Grazing Evects of the Periwinkle Echinolittorina Peruviana at a Central Peruvian High Rocky Intertidal

Total Page:16

File Type:pdf, Size:1020Kb

Grazing Evects of the Periwinkle Echinolittorina Peruviana at a Central Peruvian High Rocky Intertidal Helgol Mar Res (2008) 62 (Suppl 1):S73–S83 DOI 10.1007/s10152-007-0086-3 ORIGINAL ARTICLE Grazing eVects of the periwinkle Echinolittorina peruviana at a central Peruvian high rocky intertidal Fernando J. Hidalgo · Fausto N. Firstater · Eugenia Fanjul · M. Cielo Bazterrica · Betina J. Lomovasky · Juan Tarazona · Oscar O. Iribarne Received: 11 July 2007 / Revised: 6 September 2007 / Accepted: 8 September 2007 / Published online: 13 November 2007 © Springer-Verlag and AWI 2007 Abstract Echinolittorina peruviana is the most common are similar to those reported elsewhere for high shore littor- gastropod in the high intertidal zone of Peru, representing inids and represent baseline data to understand how the role more than 80% of the individuals present at that zone. of intertidal consumers will vary under the cold (La Niña) Experimental removal of snails was used to evaluate their and warm (El Niño) phases of ENSO on these shores. eVects on (a) abundance of epilithic bioWlm, (b) barnacle recruitment, and (c) abundance of macroalgae under “nor- Keywords Echinolittorina peruviana · Grazing · Rocky mal” conditions of the El Niño Southern Oscillation intertidal · Peru · Field experiments (ENSO). Experiments were carried out from October 2005 to April 2007 at two intertidal levels of a semi-protected rocky shore of central Peru. Results demonstrated that Introduction E. peruviana is able to control bioWlm abundance and bar- nacle recruitment at both heights investigated, with marked Grazing by gastropods can inXuence the structure and com- eVects in the lower zone. Erect macroalgae (Ulva spp. and position of assemblages of plants and animals on rocky Gelidium spp.) were less aVected by grazing; but negative shores (e.g., Lubchenco and Gaines 1981; Hawkins and eVects were observed on macroalgal crusts. Season and Hartnoll 1983; Dunmore and Schiel 2003). Grazers can physical stress seem to play a more important role in the have both direct and indirect eVects (e.g., Lubchenco and abundance of macroalgae in the high intertidal. Our results Gaines 1981; Hawkins and Hartnoll 1983; Jara and Moreno 1984; Holmes et al. 2005). Herbivores can control the dis- Communicated by S. Thatje. tribution and abundance of ephemeral and perennial algae directly by consuming adult fronds or removing algal spor- Special Issue: Climate variability and El Niño Southern Oscillation: implications for natural coastal resources and managment. S. Thatje elings (e.g., Jara and Moreno 1984; Cervin and Åberg (ed.) 1997), providing bare space for sessile invertebrates to set- tle (Denley and Underwood 1979; Petraitis 1983). Grazing F. J. Hidalgo (&) · F. N. Firstater · E. Fanjul · M. C. Bazterrica · can also negatively aVect barnacles by crushing newly set- B. J. Lomovasky · O. O. Iribarne tled cyprids and bulldozing juveniles (Hawkins 1983; Laboratorio de Ecología, Departamento de Biología (FCEyN), Universidad Nacional de Mar del Plata, CC 573 Correo Central, Underwood et al. 1983). Moreover, they can indirectly B7600WAG Mar del Plata, Argentina aVect barnacles by grazing algae oV barnacle tests and the e-mail: [email protected] surrounding rock, thus preventing smothering and allowing settlement to occur on the bare rock (Hawkins 1983; B. J. Lomovasky · O. O. Iribarne Consejo Nacional de Investigaciones CientíWcas y Hawkins and Hartnoll 1983; Underwood et al. 1983). Técnicas (CONICET), Buenos Aires, Argentina In high shore habitats, littorinid gastropods are among the most conspicuous inhabitants. Most high shore littori- J. Tarazona nids feed on the epilithic bioWlm of microalgae, cyanobac- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, teria, and bacteria; but also on macroalgae sporelings and Grupo DePSEA, Apartado 1898, Lima 100, Peru adult ephemeral Wlamentous or foliose macroalgae (Norton 123 S74 Helgol Mar Res (2008) 62 (Suppl 1):S73–S83 et al. 1990; McQuaid 1996); thus inXuencing both primary be explored given the general scarcity of baseline data on production and overall community structure (e.g., Castenholz ecological processes in the region. 1961; Underwood 1980; Bertness et al. 1983; Petraitis In this paper we examine the eVects of E. peruviana under 1983; Mak and Williams 1999). On the high shore, grazing “normal” conditions on the high intertidal zone of a rocky eVects are usually swamped by abiotic factors due to lower shore of central Peru. The speciWc aims of this study were to immersion times and increased physical stress (Castenholz (1) assess the eVects of E. peruviana on the abundance of the 1961; Underwood 1980; Cubit 1984), since the relative epilithic bioWlm of microalgae; (2) determine its eVects on importance of biological factors (e.g., predation, competi- the recruitment of the barnacles J. cirratus and N. scabrosus tion) in shaping intertidal communities tends to decrease and (3) evaluate its eVects on the vertical distribution and with the increasing environmental stress (e.g., prolonged air abundance of macroalgae in the upper mid intertidal level. exposure, excessive heat) (Menge and Sutherland 1987). Thus, organism abundance is thought to be determined by biological factors at lower intertidal levels, but physical Methods factors at upper intertidal levels. On Peruvian rocky shores, the high intertidal zone sup- Study site ports high densities of the Littorinid Echinolittorina peruvi- ana. This species ranges from Peru to central Chile The study was conducted from October 2005 to April 2007 (Williams and Reid 2004), reaching up to 2,000 individuals on a moderately protected rocky shore south of Ancón Bay m¡2 in the mid and high intertidal zone, usually in aggre- (11°46ЈS, 77°11ЈW; central Peru). Tides are semi-diurnal gated spatial distributions (Rojas et al. 2000). On moderately with a maximum range of ¡0.17 to 1.21 m respect to Chart protected rocky shores of central Peru, the vertical distribu- Datum (Dirección de Hidrografía y Navegación, Peru 2006). tion of E. peruviana ranges from bare substrate in the high The wave-protected, eastern side of a small island (»1ha, zone (i.e., the supralittoral fringe, sensu Paredes 1974), to a 70 m from the coast) was selected for our experiments. The belt of the chthalamoid barnacles Jehlius cirratus and Not- location was sheltered from severe wave action, but waves in ochthamalus scabrosus lower on the shore (i.e., the upper this site can reach up to 2 m high on stormy days. Samplings midlittoral zone, sensu Paredes 1974). During low tide and and experiments were conducted at two diVerent heights: on on calm days, E. peruviana forages further down the shore the upper limit of the barnacle belt (hereinafter the upper below the barnacle belt to the zone of the mussel Perumyti- high intertidal) and within the barnacle belt (hereinafter the lus purpuratus (F. Hidalgo, personal observation). Other lower high intertidal). The vertical distance between the two accompanying gastropods present in the high intertidal zone zones was on average 0.35 m. The slope at the site was are Austrolittorina araucana and the small limpets Siphona- 40°-60° and the lower and upper limits of the barnacle zone ria lessoni, Scurria variabilis, and Scurria ceciliana (Pare- were »1.07 and 1.69 m above Chart Datum, respectively. des 1974). A mix of many macroalgae species such as Gigartina glomerata, Gelidium spp., Ceramiun spp, Polysi- Gastropods abundance and size phonia spp., Ahnfeltia durvillaei, Chondrachanthus chamis- soi and the green ephemerals Ulva and Enteromorpha spp. Herbivore gastropod densities were quantiWed in 10–20 develops immediately below the barnacle belt (Paredes quadrats (10 £ 10 cm) randomly located at the upper and 1974). Erect mats of the green corticated Ahnfeltia durvillaei lower high intertidal. Sampling was replicated in October occur in the barnacle zone throughout the year. The ecologi- 2005; March, April, May and November 2006; and April cal eVects of E. peruviana in the Peruvian rocky intertidals 2007. To evaluate size diVerences of E. peruviana, the most have not been studied. The region is strongly aVected by the abundant gastropod, 100–200 animals were randomly col- interannual variability of El Niño Southern Oscillation lected in October 2005, April and November 2006, and (ENSO) (e.g., Tarazona and Castillo 1999). During El Niño, April 2007 from both heights, and the shell length (from the the most important eVects on coastal communities are apex to the base) was measured with a caliper (0.01 mm). unusually warm waters, a rise in sea level, greater wave The other gastropod species present in the sampling quad- action, and the depletion of nutrients that reduces primary rats were also measured. Two-way ANOVA was used to production and ultimately aVects all trophic levels (Tarazona compare E. peruviana abundances among sampling dates and Castillo 1999; Vinueza et al. 2006). In this nutrient-rich and heights (Zar 1999). Here and thereafter, when interac- environment (see Tarazona and Arntz 2001), it is predicted tions between two or more factors were signiWcant, multi- that top-down control of community structure during “nor- ple comparisons Tukey test was used to identify how mal” conditions will shift to be controlled by bottom-up pro- factors interacted (Zar 1999). Size diVerences of E. peruvi- cesses due to nutrient scarcity under El Niño events (see ana among heights were explored with separate Kolmogo- Vinueza et al. 2006). However, such predictions need still to rov-Smirnov two-sample test (Zar 1999), since parametric 123 Helgol Mar Res (2008) 62 (Suppl 1):S73–S83 S75 assumptions could not be met. A sequential Bonferroni cor- snails were allowed to enter (controls and experimental con- rection of the signiWcance level was applied (Rice 1989) in trols). Experimental plots (n = 8 per treatment) were estab- comparing sampling dates. Size diVerences of all of the lished at both the upper and lower high intertidal zones in gastropods present in the lower zone (where they were October 2005. Each plot was initially scraped and brushed more abundant, see Results) were pooled for all sampling to bare rock.
Recommended publications
  • (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: the Genera Nodilittorina, Austrolittorina and Afrolittorina
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 75–122. ISSN 0067-1975 The Subfamily Littorininae (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: The Genera Nodilittorina, Austrolittorina and Afrolittorina DAVID G. REID* AND SUZANNE T. WILLIAMS Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom [email protected] · [email protected] ABSTRACT. The littorinine gastropods of the temperate southern continents were formerly classified together with tropical species in the large genus Nodilittorina. Recently, molecular data have shown that they belong in three distinct genera, Austrolittorina, Afrolittorina and Nodilittorina, whereas the tropical species are members of a fourth genus, Echinolittorina. Austrolittorina contains 5 species: A. unifasciata in Australia, A. antipodum and A. cincta in New Zealand, and A. fernandezensis and A. araucana in western South America. Afrolittorina contains 4 species: A. africana and A. knysnaensis in southern Africa, and A. praetermissa and A. acutispira in Australia. Nodilittorina is monotypic, containing only the Australian N. pyramidalis. This paper presents the first detailed morphological descriptions of the African and Australasian species of these three southern genera (the eastern Pacific species have been described elsewhere). The species-level taxonomy of several of these has been confused in the past; Afrolittorina africana and A. knysnaensis are here distinguished as separate taxa; Austrolittorina antipodum is a distinct species and not a subspecies of A. unifasciata; Nodilittorina pyramidalis is separated from the tropical Echinolittorina trochoides with similar shell characters. In addition to descriptions of shells, radulae and reproductive anatomy, distribution maps are given, and the ecological literature reviewed.
    [Show full text]
  • Moluscos Del Perú
    Rev. Biol. Trop. 51 (Suppl. 3): 225-284, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Moluscos del Perú Rina Ramírez1, Carlos Paredes1, 2 y José Arenas3 1 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos. Avenida Arenales 1256, Jesús María. Apartado 14-0434, Lima-14, Perú. 2 Laboratorio de Invertebrados Acuáticos, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Apartado 11-0058, Lima-11, Perú. 3 Laboratorio de Parasitología, Facultad de Ciencias Biológicas, Universidad Ricardo Palma. Av. Benavides 5400, Surco. P.O. Box 18-131. Lima, Perú. Abstract: Peru is an ecologically diverse country, with 84 life zones in the Holdridge system and 18 ecological regions (including two marine). 1910 molluscan species have been recorded. The highest number corresponds to the sea: 570 gastropods, 370 bivalves, 36 cephalopods, 34 polyplacoforans, 3 monoplacophorans, 3 scaphopods and 2 aplacophorans (total 1018 species). The most diverse families are Veneridae (57spp.), Muricidae (47spp.), Collumbellidae (40 spp.) and Tellinidae (37 spp.). Biogeographically, 56 % of marine species are Panamic, 11 % Peruvian and the rest occurs in both provinces; 73 marine species are endemic to Peru. Land molluscs include 763 species, 2.54 % of the global estimate and 38 % of the South American esti- mate. The most biodiverse families are Bulimulidae with 424 spp., Clausiliidae with 75 spp. and Systrophiidae with 55 spp. In contrast, only 129 freshwater species have been reported, 35 endemics (mainly hydrobiids with 14 spp. The paper includes an overview of biogeography, ecology, use, history of research efforts and conser- vation; as well as indication of areas and species that are in greater need of study.
    [Show full text]
  • Patrones Filogeográficos De Dos Moluscos Intermareales a Lo Largo De Un Gradiente Biogeográfico En La Costa Norte Del Perú
    PATRONES FILOGEOGRÁFICOS DE DOS MOLUSCOS INTERMAREALES A LO LARGO DE UN GRADIENTE BIOGEOGRÁFICO EN LA COSTA NORTE DEL PERÚ TESIS PARA OPTAR EL GRADO DE MAESTRO EN CIENCIAS DEL MAR BACH. SERGIO BARAHONA PADILLA LIMA – PERÚ 2017 ASESOR DE LA TESIS Aldo Santiago Pacheco Velásquez PhD. en Ciencias Naturales Profesor invitado de la Maestría en Ciencias del Mar de la Universidad Peruana Cayetano Heredia Laboratorio CENSOR, Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Chile CO-ASESORA DE LA TESIS Ximena Vélez Zuazo PhD. en Ecología y Evolución Directora del Programa Marino de Monitoreo y Evaluación de la Biodiversidad (BMAP) del Instituto Smithsonian de Biología de la Conservación, Perú JURADO EVALUADOR DE LA TESIS Dr. Dimitri Gutiérrez Aguilar (Presidente) Dr. Pedro Tapia Ormeño (Secretario) Dr. Jorge Rodríguez Bailón (Vocal) DEDICATORIA Esta tesis está dedicada a mi amada familia, a mis dos padres y a mi hermana, quienes estuvieron, están y estarán siempre allí, apoyándome y dándome ánimos para seguir adelante en esta ardua pero satisfactoria labor que es la investigación. AGRADECIMIENTOS La presente tesis fue financiada por la beca de estudios de posgrado otorgada por FONDECYT (Fondo Nacional de Desarrollo Científica, Tecnológico y e Innovación Tecnológica), CIENCIACTIVA y el Consejo Nacional de Ciencia y Tecnología (CONCYTEC) del Ministerio de Educación del Perú, en el marco del programa de posgrado de Ciencias del Mar de la Universidad Peruana Cayetano Heredia. A mi asesor, Aldo Pacheco Velásquez, por su paciencia y significativos aportes de conocimiento que permitieron atacar la tesis desde varias perspectivas. A mi co- asesora Ximena Vélez-Zuazo, a quien considero una hermana mayor, por el constante ánimo y soporte durante la ejecución de la tesis.
    [Show full text]
  • Gastropoda: Littorinidae) from the Quaternary of Chile
    Palaeontologia Electronica palaeo-electronica.org A new species of Echinolittorina Habe, 1956 (Gastropoda: Littorinidae) from the Quaternary of Chile Juan Francisco Araya and David G. Reid ABSTRACT We describe a new fossil littorinid species, Echinolittorina nielseni sp. nov., from the Quaternary Caldera Strata, Región de Atacama, northern Chile. Fossils of littorin- ids are globally rare because of their high-intertidal habitat on rocky shores. The new species has a large, broad shell with strong spiral ribs and an angled periphery, differ- ing from the two living littorinids currently found along the coasts of mainland Chile and from all the extant species distributed in the southeastern Pacific. In comparison with the living Chilean Echinolittorina peruviana, the new species shows stronger ribs and more inflated whorls, but they share an unusual detail in the irregular arrangement of spiral sculpture. We hypothesize that the new species may be ancestral or sister to E. peruviana and discuss the adaptive significance of shell sculpture. Juan Francisco Araya. Departamento de Geología, Universidad de Atacama, Copayapu 485, Copiapó, Región de Atacama, Chile and Programa de Doctorado en Sistemática y Biodiversidad, Universidad de Concepción, Concepción, Chile. [email protected] author: zoobank.org/Authors/443B4F42-FB13-42A6-B92B-1B0F835698A9 orcid.org/0000-0002-4087-964 David G. Reid. Mollusca Research Group, Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom. [email protected] Keywords: Quaternary; Pleistocene; SE Pacific Ocean; Littoraria; new species Submission: 19 September 2015 Acceptance: 29 January 2016 INTRODUCTION cies continue to be discovered in the area, particu- larly in the Región de Atacama (Osorio, 2012; The shallow-water marine molluscs living in Araya, 2013).
    [Show full text]
  • Downloaded the Network and Metadata Provided in [41] and Compared the Clusters Found with Those Obtained
    bioRxiv preprint doi: https://doi.org/10.1101/656504; this version posted December 24, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. functionInk: An ecient method to detect functional groups in multidimensional networks reveals the hidden structure of ecological communities December 24, 2019 Short Title Community detection in multidimensional ecological networks Alberto Pascual-García1, 2,* and Thomas Bell1 (1) Department of Life Sciences. Silwood Park Campus. Imperial College London, Ascot, United Kingdom (2) Current address: Institute of Integrative Biology. ETH-Zürich, Zürich, Switzerland (*) Correspondence: [email protected]. Abstract 1. Complex networks have been useful to link experimental data with mechanistic models, and have become widely used across many scientic disciplines. Recently, the increasing amount and complexity of data, particularly in biology, has prompted the development of multidimensional networks, where dimensions reect the multiple qualitative properties of nodes, links, or both. As a consequence, traditional quantities computed in single dimensional networks should be adapted to incorporate this new information. A particularly important problem is the detection of communities, namely sets of nodes sharing certain properties, which reduces the complexity of the networks, hence facilitating its interpretation. 2. In this work, we propose an operative denition of function for the nodes in multidimensional networks, and we exploit this denition to show that it is possible to detect two types of communities: i) modules, which are communities more densely connected within their members than with nodes belonging to other communities, and ii) guilds, which are sets of nodes connected with the same neighbours, even if they are not connected themselves.
    [Show full text]
  • Redalyc.Anatomía Del Sistema Reproductor Femenino Y Masculino
    Revista de Biología Marina y Oceanografía ISSN: 0717-3326 [email protected] Universidad de Valparaíso Chile Covarrubias, Alejandra A.; Romero, María Soledad Anatomía del sistema reproductor femenino y masculino de Sinum cymba (Menke, 1828) (Gastropoda: Naticidae) Revista de Biología Marina y Oceanografía, vol. 44, núm. 3, diciembre, 2009, pp. 673-683 Universidad de Valparaíso Viña del Mar, Chile Disponible en: http://www.redalyc.org/articulo.oa?id=47914663013 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Revista de Biología Marina y Oceanografía 44(3): 673-683, diciembre de 2009 Anatomía del sistema reproductor femenino y masculino de Sinum cymba (Menke, 1828) (Gastropoda: Naticidae) Anatomy of the female and male reproductive system of Sinum cymba (Menke, 1828) (Gastropoda: Naticidae) Alejandra A. Covarrubias1* y María Soledad Romero1 1Departamento de Biología Marina, Facultad de Ciencias del Mar, Universidad Católica del Norte, Casilla 117, Coquimbo, Chile *[email protected] Abstract.- A description of the reproductive system of Sinum Resumen.- Se realiza una descripción mediante microscopía cymba, gastropod Naticidae is revealed by optical and electronic óptica y electrónica del sistema reproductor de Sinum cymba, microscopy. The anatomy of the females and males reproductive gasterópodo Naticidae. La anatomía del sistema reproductor system agrees with descriptions for other members of this de hembras y machos coincide con el patrón descrito en la family. The female reproductive system is formed by a literatura para otros miembros de esta familia.
    [Show full text]
  • 48 Supporting Information. Arboleda-Baena, CM
    839 Supporting Information. Arboleda-Baena, C.M; Freilich, M. A; Pareja, C.B; Logares, R; De la 840 Iglesia, R; Navarrete, S.A. Microbial communities network structure across strong environmental 841 gradients: How do they compare to macroorganisms?. Ecology 842 Appendix S4 843 Table S1. Strict habitat specialists to a specific intertidal zone, the p-value is shown. A) 844 macroorganisms species and B) microorganisms OTUs. Only significant value are presented. 845 A. Macroorganisms pvalu Intertidal Species Phyllum Class Order Family e Zone acanthopleura echinata 0.001 Low Mollusca Polyplacophora Chitonida Chitonidae chaetopleura peruviana 0.002 Low Mollusca Polyplacophora Chitonida Chaetopleuridae chiton granosus 0.001 Middle Mollusca Polyplacophora Chitonida Chitonidae chiton latus 0.024 Low Mollusca Polyplacophora Chitonida Chitonidae tonicia chilensis 0.001 Low Mollusca Polyplacophora Chitonida Chitonidae tonicia elegans 0.006 Low Mollusca Polyplacophora Chitonida Chitonidae fissurella costata 0.002 Low Mollusca Gastropoda Lepetellida Fissurellidae fissurella crassa 0.001 Middle Mollusca Gastropoda Lepetellida Fissurellidae fissurella limbata 0.001 Low Mollusca Gastropoda Lepetellida Fissurellidae fissurella maxima 0.049 Low Mollusca Gastropoda Lepetellida Fissurellidae fissurella puhlcra 0.048 Middle Mollusca Gastropoda Lepetellida Fissurellidae scurria araucana 0.001 Middle Mollusca Gastropoda Patellogastropoda Lottiidae scurria ceciliana 0.001 Middle Mollusca Gastropoda Patellogastropoda Lottiidae scurria variabilis 0.001 Middle
    [Show full text]
  • Sector Costero Punta Patache
    CAPITULO 4 Sitio prioritario sector costero Punta Patache 14 INDICE 4-1. Obtención de información in situ 4-1.1. Área de estudio……………………………………………………..……...16 4-1.2. Monitoreos de Fauna y Flora 4-1.2.1. Invertebrados marinos……………………………………..……..29 4-1.2.2. Peces……………………………………………………..………49 4-1.2.3. Reptiles del borde costero………………………….………..…...57 4-1.2.4. Aves…………………………………………………….…….….60 4-1.2.5. Mamíferos………………………………………………….…….68 4-2. Sistematización de la información bibliográfica y la actualizada…………………...73 4-2.1 Invertebrados marinos……………………………………………………...73 4-2.2. Peces……………………………………………………………………....77 4-2.3. Reptiles del borde costero………………………………………….……..78 4-2.4. Aves…………………………………………………………………........79 4-2.5. Mamíferos………………………………………………………….……..81 4-3. Definición del funcionamiento en términos de Biodiversidad……………….……..83 4-4. Amenazas sobre la biodiversidad del sitio ………………………………………..107 4-5. Determinación del estado de conservación del sitio…………………………........113 4-6. Referencias………………………………………………………………………...119 15 4-1. Obtención de información in situ 4-1.1. Área de estudio El sector costero de punta patache es justificado como sitio prioritario, por su gran diversidad de aves marinas locales y migratorias, muchas de las cuales anidan en el sector, como es el caso del Pingüino de Humboldt, así también, es importante por la presencia de mamíferos marinos, especialmente especies con problemas de conservación. El sector es una zona de surgencia y de alta productividad, lo que favorece la diversidad existente. Desde el punto de vista geológico, el sector se caracteriza por presentar formaciones rocosas, paredones, acantilados, islotes y playas. Se registran una serie de pequeños montículos, cerros y plataformas rocosa que sobresalen de la costa y decrecen en tamaño hacia el oeste, para dar lugar a la formación de playas de arena y bolones, así como también, salientes rocosas que forman pozas intermareales y canalones.
    [Show full text]
  • Resumen Poster Congreso Socecol 2012 (Sesion 1)
    Tipo: Póster Área temática: Botánica Actividad Antioxidante en Dendroligotrichum dendroides (Brid. ex Hedw.) Broth. (Polytrichaceae) Aceituno U*, Carrasco J, Avello M, Atala C, Schneider C Lab. química DCTV UdeC, Lab. química DCTV UdeC, Dpto. Farmacia UdeC, DCTV UdeC, Lab. química DCTV UdeC [email protected] Los antioxidantes juegan un rol importante en los musgos, tanto en tolerancia a la desecación como en la tolerancia al exceso de luz. Las moléculas antioxidantes pueden detener o retardar procesos oxidativos producidos frente al estrés los cuales pueden causar daños en las células, o alterar la fisiología del organismo vegetal. Existen diversos métodos para evaluar la actividad antioxidante, siendo una de las estrategias más aplicadas la determinación indirecta por radicales. Dendroligotrichum dendroides es un musgo de la familia Polytrichaceae que habita en Chile desde la provincia de Arauco a Magallanes en el sotobosque del Bosque Templado. Actualmente no se posee información sobre su química, pero se sabe que es tolerante a la desecación prolongada. La actividad antioxidante del extracto de D. dendroides fue evaluada in vitro mediante el radical DPPH (2,2-difenil-1-picrilhidrazil) y el radical ABTS (2,2'- azino-bis 3-etilbenzotiazolina-6- acido sulfonico). Además, se realizó la detección cualitativa de grupos de metabolitos secundarios. Los resultados muestran que el extracto de D. dendroides posee actividad antioxidante, posiblemente dada por moléculas que participan en su tolerancia a la desecación. Se encontró la presencia de metabolitos como antraquinonas, heterósidos cianogenados, alcaloides y derivados del núcleo esteroídeo. Los heterósidos cianogenados y alcaloides podrían actuar como compuestos de defensa contra herbívoros en este musgo.
    [Show full text]
  • Riqueza Y Distribución Vertical De Los Moluscos Del Litoral Rocoso De La
    Riqueza y distribución vertical de los moluscos del litoral rocoso de la provincia de Islay, Arequipa, al sur del Perú Mollusk richness and vertical distribution along the rocky shore of Islay, Arequipa, Southern Peru Cristian A. Tejada-Pérez1*, Francisco Villasante2, 3, Cesar Luque-Fernández 2, 3, Claudia L. Tejada-Begazo 2, 4 y Michael Espinoza 2 RESUMEN El litoral rocoso es un ecosistema heterogéneo en el que se distinguen una franja supralitoral, una zona mediolitoral y una franja infralitoral, al reconocer a las especies de moluscos como indicadoras de una zonación vertical. Este trabajo contribuye al conocimiento de la riqueza y la distribución vertical de los moluscos intermareales para la provincia de Islay, Arequipa, Perú. Se realizó una búsqueda intensiva en los meses de noviembre y diciembre del año 2013, para poder determinar la riqueza y se establecieron tres cuadrantes de 25 x 25 cm de lado distribuidos per- pendicularmente a la línea costera con 14 repeticiones en los 7 sitios de estudio, para establecer su distribución vertical. Se utilizó un análisis de componentes principales (ACP), un escalamien- to multidimensional no métrico (nMDS) y curvas de rango-abundancia para la determinación de la distribución vertical, y un análisis de similaridades (ANOSIM) para determinar diferencias entre la composición de moluscos entre los sitios de estudios y las subzonas del litoral. Se encon- traron un total de 57 taxones, donde Echinolittorina peruviana fue la especie más representativa en la franja supralitoral, Perumytilus purpuratus para la zona mediolitoral y Tegula atra para la franja infralitoral. No se presentaron diferencias significativas en la composición de moluscos entre los sitios de estudio, pero sí entre las subzonas, al ser la zona mediolitoral la que presentó mayor riqueza y abundancia de organismos.
    [Show full text]
  • Pareja, CB; Logares, R
    657 Supporting Information. Arboleda-Baena, C.M; Freilich, M. A; Pareja, C.B; Logares, R; De la 658 Iglesia, R; Navarrete, S.A. Microbial communities network structure across strong environmental 659 gradients: How do they compare to macroorganisms?. Ecology 660 Appendix S1 661 Table S1. Description of intertidal zone surveys of macroorganisms along sites in central Chile. 662 The majority of surveys took place in 2003 (321 surveys). Additional sampling took place in 2004 663 (124 surveys), 1999 (43 surveys), and 1998 (85 surveys). The surveys included 102 high intertidal, 664 267 mid intertidal, and 247 low intertidal quadrats. The study site for microbial zonation was 665 ECIMN, 33º 50’ S, 71º 63’ W. TOTAL SOUTH WEST SURVEYS YEAR LAT LONG SITE BY YEAR 1998 33.50 71.63 ECIMN 1998 33.50 71.63 ECIMN 1998 33.50 71.63 ECIMN 85 1998 33.51 71.63 LCRUC 1998 33.51 71.63 LCRUC 1998 33.51 71.63 LCRUC 1999 33.50 71.63 ECIMN 1999 33.51 71.63 LCRUC 43 2003 33.42 71.70 PTRLN 2003 33.43 71.71 PTRLS 2003 33.45 71.68 TABO 2003 33.49 71.64 SAL 321 2003 33.50 71.63 ECIMN 2003 33.51 71.63 LCRUC 2003 33.55 71.61 CART 2003 33.56 71.62 PELA 2003 33.59 71.62 SAN 2004 33.45 71.68 TABO 2004 33.50 71.63 ECIMN 2004 33.50 71.63 ECIMN 124 2004 33.51 71.63 LCRUC 2004 33.55 71.61 CART 2004 33.55 71.61 CART 666 34 667 Appendix S1 668 Table S2.
    [Show full text]
  • Marine Ecology Progress Series 431:119
    Vol. 431: 119–136, 2011 MARINE ECOLOGY PROGRESS SERIES Published June 9 doi: 10.3354/meps09100 Mar Ecol Prog Ser Distribution and activity patterns in an intertidal grazer assemblage: influence of temporal and spatial organization on interspecific associations Moisés A. Aguilera1, 2,*, Sergio A. Navarrete1 1Estación Costera de Investigaciones Marinas, Las Cruces, and Center for Advanced Studies in Ecology and Biodiversity, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile 2Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile ABSTRACT: In consumer assemblages, the organization of individual foraging behavior, as well as spatial distribution, can largely determine environmental risks, and the intensity of intra- and inter- specific interactions. We characterized distributional and behavioral patterns of the most common benthic grazers coexisting in the rocky shores of central Chile: the chiton Chiton granosus, the pul- monate limpet Siphonaria lessoni, the scurrinid limpet Scurria araucana and the keyhole limpet Fis- surella crassa. C. granosus and F. crassa were strictly nocturnal foragers whereas S. lessoni foraged during daytime. Most S. araucana individuals foraged at night, but daytime foraging was also com- mon. The spatial distribution at resting varied from aggregated for C. granosus and S. lessoni to a more dispersive pattern for F. crassa and S. araucana. C. granosus dispersed slightly from aggrega- tion when foraging whereas S. lessoni foraged in tight conspecific aggregations. Foraging excursions varied from over 60 cm in F. crassa to less than 7 cm in S. araucana. Homing behavior ranged from extreme fidelity in F.
    [Show full text]