The History of Germination Research and the Lesson It Contains for Today

Total Page:16

File Type:pdf, Size:1020Kb

The History of Germination Research and the Lesson It Contains for Today ISRAEL JOURNAL OF BOTANY, Vol. 29, 1980/81, pp. 4-21 THE HISTORY OF GERMINATION RESEARCH AND THE LESSON IT CONTAINS FOR TODAY MICHAEL EvENARI Department of Botany, The Hebrew University ofJerusalem, Jerusalem, Israel When the ancient Egyptians entombed their mummies they added a special vessel containing seeds prepared for germination as a symbol of the mystery of death, resur­ rection and life after death. This belief in resurrection was not restricted to the ancient Egyptians but is common to many peoples and religions. Seed germination recurs frequently in the scriptures of the various religions as a symbol of this nearly universal faith. I cite only one example which is interesting because of its intentional ambiguity: "But some man will say, How are the dead raised up? and with what body do they come? Thou fool, that which thou sowest is not quickened, except it die. And that which thou sowest, thou sowest not that body that shall be, but bare grain, it may chance of wheat, or of some other grain. But God giveth it a body as it hath pleased him, and to every seed its own body" (I Corinthians, 15:35-38). It is no wonder that germination became the symbol of these mysteries as it is itself something of a mys­ tery: a thing apparently dead, which even today by simply looking at it we cannot say whether it is dead or alive, when submitted to the right conditions comes alive, sprouts a whole new plant and creates a whole new generation. For the ancients germination was not only a mysterious symbol. It became a prob­ lem from the moment man invented agriculture. Sometimes the seeds of his agricultural crops did not germinate properly, resulting in catastrophic consequences. And so we read in the Old Testament: "They have sown wheat and have reaped thorn" (Jeremiah 12:19), or "You have sown much and brought in little" (Hagai 1:6), or "You shall sow, but shall not reap" (Micah 6: 15). We can state with certainty that since man first started agriculture he has always been faced with germination problems in one way or another. The close relationship between seed germination and agriculture was stressed by Theophrastus of Eresos (c. 372-287 B.C.) and later Roman authors, and since then germination research has never lost touch with agriculture. Theophrastus is the ftrst all-round botanist known to us, though he had predeces­ sors such as Hesiod (8th century B.C.?) who in his book "Work and Days" was "put­ ting forth rules for agriculture" (Pliny (Plinius), N.H. Book XN, 1:3), Empedocles, Democritus (5th century B.C.) and his teacher Aristotle (384-322 B.C.). He also has a number of Roman successors - Cato the Elder (234-140 B.C), Varro (116-27 B.C.), Received April 22, 1980 Vol. 29, 1980/81 HISTORY OF GERMINATION RESEARCH 5 Virgil (70-19 B.C.) and Pliny the Elder (23-79 A.D.), who all wrote agricultural treatises. But while they are agriculturists, Theophrastus is a true biologist and scientist, relating to observations in a critical way and questioning their accuracy (the "scientific method"). The typical sentence "This is yet to be investigated" is often repeated in his books (e.g. D.H.P. Book IV, IX:3). Many of his observations show that he is a plant physiologist. When attempting to show that not all underground organs are roots he says: "for we must base our definition (of roots) on natural function and not on position" (D.H.P. Book I, VI:9). Another of his statements is most remarkable consi­ dering that it was only proved experimentally over 2000 years later by lngenhousz (1779) and Senebier (1788): "When the crop changes with the country the mutation evidently follows the air and the soil since all plants get their food through these and from these" (D.C.P. Book II, XIII:l). He is also the first to report allelopathy, which Molisch investigated only some 2000 years later (1922). Theophrastus reports: " ... some things though they do not cause death enfeeble the tree as to the production of flavours and scents; thus cabbage and sweet bay have this effect on vine. For they say that the vine scents the cabbage and is affected1 by it wherefore the vine shoot, whenever it comes near this plant, turns back and looks away as though the smell was hostile to it" (D.H.P. Book IV, XVI:S). He is a plant ecologist and plant geographer since he recognises clearly that soil in general, and its salt and water content, the depth of ground water, dew fall, topography (mountain and plain flora) and geographic latitude "give a special character to vegetation" (D.H.P. Book III, 11:6), and determine growth and reproduction of plants (e.g. D.H.P. Book III, 11:6; Book III, III:S; Book N, III:S & 7). Long before Raunkiaer (1900), he is the first botanist to recognise the importance of life forms: "The first and most important classes which comprise all plants are tree, shrub, dwarf shrub,2 herb" (D.H.P. Book I, 11:6). In the context of this paper, however, the most important point is that Theo­ phrastus is also the first seed physiologist and seed ecologist. He knew that during seed maturation plants deposit food reserves in seeds, reserves which are needed for seedling growth: " ... all plant seed has in itself a certain amount of nourishment which is produced with it at the beginning just as is the case in eggs. Wherefore the remark of Empedocles is not badly put when he says: 'And the tall trees oviposit'; for the devel­ opment of seeds is very much like that -of eggs except that we must extend Empe­ docles's dictum to include the seeds not only of trees, but of all plants, for every kind of seed has nourishment in itself' (D.C.P. Book I, VII:l). Fruit coats and seed coats have different functions and differ in their resistance to environmental conditions. "When the fruit case, which is for man's use, is different from the seed,3 it must ripen within a limited period, since after this has passed, the tree will suffer from the onslaught of winter and rainy weather. There need, however, be no limit for a seed case since this falls down with the seed or first shoots them out, as in the pitch pine or the conifers generally. In these, while the cones are still fast to 1 The English translation reads "infected". It should read "affected". 2 The English translation reads "under-shrub". 3 This implies that Theophrastus knew that this "difference" does not always exist. .
Recommended publications
  • BIL 161: Environment and Development: the Effects of Environmental Variables on Seed Germination
    BIL 161: Environment and Development: The Effects of Environmental Variables on Seed Germination The seed is more than just a plant waiting to happen. It is a complex marvel of evolution, a miniature life-support system that responds to environmental cues in order to give the embryo nestled within the best chance of survival. I. Characteristics and Classification of Plants Plants share synapomorphies that set them apart from other organisms. 1. true tissues (of types unique to plants) 2. waxy cuticle (to prevent desiccation) 3. stomates (microscopic gas exchange pores on the leaves) 4. apical meristems (permanent embryonic tissue for constant growth) 5. multicellular sex organs (male antheridia and female archegonia) 6. walled spores produced in structures called sporangia 7. embryo development inside the female parent 8. secondary metabolites (alkaloids, tannins, flavonoids, etc.) 9. heteromorphic alternation of generations The most primitive plants do not produce seeds at all, but rather release spores into the environment where they grow into a second life cycle stage, called the gametophyte. In seed plants, the life cycle is highly derived. Seed plants still make spores, but each spore grows into a gametophyte that is little more than a bit of tissue that gives rise to gametes. In the male parts of the plant, each spore develops into a sperm-producing male gametophyte known as pollen. In the female parts of the plant, meiosis occurs inside a structure known as the ovule, which will eventually give rise to the seed. Plants can broadly be classified as follows. A. Bryophytes – non-vascular plants (mosses, liverworts and hornworts) B.
    [Show full text]
  • Germination : Seeds Come Equipped with Everything Needed to Create A
    Germination : Seeds come equipped with everything needed to create a new plant. They’re simply waiting for optimal environmental conditions to be met, then the process of germination can begin. First, the seed absorbs water. The seed coat softens and enzymes within are dissolved. Warm temperatures activate the enzymes to begin working. Oxygen combines with the seed’s stored energy and new tissue is formed through cell elongation and cell division. This description of germination, though over- simplified, gives us a useful glimpse of plant life in its infant stage. · All seed germination involves water, temperature and oxygen. However, each plant species has unique requirements for these three conditions. Therefore, follow seed package instructions carefully. Days to germination and planting depth are important knowledge for successful gardening. · Seeds are often started indoors in order to extend the growing season in our Midwest location. Seed starting in early spring also gives the gardener an opportunity to optimize conditions for germination. Soil temperature can be controlled through the use of heating mats. Watering from the bottom at appropriate intervals keeps the soil moist, not water logged. · Moisture is a pre-requisite for successful germination. However, too much water will exclude oxygen from the seed. Note that seeds need oxygen during this stage of their development; the need for carbon dioxide increases later when leaves emerge and photosynthesis begins. · Each species has an optimal temperature and a range of temperatures for germination. ISU Publication PM 874 “Starting Garden Transplants at Home” includes a table of best soil temperature for germination of several flower and vegetable species.
    [Show full text]
  • Germination, Survival, and Growth of Grass and Forb Seedlings: Effects of Soil Moisture Variability
    Acta Oecologica 35 (2009) 679–684 Contents lists available at ScienceDirect Acta Oecologica journal homepage: www.elsevier.com/locate/actoec Original article Germination, survival, and growth of grass and forb seedlings: Effects of soil moisture variability Philip A. Fay a,*, Megan J. Schultz b,1 a USDA-ARS, Grassland Soil and Water Research Laboratory, 808 E. Blackland Road, Temple, TX 76502, USA b Natural Resources Research Institute, University of Minnesota Duluth, 5013 Miller Trunk Highway, Duluth, MN 55811, USA article info abstract Article history: Seed germination and seedling growth, survivorship, and final biomass and their responses to watering Received 31 January 2009 interval were studied in two grass and six forb species to assess germination and seedling growth Accepted 13 June 2009 responses to increased soil moisture variability as might occur with future increases in precipitation Published online 14 July 2009 variability. Seeds were planted in prairie soil and watered at 1, 2, 4, or 7 d intervals (I). Seed germination peaked at I ¼ 4 d whereas leaf growth in grasses and forbs, and final biomass in grasses peaked at I ¼ 7d, Keywords: suggesting that growth and biomass were favored at greater soil moisture variability than seed germi- Allocation nation. Biomass responses to I were stronger than the germination responses, suggesting that soil Biomass Climate change moisture variability more strongly influenced post germination growth. Individual species responses to I Community fell into three groups; those with responses to I for: (1) seed germination and seedling survival, (2) Establishment biomass, or (3) both germination and biomass production. These species groups may be more useful than Extreme events life form (i.e., grass/forb) for understanding seed germination and seedling dynamics in grasslands Functional group during periods of soil moisture variability.
    [Show full text]
  • Seed Germination
    Aquaponics Seed Germination Adapted from: This is an original activity from Environmental Science 250: Environmental Education. Grade Level: Intermediate ACADEMIC STANDARDS Duration: Various class English Language Arts Pre K – 5 periods . 1.2 Reading Informational Text o Key Ideas and Details Setting: Classroom o Craft and Structure o Integration of Knowledge and Ideas Summary: Students will be able o Vocabulary Acquisition and Use to germinate and track the o Range of Reading . 1.5 Speaking and Listening growth of their seeds. o Comprehension and Collaboration o Presentation of Knowledge and Ideas Objectives: Students will be o Integration of Knowledge and Ideas able to germinate and track the o Conventions of Standard English growth of their seeds. In order to English Language Arts 6 – 12 do this they will understand the . 1.2 Reading Informational Text process by which a seed o Key Ideas and Details germinates and the conditions o Craft and Structure o Integration of Knowledge and Ideas necessary for growth. o Vocabulary Acquisition and Use o Range of Reading Vocabulary: Germination . 1.5 Speaking and Listening o Comprehension and Collaboration Additional Materials (Included o Presentation of Knowledge and Ideas in Module): o Integration of Knowledge and Ideas o Conventions of Standard English . Seed Diagram . Germination Process Writing in Science and Technical Subjects 6 – 12 Handout . 3.6 Writing . Seeds o Text Types and Purposes o Production and Distribution of Writing . Paper towels o Research to Build and Present Knowledge . Plastic bags o Range of Writing . Notecards Reading in Science and Technical Subjects 6 – 12 . Tweezers . 3.5 Reading .
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Lesson 6: Seed Germination Summary Objectives Materials
    Partnerships for Reform through Investigative Science and Math Lesson 6: Seed Germination Dry Forest Summary The students will design and conduct their own experiments based on Concepts some general background information presented here. This Scientific data collect experiment will be based on seedling germination and plant growth. ion and presentation Students will come up with their own variables to test and then conduct their own experiment. They will create a poster presentation HCPS III Benchmarks of their research project. SC6.1.1, SC6.1.2, SC6.2.1 Objectives • Students will be able to understand the basic requirements for MA6.9.1, MA6.11.1, plant growth. MA6.12.1, MA6.13.1 • Student will develop questions to test for a scientific experiment. LA6.1.1, LA6.4.1, • Student will follow scientific method by carrying out the LA6.4.2, LA6.5.2, experiment they develop. LA6.6.1, LA6.6.2, LA6.6.3, LA6.6.4, Materials LA6.6.5 Activity 1: Group Discussion Series Poster Board for Driving Question Board Duration KWL worksheet 2-3 weeks; Scientific Method Chart 2 class periods to develop and set up, then Activity 2: Seed Germination Experiment 15 minutes every other Seed Germination Procedure worksheet day to maintain their Lab Report Guidelines worksheet experiment until Seeds (bean plants work well) (another week or two), Cups & Potting soil or Paper towels & Plastic bags class period for Water presentations. Ruler May need depending on experiments: Source Material Colored saran wrap as light filter Planting Science Desk lamp Soda Vocabulary Gravel experimental design Whatever else the students come up with that is easily obtained variable Poster paper (1 sheet per group) biotic Graph paper abiotic Seedling Growth Word Search substrate pollution Making Connections Students will make connections to “Lesson 2: Seed Types” and “Lesson 4: Scientific Method” by using knowledge they have gained in these lessons to create their own experiment on seed germination.
    [Show full text]
  • Germination Studies for Various Wildflowers for Species Seeded At
    Germination Studies for Various Wildflowers for Species Seeded at the USDA NRCS Big Flats Plant Materials Center Prepared by, Shawnna Clark Natural Resources Specialist Seeding native wildflowers for enhancing pollinator habitat is a challenging task. Many wildflowers exhibit a form of seed dormancy, that can be broken when certain environmental conditions are met. This can be tricky because even some lots of wildflower seed can show different dormancy conditions. There are countless articles and research that has been performed to test the dormancy of many wildflowers and even these results will vary from year to year due to changing environmental conditions. Over the past 3 years, we performed germination tests on the species we have been using for establishing pollinator habitat. Each species was put directly in the greenhouse without any pre-treatment and subjected to a period of time in the plant cooler, to mimic winter conditions, and or known as cold-moist stratification. Each species was researched, and based on current and available literature, they were put in the plant cooler, for either 1, 2, or 3 months. Very small seeded species require heat and light for germination, such as square stem monkey flower, and Lobelia spp., and were surface sown, and lightly pressed onto the soil. In general, most species benefit from a period of cold-moist stratification. They show signs of faster germination time as well as blooming faster. The chart below is broken down, by pre-treatment category and no pre-treatment. Better germination, refers to the findings that, species under this category, germinated faster, with that treatment.
    [Show full text]
  • Understanding Molecular Mechanisms of Seed Dormancy for Improved Germination in Traditional Leafy Vegetables: an Overview
    agronomy Review Understanding Molecular Mechanisms of Seed Dormancy for Improved Germination in Traditional Leafy Vegetables: An Overview Fernand S. Sohindji, Dêêdi E. O. Sogbohossou , Herbaud P. F. Zohoungbogbo, Carlos A. Houdegbe and Enoch G. Achigan-Dako * Laboratory of Genetics, Horticulture and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, 01 BP 526 Tri Postal, Cotonou, Benin; [email protected] (F.S.S.); [email protected] (D.E.O.S.); [email protected] (H.P.F.Z.); [email protected] (C.A.H.) * Correspondence: [email protected]; Tel.: +229-95-39-32-83 Received: 28 October 2019; Accepted: 24 December 2019; Published: 1 January 2020 Abstract: Loss of seed viability, poor and delayed germination, and inaccessibility to high-quality seeds are key bottlenecks limiting all-year-round production of African traditional leafy vegetables (TLVs). Poor quality seeds are the result of several factors including harvest time, storage, and conservation conditions, and seed dormancy. While other factors can be easily controlled, breaking seed dormancy requires thorough knowledge of the seed intrinsic nature and physiology. Here, we synthesized the scattered knowledge on seed dormancy constraints in TLVs, highlighted seed dormancy regulation factors, and developed a conceptual approach for molecular genetic analysis of seed dormancy in TLVs. Several hormones, proteins, changes in chromatin structures, ribosomes, and quantitative trait loci (QTL) are involved in seed dormancy regulation. However, the bulk of knowledge was based on cereals and Arabidopsis and there is little awareness about seed dormancy facts and mechanisms in TLVs. To successfully decipher seed dormancy in TLVs, we used Gynandropsis gynandra to illustrate possible research avenues and highlighted the potential of this species as a model plant for seed dormancy analysis.
    [Show full text]
  • Germination Requirements Summary Objectives Materials Making
    Partnerships for Reform through Investigative Science and Math Germination Requirements Dry Forest Summary The students will design and conduct their own experiment based on Concepts some general background information they receive. This experiment Scientific data collect will be based on seedling germination and plant growth. Students ion and presention. will come up with their own variables to test and then conduct their own experiment. They will create a poster presentation of their HCPS III Benchmarks research project. SC6.1.1, SC6.1.2, SC6.2.1 Objectives • Students will be able to understand the basic requirements for MA6.9.1, MA6.11.1, plant growth. MA6.12.1, MA6.13.1 • Student will develop questions to test for a scientific experiment. LA6.1.1, LA6.4.1, • Student will follow scientific method by carrying out the LA6.4.2, LA6.5.2, experiment they develop. LA6.6.1, LA6.6.2, LA6.6.3, LA6.6.4, Materials LA6.6.5 Activity 1: Group Discussion Series Poster Board for Driving Question Board Duration KWL worksheet 2-3 weeks; Scientific Method Chart 2 class periods to develop and set up, then Activity 2: Seed Germination Experiment 15 minutes every other Seed Germination Procedure worksheet day to maintain their Lab Report Guidelines worksheet experiment until Seeds what kind? (another week or two), Cups & Potting soil or Paper towels & Plastic bags class period for Water presentations. Ruler May need depending on experiments: Source Material Colored saran wrap as light filter Planting Science Desk lamp Soda Vocabulary Gravel experimental design Whatever else the students come up with that is easily obtained variable Poster paper (1 sheet per group) biotic Graph paper abiotic Seedling Growth Word Search substrate pollution Making Connections Students will make connections to “Lesson 2: Seed Anatomy” and “Lesson 5: Scientific Method” by using knowledge they have gained in these lessons to create their own experiment on seed germination.
    [Show full text]
  • Techniques to Improve Seed Germination Allen R
    Techniques to Improve Seed Germination Allen R. Pyle, J. W. Jung Seed Company Understanding Germination Introduction to Seed Germination Having a good understanding of the fundamentals of seed germination helps gardeners improve their success growing seedlings, regardless of how experienced they are. Knowing these fundamentals helps gardeners to understand the “whys” behind the “hows” when germinating seeds and growing seedlings. Remember that seeds are living organisms even before they germinate and begin growing. By paying careful attention to the key factors that regulate germination, gardeners can grow higher quality seedlings with reduced losses from cultural problems and seedling diseases. Seed germination is a fascinating and remarkable process. It involves several different steps. First, seeds absorb water, in a process called “imbibition.” Seeds require moist conditions in order to take up water initially. This is why it is so important to keep the growing medium consistently and evenly moist while seeds are germinating and to ensure there is good contact between the growing medium and the seed. It is also a reason that keeping stored seeds dry, with low moisture content, is important. Interestingly, imbibition is a physical process that will occur whether a seed is alive or dead. After imbibing water, biological processes greatly speed up inside the seed, activating enzymes and mobilizing nutrients to fuel the growth of the initial root, or “radicle.” As water is absorbed, germinating seeds greatly increase their respiration rate and their need for oxygen. The main way that oxygen becomes limiting for seeds is when the media is completely saturated with water, particularly if the seed is covered with media.
    [Show full text]
  • Chapter 12: Life Cycles: Meiosis and the Alternation of Generations
    Chapter 12 Life Cycles: Meiosis and the Alternation of Generations LIFE CYCLES TRANSFER GENETIC INFORMATION Asexual Reproduction Transfers Unchanged Genetic Information through Mitosis Sexual Reproduction Produces New Information through Meiosis and Fertilization ALTERNATION BETWEEN DIPLOID AND HAPLOID GENERATIONS Plants Vary in the Details of Their Life Cycles Sexual Cycles Can Be Heterosporic or Homosporic Only One Generation Is Multicellular in Zygotic or Gametic Life Cycles The Diploid Generation Has Become Dominant over Evolutionary Time SUMMARY 1 KEY CONCEPTS 1. Life perpetuates itself through reproduction, which is the transfer of genetic information from one generation to the next. This transfer is our definition of life cycle. Reproduction can be asexual or sexual. 2. Asexual reproduction requires a cell division know as mitosis. Asexual reproduction offers many advantages over sexual reproduction, one of which is that it requires only a single parent. A significant disadvantage of asexual reproduction is the loss of genetic diversity and the likelihood of extinction when the environment changes. 3. Sexual reproduction involves the union of two cells, called gametes, which are usually produced by two different individuals. Another kind of cell division, known as meiosis, ultimately is necessary to produce gametes. 4. Every species in the kingdom Plantae has both diploid and haploid phases--that is, plants whose cells are all diploid or all haploid. These phases are called generations, and they alternate with each other over time. 5. The fossil record reveals that the most recent groups to evolve have sporic life cycles, in which the gametophyte (haploid) generation is relatively small and the sporophyte (diploid) generation is dominant in terms of size, complexity, and longevity.
    [Show full text]
  • Seed Germination Codes and Instructions
    Seed Germination Codes and Instructions A: Seed should germinate upon sowing in a warm location. No pre- treatment necessary other than cold, dry storage (also called dry cold stratification). Seed purchased from Prairie Moon has been stored under The seeds of many native plants have built-in dormancy mech- these conditions. anisms which protect them from germinating before killing frosts or in times of drought. In the wild, seeds will lie dormant until B: Hot water treatment: Bring water to a boil, remove from heat, pour over the proper conditions for growth occur. But in cultivation, the seeds, and soak in a warm place for 24 hours prior to planting. successful gardener must become familiar with several simple pre- C: (Number of stratifying days) Seeds germinate after a period of cold, sowing seed treatment methods which will unlock the dormancy moist stratification. Please note: You do not need to stratify if you are fall mechanism and stimulate quicker, more consistent germination. planting or using a seed drill. Also, do not use this method if you are planting a seed mix and cannot keep the site moist. Mix seeds with equal amounts or more of damp sand, vermiculite, or other We have developed the following seed germination codes to sterile media (moist—but not so wet that water will squeeze out of a handful). help you successfully grow the native seed sold in our catalog. These We use silica sand (purchased at a building supply center) for small quanti- seed treatment suggestions have been compiled from our own ex- ties. For large quantities we use coarse grade vermiculite.
    [Show full text]