood anatomical characters in modern and fossil woods

Dissertação apresentada ao Instituto de Biociências da Universidade de São Paulo, para a obtenção de Título de Mestre em Botânica, na Área de Anatomia Vegetal.

Orientadora: Veronica Angyalossy

São Paulo 2020

Ficha Catalográfica

Monje Dussán, Camila Inferring the hemiepiphytic habit in Ficus L. (Moraceae) through wood anatomical characters in modern and fossil woods 53 páginas

Dissertação (Mestrado) - Instituto de Biociências da Universidade de São Paulo. Departamento de Botânica.

1. Habit 2. Secondary xylem 3. Stem 4. Aerial roots 5. section Pharmacosycea 6. subgenera Spherosuke 7. Ficoxylon I. Universidade de São Paulo. Instituto de Biociências. Departamento de Botânica.

Comissão Julgadora:

______Prof(a). Dr(a). Prof(a). Dr(a).

______Prof(a). Dr.(a). Veronica Angyalossy Orientador(a)

The present is the key to the past Charles Lyell

Um dia de chuva é tão belo como um dia de sol. Ambos existem; cada um como é. Fernando Pessoa

AGRADECIMENTOS Quero agradecer a todas as pessoas que contribuíram direta ou indiretamente e tornaram possível esta dissertação, por meio de discussões, sugestões e apoio. À Universidade de São Paulo e ao Laboratório de Anatomia Vegetal do Departamento de Botânica do Instituto de Biociências, por terem me recebido com tanta generosidade. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES/PROEX, pelos dois anos de bolsa concedida e pelo apoio financeiro para a participação do congresso em Cuiabá-MT. Sou profundamente grata à minha orientadora Veronica Angyalossy, por ter aceito me orientar, por me estimular a sempre ir além das minhas ideias e pelos ensinamentos não só de anatomia, mas também da vida. Te agradeço também pela sensibilidade, empatia e carinho com que você sempre me recebeu em momentos difíceis. Agradeço profundamente ao Leandro Pederneiras por ter sido como um segundo orientador deste estudo. Obrigada por todas as sugestões, ideias, incentivo, apoio e também pela ajuda com as coletas e identificações taxonômicas. À minha querida família, meus pais, Jenny e César, e minha irmã Juanita, agradeço infinitamente pelo incentivo, inspiração, apoio e sobretudo pelo carinho que recebo dia a dia de vocês. Vocês são a minha base, e essa dissertação não seria possível sem vocês. Agradeço a todos os Veronicos pelas valiosas discussões, sugestões e convivência: Israel Cunha, André Lima, Caian Gerolamo, Marina Milanello, Mariana Victorio, Erica Moniz, Ricardo Hideaki, Lui Teixeira, Juliana Pimentel, Marcelo Pace, Claudia Leme, e Carolina Bastos. Quero agradecer especialmente a André Lima pelas valiosas sugestões sobre as hemiepífitas. A Caian Gerolamo pelos ensinamentos sobre condutividade hidráulica e a Israel Cunha, Erica Moniz e Mari Victorio por me ensinarem e me apresentarem várias técnicas de laboratório. A Gisele Costa, Tassia dos Santos e Paula Alecio por sempre estarem dispostas a me ajudar com tudo que precisei no laboratório e na xiloteca. A todas as pessoas que me ajudaram com as coletas em campo, participando diretamente das coletas ou enviando materiais: Leandro Pederneiras, João Paulo Basso-Alves, Joseane Souza, Sr. Manoel, Marcelo Devecchi e Gregório Ceccantini. Aos meus amigos do Laboratório de Anatomia Vegetal e do Laboratório de Botânica Sistemática pela convivência e o acolhimento com que sempre me receberam.

Agradeço especialmente a meus amigos Sandra Reinales, Juan Pablo Narváez e Oris Rodríguez e aos meus pais César e Jenny por lerem e revisarem várias partes da dissertação e darem importantes sugestões de melhorias. À minha irmã Juanita e à Isis Vasconcelos de Brito que me ajudaram com a formatação e organização do documento final. Agradeço às amigas Sandra Reinales, Lina Borda e Maria Camila Medina por serem meu lar colombiano aqui no Brasil. Às minhas irmãs brasileiras, Kavita Hamza e Isis Vasconcelos de Brito, por todos os momentos vividos, pela amizade e companheirismo. A todos os meus amigos corredores, obrigada por todas as corridas matinais, por todo o apoio e por compartilharem um hobby tão incrível! Aos meus amigos que deixei na Colômbia, Paola, Dallitos, Angela, Marcela e Eduardo por todos os anos de amizade, por estarem sempre presentes nos momentos mais desafiadores e pelas conversas gratificantes sobre ciência e vida. E, finalmente, quero agradecer profundamente a Peter Gasson e Oris Rodríguez por terem me apresentado o fascinante mundo da anatomia da madeira.

ABSTRACT

Plant habits are easily recognized not only by morphological aspects but also by a combination of anatomical characters, which have been essential to the understanding of the evolution of habits in the fossil record. Hemiepiphytes germinate and grow as epiphytes and later produce roots to the ground and connect with the soil. It is possible to infer the hemiepiphytic habit using wood anatomical characters? To address this question, we choose the genus Ficus L. from the family Moraceae, because exhibits a wide range of habits including small to large trees, and about 60% of its are hemiepiphytes. In this study, we compare the wood anatomy of the stem between trees and hemiepiphytes and, between the stems and aerial roots within hemiepiphytes species. Then, we analyse the wood anatomy of the fossil woods with affinities to Ficus/ Ficoxylon and evaluate if was possible to distinguish the habit and/or the organ to which the fossil wood of Ficus belongs. Wood samples of aerial roots and stems of trees and hemiepiphytes were collected at breast height and prepared according to standard wood anatomical techniques. Qualitative and quantitative anatomical features were analysed to determine variance among habits and potential hydraulic conductivity was calculated to compare efficiency of water transport. We performed a literature search for the fossil woods of Ficus/Ficoxylon. Each of the fossils was evaluated as to the reliability of its identification and the accepted fossils were compared with modern species. Our results show that the stem and the aerial roots of hemiepiphytes presented wider vessels and higher hydraulic conductivity than trees. Within the hemiepiphytes, the only way to distinguish between stem and aerial roots is by the exarch xylem of the aerial roots in opposition to the endarch xylem of the stem. In fossil woods we found that it is not possible to distiguish if the fossil wood belongs to an aerial root or to a stem, however our data suggests that the fossils share more anatomical features with modern species of hemiepiphytes than with trees.

Keywords: Habit, Secondary xylem, Stem, Aerial root, section Pharmacosycea, subgenera Spherosuke, Ficoxylon

RESUMO

Os diferentes hábitos que as plantas apresentam na natureza são facilmente reconhecíveis não apenas pelo seu aspecto morfológico, mas também por uma combinação de caracteres anatômicos. Esses caracteres tem sido fundamentais para entender a evolução dos hábitos das plantas no registro fóssil. As plantas de hábito hemiepífito germinam e crescem como epífitas e depois estabelecem ligações com o solo por meio de raízes areas. É possível inferir o hábito hemiepífito usando caracteres anatômicos? Para abordar esta questão, escolhemos o gênero Ficus L. da família Moraceae porque possui uma grande diversidade de hábitos incluindo, arbustos, árvores, lianas e mais do 60% das espécies são hemiepífitas. Neste estudo, comparamos a anatomia da madeira do caule entre espécies arbóreas e hemiepífitas, adicionalmente entre as espécies hemiepífitas comparamos a anatomia da madeira entre raízes aéreas e o caule. Posteriormente, analisamos a anatomia do lenho de fósseis com afinidade a Ficus / Ficoxylon e avaliamos se é possível distinguir o hábito ou o órgão ao qual a lenho fóssil de Ficus pertence. Amostras de madeira de raízes aéreas e caules de árvores e hemiepífitas foram coletadas na altura do peito e preparadas de acordo com técnicas anatômicas da madeira. Características anatômicas qualitativas e quantitativas da madeira foram analisadas para determinar a variação entre hábitos, e a condutividade hidráulica hipotética foi calculada para comparar a eficiência no transporte hídrico. Foi realizado um levantamento bibliográfico referente aos lenhos fósseis de Ficus / Ficoxylon e cada um dos fósseis foi avaliado quanto à confiabilidade de sua identificação. Os fósseis aceitos foram posteriormente comparados com as espécies modernas estudadas. Nossos resultados mostram que o caule e as raízes aéreas das espécies hemiepífitas apresentam vasos de maior diâmetro e maior condutividade hidráulica hipotética do que as espécies arbóreas. Das plantas hemiepífitas, a única forma de distinguir as raízes aéreas do caule é pela posição do protoxilema, isto é, o xilema exarco nas raízes em oposião ao xilema endarco do caule. Nos lenhos fósseis, observamos que não é possível distinguir se o lenho fóssil pertence a uma raiz aérea ou a um caule, no entanto, nossos dados sugerem que os fósseis compartilham mais características anatômicas com espécies hemiepífitas do que com espécies arbóreas.

Palavras-chave: Hábito, Xilema secundário, Caule, Raiz aérea, seção Pharmacosycea, subgênero Spherosuke, Ficoxylon

INTRODUCTION

Evolution of habits along the geologic time What would have driven the evolution of growth habits? A variety of possibilities may have contributed in several ways to form a , a tree, a , an epiphyte or a hemiepiphyte. Some of the most widely accepted selective pressures favouring the evolution of those habits are light availability, wind for dispersal of propagules and rooting systems for anchoring and for water and nutrients acquisition (Kenrick & Davis, 2004; Taylor et al. 2009; Boyce et al. 2017). If we look back to the geologic timescale, lianas and trees have an evolutionary history that dated back to the Paleozoic era and are present in all major groups of vascular . Trees are well known since the Devonian (ca. 410 Myr) and the Carboniferous (ca. 358 Myr) with the Cladoxylopsids (rosette trees) and archaeopterid progymnosperms (Taylor et al. 2009; Meyer-Berthaud et al. 2010; Boyce et al. 2017). Lianas were abundant and diverse since the early Carboniferous, with several groups of Pteridosperms (seed ferns) like the Lyginopteridales and Medullosales (Burnham & Johnson, 2004; Burnham, 2009). Phylogenetically, hemiepiphyte plants are found in twenty families of angiosperms (Putz & Holbrook, 1986) and recently it has been documented in at least five families of ferns (Watts et al. 2019). Within the ferns they are present in the Polypodiaceae (Testo & Sundue, 2014), Dryopteridaceae (Lagomarsino et al. 2012), Hymenophyllaceae (Nitta & Epps, 2009), Aspleniaceae and Lomariopsidaceae (Watts et al. 2019). In the angiosperms, they are present among monocotyledons (e.g. Araceae, Cyclantaceae) and are commonly represented in major groups of Rosids (e.g. Clusiaceae, Moraceae, Melastomataceae) and (e.g. Araliaceae, Solanaceae, Marcgraviaceae). Some authors have suggested that it is possible that when the tropical rainforests was established, near the Eocene (ca. 56 Myr) and when the canopy became dense, many plants adopted different mechanisms in order to survive to the scarceness of light in the forest floor (Ramirez, 1997). Epiphytic habits, seeds capable of germinating in the upper layers of the forest and production of fast- growing aerial roots were some of the key innovations that possibly allowed plants like hemiepiphytes to occupy niches that most plants like trees and did not readily occupy (Ramirez, 1997). The evolutionary history of hemiepiphytes is still a mystery, which can be attributed to the lack of detailed morphological and anatomical studies capable of identifying this habit in extant and fossil records. To date we don’t know if all kinds of hemiepiphytes are homologous, and if this habit evolved

1 independently in ferns and angiosperms or if, by contrary, it appears early in the ferns and was lost in other groups. Are there means to recognize the hemiepiphytic habit in the fossil record? The fossil record provides fragments of pieces instead of complete individuals, then, the inference of the plant habit is almost made on temporary sources (Burnham, 2009). For example, the pteridosperm Lyginopteris oldhamia from the early Carboniferous, possess adventitious roots that are borne on the stem, up to 7 mm in diameter and apparently some of them produce secondary xylem (Taylor et al. 2009). Some authors suggested that it was a climbing liana (Potonie, 1899), whereas others reconstructed this plant as a freestanding shrub (Retallac & Dilcher 1988). Others, support the hypothesis of a not self- supporting plant based on biomechanical analyses, arguing that this plant had a sophisticated, climbing stem architecture (Speck, 1994; Masselter et al. 2017). It is possible that this plant was a hemiepiphyte? To answer this question is important to first define a hemiepiphyte.

Defining a hemiepiphyte Hemiepiphytes constitute a special category of plants because they share characteristics of terrestrial and epiphytes during different stages of their development (Watts et al. 2019). The term hemiepiphyte has been used in different contexts, and consequently it is a confusing term (Zotz, 2013). Went (1895) distinguish hemiepiphytes from epiphytes because only hemiepiphytes produce roots that reach the ground. A similar definition was given by Shimper (1903); he defined hemiepiphytes as structural dependent plants that share germination with epiphytes but later establish contact with the ground via aerial roots. In 1925 Pessin, introduces a completely different definition, he used the term hemiepiphyte for facultative epiphytes, which derived water and nutrients either from the ground or the canopy. Raunkier (1937) defined hemiepiphytes as ‘pseudolianas’. He used the term for plants that germinate on other plants and later establish contact with the ground through aerial roots or plants that germinate on the soil and later climb on other plants to reach the canopy. Mueller-Dombois (1974), defined hemiepiphytes as ‘pseudolianas’ or as ‘epiphytic lianas’, depending on their stage of development. Later, Putz & Holbrook (1986) divided the hemiepiphytes in two groups; ‘primary hemiepiphytes’ as those plants that begin with an epiphytic stage and have root connections with the soil. And ‘secondary hemiepiphyes’ as plants that germinated on the soil, climb into the canopy and later lose their terrestrial connections. Ten years later, Holbrook & Putz (1996) revoked the definition of secondary hemiepiphytes arguing that they are vine-like in physiology and morphology and reserved the term hemiepiphyte only for plants that begin with an epiphytic stage. Luttge (1997) considered that

2 the term secondary hemiepiphytes is not convincing, arguing that many aroid species produces adventitious roots that re-establish contact with the ground, which would make them primary hemiepiphytes, however since they do not geminate on other plants they cannot be defined as primary hemiepiphytes. In 2000, Moffett introduces the term ‘nomadic vine’ for secondary hemiepiphytes, however this term was never used in any publication. Due to the abundance of terms, defining habits has turned a complex matter (Sperotto et al. 2020). In the case of hemiepiphytes the term ‘secondary hemiepiphytes’ continues to be a matter of debate (Watts et al. 2019). Recently, Sperotto et al (2020) support the suggestion of Moffet (2000) that plants that germinate on the ground and later become epiphytic (secondary hemiepiphytes) would be trated as ‘nomadic climbers’ emphasizing the relationship and proximity of strategies to the climbing habit. And, suggest that term ‘hemiepiphyte’ would be exclusive to ‘primary hemiepiphytes’ sensu Putz & Holbrook (1986). This reduce the ambiguity associated with the term ‘hemiepiphyte’ that is often seen in the literature (Sperotto et al. 2020). Therefore, for this study, we follow the most recent terminology proposed by Sperotto et al (2020) in which the term ‘hemiepiphyte’ refers exclusively to plants that begin with an epiphytic stage and have root connections with the soil.

Secondary xylem between habits Aside from morphological aspects defining a hemiepiphyte requires also an understanding of the anatomical structure associated to this kind of habit. The secondary growth is formed by the vascular cambium, which is a lateral meristem with two types of initials, fusiform initials, which are vertically elongated, and ray initials, which are radially elongated (Evert, 2006). Together these initials differentiate into secondary xylem and secondary phloem (Evert, 2006). The secondary vascular growth allowed the formation of different plant forms, ranging from huge trees like the sequoia (Sequoiadendron giganteum (Lindl.) J. Buchholz; Cupressaceae), to woody lianas like many members of the Bignoniaceae family. Most extant shrubs and trees are characterized by develop a single bifacial cambium that produces secondary phloem externally and secondary xylem internally (Evert, 2006). However, previous studies on different angiosperm families that compare the secondary xylem between habits (Ter Welle et al. 1981; Gasson & Dobbins, 1991; Dong & Baas, 1993; Chen et al. 1993; Li et al. 1995; Ewers et al. 1997; Dias Leme, 2000; Esemann de Quadros, 2001; Lahaye et al. 2002; Isnard et al. 2012; Wagner et al. 2012; Gerolamo & Angyalossy, 2017), have highlight that lianas, shrubs and trees exhibit a combination of anatomical characters that allow to distinguish these habits in the absence of morphological aspects. Most lianas, for example, share a group of anatomical

3 features known as the “lianescent vascular syndrome” (Angyalossy et al. 2015). These features include, vessels dimorphism, high amounts of soft tissues as parenchyma and phloem, and tall and wide rays (Angyalossy et al. 2012, 2015; Gerolamo & Angyalossy, 2017). By the other hand, trees and shrubs have much higher percentage of fibres and narrower vessels as a result for mechanical support and water transport (Baas et al. 2004; Rowe et al. 2004; Gerolamo & Angyalossy, 2017). These show us that morphological changes have been accompanied by anatomical modifications. Besides, these contributions on wood anatomy have been essential to the understanding of plant habits in the fossil record and anatomical characters have even been used to identify habits like lianas and trees in fossil assemblages (Martínez-Cabrera et al. 2006; Burnham 2009, 2015; Rodriguez et al. 2014; Jud & Dunham 2017; Rozefeld & Pace 2018). Nevertheless, little attention has been paid to the differences between hemiepiphytes. To date, the anatomy of hemiepiphytes has been little explored (Esemann de Quadros 2001). Within Clusiaceae family, Esemann de Quadros (2001) compared the secondary xylem between stem and aerial roots of the hemiepiphyte Clusia criuva. Interestingly, she found that aerial roots possess anatomical characters very similar to that of lianas, like high amounts of axial parenchyma and vessel dimorphism (Esemann de Quadros, 2001).

Study group We chose Ficus L., the largest genus of the family Moraceae and one of the most emblematic and important components of lowland tropical forests, to study anatomical characters and to distinguish plant habits. Ficus contains more than 800 species and exhibit a wide range of habits including small to large trees, lianas and about 60% of Ficus species are hemiepiphytes (Berg & Corner, 2005; Pederneiras & Romaniuc, 2019; Li et al. 2019). The evolutionary history of Ficus suggests that Ficus originated at the beginning of the Cenozoic and the major clades radiated during the Eocene (Pederneiras et al. 2018). Jousselin et al. (2003) suggest that there might be repeated evolution of hemiepiphytism in the genus and the ancestral condition is ambiguous. The oldest records assigned to Ficus are based on fossil (Eocene; Collinson, 1989) and Ficus wasps (Oligocene; Compton et al. 2010), but the fossil record of woods attributed to Ficus dates back to the Middle Eocene (Licht et al. 2014). Nevertheless, there is no information about the habit of the fossils described for Ficus, which can be attributed not only to the scarcity of anatomical studies in modern species but also the lack of studies comparing between wood anatomy and habits within Ficus. Indeed, many studies on Ficus have focus on stem and functional traits between hemiepiphytes and non-hemiepiphytes (Li et al. 2019). Previous studies on Ficus have demonstrated that hemiepiphytes compared to non-hemiepiphytes

4 exhibit drought-tolerant traits such as stronger stomatal control, smaller leaf size, smaller xylem vessel lumen diameter and lower stem conductivity (Patiño et al. 1995; Holbrook & Putz 1996; Hao et al. 2011; Li et al. 2019). However, little attention has been done investigating the wood anatomy diversity in the context of habits and organs for the genus.

GENERAL CONCLUSIONS

According to the results presented here, we concluded from our research questions:

(i) It is possible to infer the hemiepiphytic habit in Ficus using wood anatomical characters?

- The wood anatomy between Ficus species is very similar. However, between trees and hemiepiphytes we found that hemiepiphytes has statistically wider vessels (close to 200 μm) than trees (close to 120 μm). - Within the hemiepiphytes, the only way to distinguish between stem and aerial roots is by the exarch xylem of the aerial roots in opposition to the endarch xylem of the stems. - The potential hydraulic conductivity is higher in hemiepiphytes than trees. And, within the hemiepiphytes, stems have higher potential hydraulic conductivity that their aerial roots.

(ii) Do the fossil woods of Ficus and/or Ficoxylon belong to trees or hemiepiphytes? - It is not possible to distinguish if the fossil wood belongs to an aerial root or to a stem, however our data suggest that the fossils share more anatomical features with modern species of hemiepiphytes rather than trees. - Intervessel pit size and vessel element length were significant smaller in fossils than in modern species while, vessel diameter was similar in size with modern hemiepiphytes. - We can infer that an isolated piece of fossil wood with vessel diameters close to 200 μm likely would be a hemiepiphyte.

5

REFERENCES

Abasolo W, Yoshida M, Yamamoto H, Okuyama T. 2009. Stress generation in aerial roots of Ficus elastica (Moraceae). IAWA Journal 30: 216–224

Ajmal S, Iqbal M. 1987. Seasonal Rhythms of Structure and Behaviour of Vascular Cambium in Ficus rumphii. Annals of Botany 6: 649–656

Aloni R, Zimmermann MH. 1983. The control of vessel size and density along the plant axis. Differentiation 24: 203–208.

Anfodillo T, Petit G, Crivellaro A. 2013. Axial conduit widening in woody species: a still neglected anatomical pattern. IAWA Journal 34: 352–364.

Angyalossy V, Angeles G, Pace MR, Lima AC, Dias-Leme CL, Lohmann LG, Madero-Vega C. 2012. An overview on the anatomy, development and evolution of the vascular system of lianas. Plant Ecology & Diversity 5: 167–182.

Angyalossy V, Pace MR, Lima AC. 2015. Liana anatomy: A broad perspective on structural evolution of the vascular system. Ecology of Lianas, First Edition. Edited by Stefan A. Schnitzer, Frans Bongers, Robyn J. Burnham, and Francis E. Putz. Chapter 19: 253–287.

Alves ES, Angyalossy V. 2000. Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA Journal 21:3–30

Baas P, Ewers FW, Davis SD, Wheeler EA. 2004. Evolution of xylem physiology. in: Poole I, Hemsley A (eds.), Evolution of Plant Physiology: 273–295. Elsevier Academic Press, London.

Berg CC, Corner EJH. 2005. Moraceae (Ficus). Pp. 1–730 in Flora Malesiana, Ser. 1, Spermatophyta, vol. 17 (part 2), ed. H. P. Nooteboom. Leiden: National Herbarium of the Netherlands

Blanckenhorn M. 1901. Neues zur Geologie und Paläontologie Aegyptens. Z. Deutsch. Geol. Ges. 53: 52–132.

Boureau E. 1950. Etude paléoxylologique du Sahara (XII). Sur un Annonoxylon striatum n. gen., n. sp., des couches de Tamaguilel (Sahara soudanais). Bull. Soc. Géol. Fr., sér. 20: 393–397

Boyce CK, Fan Y, Zwieniecki MA. 2017. Did trees grow up to the light, up to the wind, or down to the water? How modern high productivity colors perception of early plant evolution New Phytologist. 215: 552–557.

Bukatsch F. 1972. Bermerkungen zur Doppelfarbung Astrablau-Safranin. Mikrokosmos 61:255.

Burnham RJ. 2009. An overview of the fossil record of climbers: bejucos, sogas, trepadoras, lianas, cipos, and vines. Revista Brasileira de Paleontologia 12: 149–160.

6

Burnham RJ. 2015. Climbing plants in the fossil record: paleozoic to present. In: Schnitzer SA, Bongers F, Burnham R, Putz FE, eds. Ecology of lianas. Oxford: Wiley-Blackwell.

Burnham RJ, Johnson KR. 2004. South American palaeobotany and the origins of neotropical rainforests. Phil. Trans. R. Soc. Lond. B 359: 1595–1610.

Carlquist S. 1977. Ecological factors in wood evolution: a floristic approach. American Jounal of Botany. 64: 887–896.

Carlquist S. 2001. Comparative wood anatomy. Systematic, ecological, and evolutionary aspects of dicotyledon wood. 2nd Ed. Springer. 448 pp.

Chen BL, Baas P, Wheeler EA, Wu SM. 1993. Wood anatomy of trees and shrubs from China. VI. Magnoliaceae. IAWA Journal. 14: 391– 412.

Choat B, Ball MC, Luly JG, Holtum JAM. 2005. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19: 305–311.

Clement WL, Weiblen GD. 2009. Morphological evolution in the mulberry family (Moraceae). Systematic Botany 34: 530–552

Coelho LFM, Ribeiro MC, Pereira RAS. 2014. Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes. Acta Oecologica 57: 109-116.

Collinson ME. 1989. The fossil history of the Moraceae, Urticaceae (including Cecropiaceae), and Cannabaceae. In: Crane PR, Blackmore S (eds.), Evol. Syst. Foss. Hist. Hamamelidae 2: 319–339.

Compton SG, Ball AD, Collinson MA, Hayes P, Rasnitsyn AP, Ross AJ. 2010. Ancient figwasps indicate at least 34 Myr of stasis in their mutualism with fig trees. Biology Letters 6: 838–842

Dechamps R. 1983. Fossil Wood. – In: J. de Heinzelin (ed.), The Omo group. Ann. Mus. Roy. Afr. Cent. 9: 191–198.

Dias-Leme CL. 1999. Árvores e lianas de Leguminosae Papilionoideae: anatomia do caule. Tese de doutorado, Universidade de São Paulo, São Paulo.

Dong Z, Baas P. 1993. Wood anatomy of trees and shrubs from China. V. Anacardiaceae. IAWA J. 14: 87–102.

Esemann-Quadros, K. 2001. Anatomia do lenho de Clusia criuva Camb. (Clusiaceae): órgãos, hábitos e ambientes. Tese de doutorado, Universidade de São Paulo, São Paulo. (unpub).

Evert RF. 2006. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body – Their Structure, Function, and Development, 3rd edn, John Wiley and Sons, Hoboken, NJ.

Ewers FW. 1985. Xylem structure and water conduction in conifer trees, dicot trees, and lianas. IAWA Bulletin 6: 309–317.

7

Ewers FW, Carlton MR, Fisher JB, Kolb KJ, Tyree MT.1997. Vessel diameters in roots versus stems of tropical lianas and other growth forms. IAWA Journal 18: 261–279.

Farrel BD, Dussourd DE, Mitter C. 1991. Escalation of plant defense: Do latex and resin canals spur plant diversication? The American Naturalist 138: 881–900.

Felix J. 1883b. Untersuchungen über fossile Hölzer. I. Tertiäre Laubhölzer. II. Fossile Hölzer mit Wurzeleinschlussen. Z. Dtsch. Geol. Ges. 35: 59–91.

Fessler-Vrolant C. 1972. Etude paléoxylologique du Tertiaire de la Tunisie septentrionale (I): Présence d’un bois de la famille des Moraceae. C.r. 97e Congr. Nat. Soc. Sav., Nantes, Sci. 4: 19–30.

Fichtler E, Worbes M. 2012. Wood anatomical variables in tropical trees and their relation to site conditions and individual tree morphology. IAWA Journal 33: 119–140.

Fisher JB. 1982. A survey of buttresses and aerial roots of tropical trees for presence of reaction wood. Biotropica 14: 56-61.

Gasson P, Dobbins DR. 1991. Wood anatomy of the Bignoniaceae, with a comparison of trees and lianas. IAWA Bulletin 12: 389–417.

Gerolamo CA, Angyalossy V. 2017. Wood anatomy and conductivity in lianas, shrubs, and trees of Bignoniaceae. IAWA Journal 38: 412–432.

Gerwing JJ, Schnitzer SA, Burnham RJ, Bongers F, Chave J, DeWalt sJ, Ewango CEN, Foster R, Kenfack D, Martınez-Ramos M, Parren M, Parthasarathy N, Pérez-Salicrup DR, Putz FE, Thomas DW. 2006. A standard protocol for liana censuses. Biotropica 38: 256–261.

Giraldo JA, del Valle JI, Sierra CA, Melo O. 2020. Dendrochronological potential of trees from America’s Rainiest Region. In: Latin American Dendroecology (M, Pompa-García, J.J Camarero, eds), Springer International Publishing, Cham. pp. 79-119.

Goulart SL, Marcati CR. 2008. Anatomia comparada do lenho em raiz e caule de Lippia salviifolia Cham. (Verbenaceae). Revista Brasileira de Botânica 31: 263–275.

Hacke UG, Sperry JS, Wheeler JK, Castro L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology 26: 689–701.

Hao G-Y, Wang A-Y, Liu Z-H, Franco AC, Goldstein G, Cao K-F. 2011.Differentiation in light energy dissipation between hemiepiphytic and non-hemiepiphytic Ficus species with contrasting xylem hydraulic conductivity. Tree Physiol 31: 626–636

Hofmann H. 1884. Untersuchungen über fossile Hölzer. Z. Naturwiss. 57: 156–195.

Holbrook NM, Putz F. 1996. Physiology of tropical vines and hemiepiphytes: plants that climb up and plants that climb down. In: Mulkey SS, Chazdon RL, Smith AP. eds. Tropical forest plant ecophysiology. New York, Chapman & Hall, 363–393.

8

InsideWood. 2004-onwards. Published on the Internet (http://insidewood.lib.ncsu.edu/search)

Isnard S, Prosperi J, Wanke S, et al. 2012. Growth form evolution in Piperales and its relevance for understanding angiosperm diversication: an integrative approach combining plant architecture, anatomy, and biomechanics. International Journal of Plant Sciences, 173: 610–639.

IAWA Committee.1989. List of microscopic features for hardwood identification. IAWA Bull. n.s. 10: 219–332.

Jansen S, Choat B, Pletsers A. 2009. Morphological variation in intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany 96: 409–419.

Jousselin E, Rasplus JY, Kjellberg F. 2003. Convergence and Coevolution in a mutualism: evidence from a molecular phylogeny of Ficus. Evolution 57:1255–1272.

Jolly-Saad MC, Dupéron-Laudoueneix M, Dupéron J, Bonnefille R. 2010. Ficoxylon sp., a fossil wood of 4.4 Ma (Middle Awash, Ethiopia). C. R. Palevol 9: 1–4.

Jud NA, Dunham JI. 2017. Fossil woods from the Cenozoic of Panama (Azuero Peninsula) reveal an ancient neotropical rainforest. IAWA Journal 38: 366–411

Kaiser P. 1880. Ficoxylon bohemicum. Ein neues fossiles Laubholz. Z. Gesamte Naturwiss. 53: 309– 317.

Kajii C, Morita T, Kuroda K. 2014. Laticifers in Ficus carica and their potential role in plant defense. IAWA Journal 35:109–115.

Kapil RN, Rustagi PN. 1966. Anatomy of the aerial and terrestrial roots of Ficus benghalensis L. Phytomorphology 16: 382–386.

Kenrick P, Davis PG. 2004. Fossil Plants. Natural History Museum, London

Koek-Noorman J, Topper SMC, ter Welle BJH. 1984. The systematic wood anatomy of the Moraceae (Urticales) III. Tribe Ficeae. Meded. Bot. Mus. & Herb. Rijksuniv. Utrecht 537: 330–334.

Konno K. 2011. Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72: 1510-1530

Kräusel R. 1939. Ergebnisse der Forschungsreisen Prof. E. Stromers in der Wüsten Agyptens. IV. Die fossilen Floren Agyptens. 3. Die fossilen P anzen Agyptens. Abh. Bayer. Akad. Wiss., Math.-Nat. Abt. (N. S.) 47: 1–140

Lagomarsino LP, Grusz AL, Moran RC. 2012. Primary hemiepiphytism and gametophyte morphology in Elaphoglossum amygdalifolium (Dryopteridaceae). Brittonia 64: 226–235.

Lahaye R, Civeyrel L, Speck T, Rowe NP. 2005. Evolution of shrub-like growth forms in the lianoid subfamily Secamonoideae (Apocynaceae s.l.) of Madagascar: phylogeny, biomechanics, and development. American Journal of Botany 92: 1381–1396. 9

Larson PR. 1994. The vascular cambium. New York, USA: Springer-Verlag.

Lebedenko LA. 1962. Comparative anatomical analysis of the mature wood of roots and stems of some woody plants. Trudy Institut Lesa i Drevesiny Akademiya Nauk SSSR (Sibirskoe Otdeleniya) 51: 124–134

Lens F, Sperry JS, Christman MA, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist 190: 709–723.

Li B, Ter Welle BJH, Klaassen RKWM. 1995. Wood anatomy of trees and shrubs from China. VII. Sapindaceae. IAWA Journal. 16: 191–215.

Li. 2019. The effects of intervessel pit characteristics on xylem hydraulic efficiency and photosynthesis in hemiepiphytic and non-hemiepiphytic Ficus species.

Licht A, Boura A, De Franceschi D, Ducrocq S, Soe AN, Jaeger JJ. 2014. Fossil woods from the Late Middle Eocene Pondaung Formation, Myanmar. Rev. Palaeobot. Palynol 202: 29–46

Lopez L, Villalba R, Peña-Claros M. 2012. Determining the annual periodicity of growth rings in seven tree species of a tropical moist forest in Santa Cruz, Bolivia. Forest Systems 21: 508–514.

Louvet P. 1971. Sur l’évolution des ores tertiaires de l’Afrique Nord-Equatoriale. Thèse, Sci. nat., Univ. Paris VI. 497 pp. + 49 pl. (unpub).

Luttge U. 1997. Physiological ecology of tropical plants. Berlin: Springer.

Machado AFP, Rønsted N, Pereira RAS, Bruun-Lund S, Queiroz LP. 2018. Atlantic forest to the all Americas: biogeographical history and divergence times of Neotropical Ficus (Moraceae). Molecular Phylogenetics and Evolution 122: 46–58.

Machado SR, Angyalossy-Alfonso V, Morretes BL. 1997. Comparative Wood anatomy of root and stem in Styrax camporum (Styracaceae). IAWA Journal 18: 13–25.

Machado SR, Rodella RA, Angyalossy V, Marcati CR. 2007. Structural variations in root and stem wood of Styrax (Styracaceae) from Brazilian Forest and Cerrado. IAWA Journal 28: 173–188.

Martínez-Cabrera HI, Cevallos-Ferriz SRS, Poole I. 2006. Fossil woods from early Miocene sediments of the El Cien Formation, Baja California Sur, Mexico. Review of Palaeobotany and Palynology 138: 141–163.

Masselter T, Rowe NP, Speck T. 2007. Biomechanical reconstruction of the Carboniferous seed fern Lyginopteris oldhamia. implications for growth form reconstruction and habit. International Journal of Plant Sciences 168: 1177–1189.

McElrone AJ, Pockman WT, Mart ınez-Vilalta J, Jackson RB. 2004. Variation in xylem structure and function in stems and roots of trees to 20 m depth. New Phytologist 163: 507–517. 10

Metcalfe CR, Chalk L. 1950. Anatomy of the Dicotyledons, Clarendon Press, Oxford.

Meyer-Berthaud B, Soria A, Decombeix AL. 2010. The land plant cover in the Devonian: a reassessment of the evolution of the tree habit. Geological Society, London, Special Publications 339: 59–70.

Moffett MW. 2000. What’s ‘up’? A critical look at the basic terms of canopy biology. Biotropica 32:569–596.

Mueller-Dombois D, Ellenberg H. 1974. Aims and Methods of Vegetation Ecology, Wiley, Nueva York, N. Y.

Nitta JH, Epps MJ. 2009. Hemiepiphytism in Vandenboschia collariata (Hymenophyllaceae). Brittonia 61: 392–397.

Olson ME, Anfodillo T, Rosell JA, Petit G, Crivellaro A, Isnard S, León-Gómez C, Alvarado-Cárdenas LO, Castorena M. 2014. Universal hydraulics of the flowering plants: vessel diameter scales with stem length across angiosperm lineages, habits and climates. Ecology Letters 17: 988–997.

Pace MR, Angyalossy V. 2013. Wood evolution: a case study in the Bignoniaceae. International Journal of Plant Sciences 174: 1014–1048.

Pace M, Lohmann L, Angyalossy V. 2009. The rise and evolution of the cambial variant in Bignoniaea (Bignoniaceae). Evolution and Development 11: 465– 479.

Palhares D, Paula JE, Pereira LAR, Silveira CES. 2007. Comparative wood anatomy of stem, root and xylopodium of Brosimum gaudichaudii (Moraceae). IAWA Journal 28: 83–94.

Patel RN. 1965. A comparison of the anatomy of the secondary xylem in roots and stems. Holzforschung 19: 72–79.

Patiño S, Tyree MT, Herre EA. 1995. Comparison of hydraulic architecture of woody plants of differing phylogeny and growth form with special reference to freestanding and hemi-epiphytic Ficus species from Panama. New Phytologist 129: 125–134.

Patinos S, Gilbergt GS, Zorz G, Tyree MT. 1999. Growth and survival of aerial roots of hemiepiphytes in a lower montane tropical moist forest in Panama. Journal of Tropical Ecology 15: 651–665.

Pederneiras LC, Carauta JPP, Romaniuc-Neto S, Mansano VF. 2015. An overview of the infrageneric nomenclature of Ficus. Taxon 64: 589–594.

Pederneiras LC, Gaglioti AL, Romaniuc-Neto S, Mansano V. 2018. The role of biogeographical barriers and bridges in determining divergent lineages in Ficus (Moraceae). Botanical Journal of the Linnean Society 187: 594–613.

Pederneiras LC, Romaniuc-Neto S. 2019. Taxonomic Revision of Ficus sect. Pharmacosycea (Moraceae). Systematic Botany Monographs 107: 1–148.

11

Pessin LJ. 1925. An ecological study of the polypody fern Polypodium polypodioides as an epiphyte in Mississippi. Ecology 6: 17–38.

Pfautsch S, Aspinwall MJ, Drake JE, Chacon-Doria L, Langelaan RJA, Tissue DT, Tjoelker MG, Lens F. 2018. Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Annals of Botany 121:129–141

Platen P. 1908. Untersuchungen fossiles Hölzer aus der Westen der Vereinigten Staaten von Nordamerika. Sber. Naturf. Ges. Leipzig 34: 1–155.

Poorter l, Mcdonald I, Alarcón A, Fichtler E, licona JC, Penã-Claros M, Sterck F, Villegas Z, Sass- Klaassen U. 2010.The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist 185: 481–492.

Potonié H. 1899. Lehrbuch der Pflanzenpaleontologie mit beson- derer Rücksicht auf die Bedürfnisse des Geologen. Ferd. Dümmlers Verlagsbuchhandlung, Berlin.

Prasad M. 1993. Siwalik (Middle Miocene) woods from the Kalagarh area in the Hima- layan foot hills and their bearing on palaeoclimate and phytogeography. Rev. Palaeobot. Palynol. 76: 49–82.

Pratt RB, Jacobsen AL, Ewers FW, Davis SD. 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytologist 174: 787–798.

Psaras GK, Sofroniou I. 2004. Stem and root wood anatomy of the shrub fruticosa (Labiatae). IAWA Journal 25: 71–77.

Putz FE, Holbrook NM. 1986. Notes on the natural history of hemiepiphytes. Selbyana 9: 61–69.

Putz FE, Romano GB, Holbrook NM. 1995. Comparative phenology of epiphytic and tree-phase strangler figs in a Venezuelan palm savanna. Biotropica 27:183–189.

Ramirez B. 1997. Evolution of the strangling habit in Ficus L. subgenus Urostigma (Moraceae). Brenesia 12/13: 11–19.

Raunkiaer C. 1937. Plant Life Forms. Oxford University Press, Oxford.

Rasband WS. 2012. ImageJ. US National Institutes of Health, Bethesda, MD. http://imagej.nih.gov/ij.

Retallack GJ, Dilcher DL. 1988. Reconstructions of selected seed ferns. Annals of the Missouri Botanical Garden 75: 1010–1057.

Rodríguez-Reyes O, Falcon-Lang H, Gasson P, Collinson M, Jaramillo C. 2014. Fossil Woods (Malvaceae) from the lower Miocene (early to mid-Burdigalian) part of the Cucaracha Formation of Panama (Central America) and their biogeographic implications. Review of Palaeobotany and Palynology 209: 11–34

12

Rowe N, Isnard S, Speck T. 2004. Diversity of mechanical architectures in climbing plants: an evolutionary perspective. J. Plant Growth Regul. 23: 108–128.

Rstudio team. 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL (http://www.rstudio.com/).

Rozefelds AC, Pace MR. 2018. The first record of fossil Vitaceae wood from the Southern Hemisphere, a new combination for Vitaceoxylon ramunculiformis, and reappraisal of the fossil record of the grape family (Vitaceae) from the Cenozoic of Australia Journal of Systematics and Evolution 56: 283–296.

Salleo S, LoGullo MA, Trifilò P, Nardini A. 2004. New evidence for a role of vessel-associated cells and phloem in the rapid xylem refilling of cavitated stems of Laurus nobilis L. Plant, Cell and Environment 27: 1065–1076.

Schenk A. 1883. Fossile Hölzer. Palaeontographica 30: 1–17.

Schimper AFW.1903. Plant geography upon a physiological basis. Oxford: Clarendon Press.

Shimakura M. 1937. A petrified wood dredged from the bottom off the coast of Tobisima, Yamagata- ken. J. Geol. Soc. Japan 44: 98–103.

Sieber M. 1985. Anatomical structure of roots of two species of Khaya in Ghana. In: Xylorama: Trends in Wood Research (L. J. Kučera (ed.). Basel Birkhäuser 176–183.

Speck T. 1994. A biomechanical method to distinguish between self-supporting and nonself- supporting fossil plants. Review of Palaeobotany and Palynology 81: 65–82.

Spicer R, Groover A. 2010. Evolution of development of vascular cambia and secondary growth. New Phytologist 186: 577–592.

Schweingruber FH. 1996. Tree rings and environment. Dendroecology. Birmensdorf, Swiss Federal Institute for Forest, Snow and Landscape Research. Berne, Stuttgart, Vienna; Haupt.

Sperotto P , Acevedo-Rodríguez P, Vasconcelos TNC, Roque N. 2020. Towards a Standardization of Terminology of the Climbing Habit in Plants. The Botanical Review.

Taylor TN, Taylor EL, Krings M. 2009. Paleobotany: the biology and evolution of fossil plants, 2nd edn. Burlington, MA, USA: Academic Press.

Testo W, Sundue M. 2014. Primary hemiepiphytism in Colysis ampla (Polypodiaceae) provides new insight into the evolution of growth habit in ferns. International Journal of Plant Sciences 175: 526– 536.

Ter Welle BJH, Koek-Noorman J. 1981. Wood anatomy of the neotropical Melastomataceae. Blumea 27: 335–394.

Tomlinson PB. 2003. Development of gelatinous (reaction) fibers in stems of Gnetum gnemon

13

(Gnetales). American Journal of Botany 90: 965–972.

Topper SMC, Koek-Noorman J. 1980. The occurrence of axia1 latex tubes in the secondary xylem of some species of Artocarpus J.R. & G. Forster (Moraceae). IAWA Journal 1: 113-118.

Tyree MT, Sperry JS. 1989. Vulnerability of xylem to cavitation and embolism. Annual review of plant biology 40: 19–36.

Tyree MT, Zimmermann MH. 2002. Hydraulic architecture of whole plants and plant performance. In: Xylem Structure and the Ascent of Sap (T.E. Timell., eds), pp. 175–214. Springer, New York.

Wagner ST, Isnard S, Rowe NP, Samain MS Neinhuis C, Wanke S. 2012. Escaping the lianoid habit: evolution of shrub-like growth forms in Aristolochia subgenus Isotrema (Aristolochiaceae). Amer. J. Bot. 99: 1609–1629.

Watts JL, Moran RC, Watkins JE. 2019. Hymenasplenium volubile: documentation of its gametophytes and the rst record of a hemiepiphyte in the Aspleniaceae. Annals of Botany 124: 829–835.

Went FW. 1895. U ̈ber Haft- und Na ̈hrwurzeln bei Kletterpflanzen und Epiphyten. Annales du Jardin Botanique de Buitenzorg 12: 1–72.

Wheeler JK, Sperry JS, Hacke UG, Hoang,N. 2005. Intervessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment 28: 800–812.

Wheeler EA, Baas P, Rodgers S. 2007. Variations in dicot wood anatomy: a global analysis based on the InsideWood database. IAWA Journal 28: 229–258.

Zare H, Moosavi-Movahedi AA, Salami M, Mirzaei M, Saboury AA, Sheibani N. 2013. Purification and autolysis of the ficin isoforms from fig (Ficus carica cv. Sabz) latex. Phytochemistry 87: 16–22.

Zheng J, Martínez-Cabrera HI. 2013. Wood anatomical correlates with theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma. Annals of Botany 112: 927–935

Zimmerman MH, Wardrop AB, Tomlinson PB.1968. Tension Wood in Aerial Roots of Ficus benjamina L. Wood Science and Technology. 2: 95–104

Zotz G. 2013. ‘Hemiepiphyte’: a confusing term and its history. Annals of Botany 111: 1015–1020.

Zotz G, Andrade JL. 2002. La ecología y la fisiología de las epífitas y las hemiepífitas. In: M. R. Guariguata & G. H. Kattan (eds.) Ecología y Conservación de Bosques Neotropicales. Libro Universitario Regional del Instituto Tecno- lógico de Costa Rica, Cartago. pp. 271- 296

14