Nod1 and Nod2 in innate immune responses, adaptive immunity and bacterial infection.

By

Lionel Le Bourhis

A thesis submitted in conformity with the requirements of the degree of

Doctor of Philosophy

Graduate Department of Immunology

University of Toronto

Nod1 and Nod2 in innate immune responses, adaptive immunity and bacterial infection.

Lionel Le Bourhis, PhD thesis, 2009, Departmenent of Immunology, University of Toronto

Abstract

The last decade has been witness to a number of seminal discoveries in the field of innate immunity. The discovery that microbial molecules and endogenous danger signals can be detected by germ-line encoded receptors has changed the way we study the immune system. Indeed, the characterization of Toll in Drosophila as a sensor of microbial products in 1997 then led to the discovery of a family of Toll Like Receptors (TLRs) in mammals. TLRs are critical for the induction of inflammatory responses and the generation of a successful adaptive immune response. The array of ligands that these transmembrane recognized mediates defense against bacteria, viruses, fungus and parasites, as well as, possibly, cancerous cells.

In addition to this membrane-bound family of recognition proteins, two families of pattern recognition receptors have been recently shown to respond to microbial and chemical ligands within the cytosol. These represent the Nod Like Receptors (NLRs) and RIGI-like helicase receptor

(RLH) families. Nod1 and Nod2 are members of the NLR family of proteins, which are responsible for the recognition of components derived from the bacterial cell wall, more precisely, moieties of peptidoglycan. As such, Nod1 and Nod2 are implicated in the recognition and the defense against bacterial pathogens. Importantly, the encoding these two proteins have also been linked to the etiology of several inflammatory disorders such as Crohn’s disease and asthma.

In this thesis, we show that recognition of Nod1 and Nod2 ligands generates a rapid and transient inflammatory response in vivo. When co-injected with a model , Nod1 and Nod2 ligands exhibit adjuvant properties that lead to the generation of an antigen-specific Th2 type adaptive immune response. Surprisingly, recognition of the Nod1 ligand in non-hematopoietic cells

ii is critical for the generation of this immune response. In contrast, TLRs classically tip the balance towards a Th1 response and interestingly, co-injection of TLR and Nod ligands synergize to generate a more potent immune response characterized by the generation of Th1, Th2 and Th17 T cell respones.

To study the role of Nod1 and Nod2 in the context of a bacterial infection in vivo, we used an intestinal mouse pathogen, Salmonella enterica serovar Typhimurium . We were able to show that

Nod1-deficient mice, but not Nod2-deficient mice, are more susceptible to the strain of this bacterium, which enters the host through the active pickup in the intestinal lumen by underlying myeloid cells. This sampling mechanism is mediated by a subset of dendritic cells that populate the intestinal lamina propria. Accordingly, the defect seen in Nod1-deficient mice localizes to the mucosal barrier where these dendritic cells appear to have an impaired response towards the bacteria.

Taken together, these results increase our knowledge on the general role of Nod1 and Nod2 in immunity and might generate new avenues of research and potential therapeutic targets.

iii Acknowledgements

I would like to thank Dr Dana Philpott and Dr Stephen Girardin for their support, guidance and friendship. You gave me way more than the tools to be a good scientist.

I am also greatful for the help that I received coming to Toronto by my committee members Dr Tania Watts and Dr James Carlyle, Rejeanne Puran and the graduate student of the department of immunology. I shouldn’t forget the members of the laboratories past and present, especially Jörg and Joao for science and much more.

Je voudrais remercier mes parents, Chantal et André, pour leur confiance, une denrée dont tout scientifique à besoin. Je ne serais pas qui je suis sans mes trois frères, Gaël, Joël et Mikaël ; je les remercie pour m’avoir poussé à réussir, ils m’ont fait aimer le travail d’équipe et avoir un esprit compétitif, qualitées importantes chez un scientifique. Je voudrais remercier les amis qui m’ont accompagné, pour certains depuis longtemps. Enfin je voudrais remercier Julie pour sa patience, indispensable dans la vie d’un scientifique.

Work for this thesis have been supported by the Pasteur Institut, l’Association François Aupetit, la Fondation pour la Recherche Médicale, as well as the Canadian Institutes of Health Research (CIHR) and the Howard Hughes Medical Institute (HHMI).

2 rights make 1 wrong…

iv Table of Content

Abstract 2

Acknowledgement 3

Table of content 4

List of Publications 8

List of Figures and Tables 9

List of Abbreviations 11

Chapter I: Introduction 14

1. Innate immune recognition 15

A. TLRs 15

1) Structure and signaling. 15

2) Ligands specificity 18

B. NLRs 21

1) Structure and signaling. 21

2) Ligands specificity 25

C. Other sensors 27

2. Role of the NLR in the immune response 28

A. Barrier and antimicrobial functions 29

B. Role in inflammation and cellular activation 30

C. Impact on the adaptive response 31

D. Gut mucosal immunity 33

3. Innate immune recognition and bacterial infection 38

A. NLRs and bacterial infections 38

i. Nod1 38

v ii. Nod2 39

B. Salmonella enterica Typhimurium 39

i. Overview 40

ii. Innate host factors 41

iii. Implication of the immune response 44

Chapter II: Research 46

1. Innate immune recognition by Nod1 in vivo 47

a. Introduction 47

b. Results 49

c. Discussion 55

2. Nod1 signaling induces adaptive immune response 56

a. Introduction 56

b. Results 58

Nod1 Is Required for Optimal Generation of T Cell Responses

Optimal Antibody Responses Require Nod1 Triggering

Induction of Adaptive Immunity by Nod1-Specific Stimulation

TLRs and Nod1 Synergize to Elicit Adaptive Immune Responses

Stimulation of Nod1 in Nonhematopoietic Cells Is Required for Priming Antigen-Specific Immunity

c. Discussion 73

3. Nod2 signaling induces adaptive response 77

a. Introduction 77

b. Results 79

Induction of Th2 immunity by Nod2-specific stimulation

Nod2 is required for optimal elicitation of T and B cell responses in a model of CFA immunization

vi Nod2 cooperates with TLRs for the increased production of Th1-polarizing mediators

c.Discussion 93

4. Nod1 and Nod2 in Salmonella enterica Typhimurium infection 97

a. Introduction 97

b. Results 99

Nod1 deficiency impairs intestinal LPMC homeostasis

LPMC-dependent entry of Salmonella uncovers a role for Nod1 in host defense

Nod1 expression in LPMCs controls host colonization

Nod1 deficiency impairs the response of specific LPMC subsets to Salmonella infection.

c. Discussion 114

5. Unpublished observation and work in progress 118

a. Detection of Salmonella enterica Typhimurium in epithelial cells 118

b. Adaptive response against S. Typhimurium attenuated strain 121

Conclusion and Future directions 125

Experimental procedures 128

Mice and Immunizations. 128

Bone marrow chimeric mice and adoptive transfer 128

Limulus amebocyte assay. 129

Expression plasmids and transient transfections. 129

Mouse peritoneal macrophages. 130

Peripheral blood mononuclear cell isolation. 130

Reagents. 130

Reporter Assay for NF-κB Activation. 131

Cytokine Dosage. 132

vii Flow Cytometry. 132

Analysis of T Cell Responses. 132

Analysis of B Cell Responses. 133

Bone Marrow-Derived DCs and Macrophages. 134

Lymphocyte Proliferation and RT-PCR Analysis. 134

Infections. 135

Analysis of immune cells from lamina propria. 136

References 138

viii List of Publications

Le Bourhis L , Magalhaes JG, Selvanantham T, Travassos LH, Geddes K, Fritz JH, Viala J, Tedin K, Girardin SE, Philpott DJ. (2009) Nod1 controls Salmonella infection through regulation of intestinal lamina propria dendritic cells. (submitted) Magalhaes JG, Fritz JH, Le Bourhis L , Sellge G, Travassos LH, Selvanantham T, Girardin SE, Gommerman JL, Philpott DJ (2008) Nod2-dependent th2 polarization of antigen-specific immunity. J Immunol 181(11): 7925-7935 Joosten LA, Heinhuis B, Abdollahi-Roodsaz S, Ferwerda G, Le Bourhis L , Philpott DJ, Nahori MA, Popa C, Morre SA, van der Meer JW, Girardin SE, Netea MG, van den Berg WB (2008) Differential function of the NACHT-LRR (NLR) members Nod1 and Nod2 in arthritis. Proc Natl Acad Sci U S A 105(26): 9017-9022 Fritz JH, Le Bourhis L , Magalhaes JG, Philpott DJ. Innate immune recognition at the epithelial barrier drives adaptive immunity: APCs take the back seat. Trends Immunol. 2008 Jan;29(1):41-9. Le Bourhis L , Benko S, Girardin SE (2007) Nod1 and Nod2 in innate immunity and human inflammatory disorders. Biochem Soc Trans 35(Pt 6): 1479-1484 Werts C, Le Bourhis L , Liu J, Magalhaes JG, Carneiro LA, Fritz JH, Stockinger S, Balloy V, Chignard M, Decker T, Philpott DJ, Ma X, Girardin SE (2007) Nod1 and Nod2 induce CCL5/RANTES through the NF-kappaB pathway. Eur J Immunol 37(9): 2499-2508 Fritz JH, Le Bourhis L , Sellge G, Magalhaes JG, Fsihi H, Kufer TA, Collins C, Viala J, Ferrero RL, Girardin SE, Philpott DJ (2007) Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26(4): 445-459 Le Bourhis L , Werts C (2007) Role of Nods in bacterial infection. Microbes Infect 9(5): 629-636 Tien MT, Girardin SE, Regnault B, Le Bourhis L , Dillies MA, Coppee JY, Bourdet-Sicard R, Sansonetti PJ, Pedron T (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176(2): 1228-1237 Ferwerda G, Girardin SE, Kullberg BJ, Le Bourhis L , de Jong DJ, Langenberg DM, van Crevel R, Adema GJ, Ottenhoff TH, Van der Meer JW, Netea MG (2005) NOD2 and toll-like receptors are nonredundant recognition systems of Mycobacterium tuberculosis. PLoS Pathog 1(3): 279-285 Magalhaes JG, Philpott DJ, Nahori MA, Jehanno M, Fritz J, Le Bourhis L , Viala J, Hugot JP, Giovannini M, Bertin J, Lepoivre M, Mengin-Lecreulx D, Sansonetti PJ, Girardin SE (2005) Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep 6(12): 1201-1207 Leonardo H. Travassos, Leticia A. M. Carneiro, Séamus Hussey, Mahendrasingh Ramjeet, Linda Yuan, Joao G. Magalhaes, Lionel Le Bourhis , Ivo G. Boneca, Abdelmounaaim Allaoui, Nicola L. Jones, Stephen E. Girardin and Dana J. Philpott. Essential role of Nod1 and Nod2 in bacterial induced autophagy. 2009 (submitted)

ix List of Figures and Tables

Figure 1: TLR structure and signaling. Table 1: TLR ligands Figure 2: Nod-Like Receptors (NLR) Family Table 2: NLR ligands Figure 3: NLR triggers and signaling pathways Figure 4B: Response of lamina propria myeloid cells to microbial trigger in the gut. Figure 4A: Role of lamina propria myeloid cells in gut immune homeostasis. Figure 5: Salmonella enterica Typhimurium model of entry. Figure 6: Chemical composition of Nod1 and Nod2 ligands Figure 7: Human Nod1 detects diaminopimelic acid-type muramyl tripeptides in both epithelial cells and immune cells. Figure 8: Murine Nod1 preferentially detects diaminopimelic acid-type muramyl tetrapeptides. Figure 9: Nod1 agonists induce cytokine and nitrite responses in mouse peritoneal macrophages. Figure 10: Murine Nod1 agonist FK156 induces innate immune responses in vivo in mice. Figure 11: Altered Antigen-Specific T Cell Responses in Nod1-Deficient Mice Immunized with CFA. Figure 12: Altered Antigen-Specific Immunoglobulin Production in Nod1-Deficient Mice upon Immunization with CFA and Bacterial Infection. Figure 13: Impaired Antigen-Specific T and B Cell Immunity in Nod1-Deficient Mice Immunized with FK156. Figure 15: Analysis of Nod1 Expression and Nod1-Deficient T and B Lymphocytes Function Figure 16: TLRs and Nod1 Synergize for Dendritic Cell Cytokine Production and NF-κB Signaling Figure 17: The Nod1 Agonist FK156 Synergizes with TLR Agonists for Priming of Antigen- Specific Immunity Figure 18: Impaired FK156-Mediated Chemokine Production in Nod1-Deficient Mice Figure 19: Stimulation of Nod1 in Nonhematopoietic Cells Is Required for Priming Antigen- Specific Immunity

x Figure 20: Impaired MDP-mediated chemokine and cytokine production in Nod2-deficient animals. Figure 21: Specific stimulation of Nod2 elicits Ag-specific T cell immunity. Figure 22: Specific stimulation of Nod2 elicits Ag specific B cell immunity. Figure 23: Comparison of Lymphocyte Populations of Wild-Type and Nod2-Deficient Mice. Figure 24: Analysis Nod2-Deficient T and B Lymphocytes Function. Figure 25: Altered Ag-specific T cell responses in Nod2-deficient mice immunized with CFA. Figure 26: Nod2 cooperates with TLR2 and TLR4 for the increased production of Th1- polarizing mediators. Figure 27: Activation of macrophages and DCs independent of Nod2. Figure 28: Critical role of Nod2 for the production of Th1-polarizing mediators upon detection of peptidoglycan. Figure 29: Normal population in MLN, PP and LP of Nod1-/- compared to WT mice. Figure 30: Myeloid populations of WT and Nod1-/- deficient intestinal lamina propria. Figure 31: Nod1 deficiency increases the susceptibility to Spi1-deficient but not to wild type S. Typhimurium . Figure 32: Lack of contribution of Nod1 after S. Typhimurium intraperitoneal infection. Figure 33: Nod2 deficiency doesn’t confer increase susceptibility to S. Typhimurium infection neither in WT or Nod1 deficient background. Figure 34: Nod1 in the hematopoietic compartment is crucial for the response to Spi1-deficient bacteria Figure 35: Higher infection of LPMCs of Nod1 deficient mice. Figure 36: Defect of Nod1-deficient macrophages and dendritic cells to S. Typhimurium infection. Figure 37: Hematopoietic defect in the lamina propria. Figure 38: Impaired cellular response of Nod1-/- deficient LMPCs after oral infection. Figure 39: Nod1 detects invasive S. Typhimurium in HEK293 cells. Figure 40: Nod1 and Nod2 deficiency in the adaptive response towards S. Typhimurium ∆AroA Figure 41: Nod1 deficiency in the adaptive response towards S. Typhimurium ∆AroA after i.p. injection. Figure 42: Nod1 deficiency in the non hematopoietic compartment and the adaptive response towards S. Typhimurium ∆AroA.

xi List of Abbreviations

AIM2 Absent In Melanoma 2

ASC -associated speck-like protein containing a caspase recruitment domain

BMDC Bone Marrow derived Dendritic Cell

BMM Bone Marrow derived Macrophage

BrdU Bromodeoxyuridine

CARD Caspase Activating and Recruitment Domain

CD Crohn’s Disease

CFA Complete Freund’s Adjuvant

DAI DNA-dependent activator of IFN-regulatory factors

DAMP Danger Associated Molecular Pattern

DAP Di-AminoPimelic acid

DC Dendritic Cell

EC Epithelial Cells

ELISA Enzyme Linked Immuno Sorbant Assay

IBD Inflammatory Bowel Disease

IFA Incomplete Freund’s Adjuvant

IFN Interferon

IKK I kappa Kinase

IL- Interleukine

ILF Inducible Lymphoid Follicles

IPAF ICE protease activating factor

IPS1 interferon-β promoter stimulator 1

IRAK IL-1 Receptor Associated Kinase

KC Keratinocyte derived Chemokine

xii LP Lamina propria

LPMC Lamina Propria Myeloid Cells

LPS Lipo Poly Saccharide

LRR Leucine Rich Repeat

MAMP Microbe Associated Molecular Patterns

MAPK Mitogen-Activated Protein Kinase

MCP Monocyte chemotactic protein

MDA5 Melanoma Differentiation Associated 5

MDP Muramyl DiPeptide

MHCII Major Histocompatibility Complex class II

MIP Macrophage Inflammatory Protein

MLN Mesenteric Lymph Node

MyD88 Myeloid Determinant 88

NACHT domain present in NAIP, CIITA, HET-E, TP-1

NAIP Neuronal Apoptosis Inhibitor Protein

NALP NACHT-LRR-PYD-containing protein

NF-kB Nuclear Factor kappa B

NLR Nod Like Receptor

NLRC Nod Like Receptor CARD

NLRP Nod Like Receptor Pyrin

NO Nitric Oxyde

Nod Nucleotid Oligomerization Domain

NRAMP Natural Resistance Associated Macrophage Protein

OVA OVAlbumin

PGE Prostaglandine

PGN Peptidoglycan

xiii PGRP Peptidoglycan Recognition Protein

PP Peyer’s patches

PRM Pattern Recognition Molecule

RIG-I Retinoic-acid Inducible Gene I

SNP Single Nucleotide Polymorphism

Spi Salmonella pathogenicity island

TCT Tracheal CytoToxin

TGF Transforming Growth Factor

TIR TLR IL-1 Receptor domain

TIRAP TLR IL-1 Receptor Associated Protein

TLR Toll Like Receptor

TNF Tumor Necrosis Factor

TRAF TNF Receptor Associated Factor

TRAM TLR Receptor Associated Molecule

TREM Triggering Receptor Expressed on Myeloid cells

TRIF TIR domain-containing adaptor Inducing IFN-ß

WT Wild Type

xiv

Chapter I

Introduction

Drosophila melanogaster,

β β κ β κ α β γ

κ

Figure 1: TLR structure and signaling. κ κ

Table 1: TLR ligands

Receptor MAMP Origin of MAMP

Toxoplasma gondii

κΒ γ. κ β β

β

Figure 2: Nod-Like Receptors (NLR) Family

Figure 3: The Nod-Like Receptor (NLR) Family and associated signaling pathways. β

β Bacillus anthracis Salmonella Legionella

Table 2: NLR and RLH ligands

Receptor MAMP Origin of MAMP

Legionella Salmonella

Bacillus anthrasis

Legionella

β β

β . Α Candida albicans κ β

κ κα β Shigella flexneri κ Helicobacter pylori

βββ β Salmonella Legionella Shigella, γ α

κ α

 αβ  

β β β

κ α β γ κ

β β

Figure 4A: Role of lamina propria myeloid cells in gut immune homeostasis.

Figure 4B: Response of lamina propria myeloid cells to microbial trigger in the gut.

Shigella flexneri E. coli Pseudomonas aeruginosa Chlamydophyla Helicobacter pylori Haemophilus influenza, Streptococcus pneumoniae

Listeria monocytogenes Mycobacterium tuberculosis α Staphylococcus aureus Nod2 H. pylori Salmonella enterica Typhimurium

Salmonella enterica Typhimurium Salmonella enterica Enterobacteriaceae S. Typhi Typhimurium Salmonella Shigella flexneri S. Typhimurium S. Typhimurium S. Typhimurium

Salmonella Salmonella Salmonella Salmonella Salmonella Salmonella Salmonella Salmonella Salmonella Salmonella Salmonella Salmonella S. Typhimurium

Salmonella Salmonella β Salmonella

Figure 5: Salmonella enterica Typhimurium model of entry. Salmonella

Salmonella β Salmonella Salmonella β Salmonella β β Salmonella β Salmonella Salmonella Salmonella Salmonella Salmonella

Salmonella Salmonella Salmonella Typhimurium Salmonella Typhimurium

Chapter II

Research

1. Innate immune recognition by Nod1 in vivo

a. Introduction

Figure 6: Chemical composition of Nod1 and Nod2 ligands

b. Results α α − − − −

Figure 7: Human Nod1 detects diaminopimelic acid-type muramyl tripeptides in both epithelial cells and immune cells. κ κ α

Figure 8: Murine Nod1 preferentially detects diaminopimelic acid-type muramyl tetrapeptides. α κκ κ

−/− α β −/− γ −/−

Figure 9: Nod1 agonists induce cytokine and nitrite responses in mouse peritoneal macrophages. ααβ γγ

Figure 10: Murine Nod1 agonist FK156 induces innate immune responses in vivo in mice. αα

−/− −/−

c. Discussion B. pertussis Mesocricetus auratus B. pertussis Salmonella Shigella Bordetella Neisseria Escherichia coli

2. Nod1 signaling induces adaptive immune response

a. Introduction Helicobacter pylori

Listeria monocytogenes κ κ H. pylori

b. Results Nod1 Is Required for Optimal Generation of T Cell Responses

Optimal Antibody Responses Require Nod1 Triggering

Figure 11: Altered Antigen-Specific T Cell Responses in Nod1-Deficient Mice Immunized with CFA γ γ γ γ

H. pylori H. pylori H. pylori

Induction of Adaptive Immunity by Nod1-Specific Stimulation H. pylori

Figure 12: Altered Antigen-Specific Immunoglobulin Production in Nod1-Deficient Mice upon Immunization with CFA and Bacterial Infection.

−/−

Figure 13: Impaired Antigen-Specific T and B Cell Immunity in Nod1-Deficient Mice Immunized with FK156

Figure 14: Comparison of Lymphocyte Populations and Basal Serum Immunglobulin Levels of Wild-Type and Nod1-Deficient Mice.

Figure 15: Analysis of Nod1 Expression and Nod1-Deficient T and B Lymphocytes Function.

TLRs and Nod1 Synergize to Elicit Adaptive Immune Responses β α β β αβ βα β

Figure 16: TLRs and Nod1 Synergize for Dendritic Cell Cytokine Production and NF-κκκB Signaling. β α κ κ κ

κ κ γ

Stimulation of Nod1 in Nonhematopoietic Cells Is Required for Priming Antigen-Specific Immunity

Figure 17: The Nod1 Agonist FK156 Synergizes with TLR Agonists for Priming of Antigen- Specific Immunity γ γ γ

Figure 18: Impaired FK156-Mediated Chemokine Production in Nod1-Deficient Mice.

−/−

Figure 19: Stimulation of Nod1 in Nonhematopoietic Cells Is Required for Priming Antigen- Specific Immunity

c. Discussion γ H. pylori H. pylori H. pylori κ

β α γ

3. Nod2 signaling induces adaptive responses a. Introduction

κ β

b. Results Induction of Th2 immunity by Nod2-specific stimulation γ

Figure 20: Impaired MDP-mediated chemokine and cytokine production in Nod2-deficient animals. n p

Figure 21: Specific stimulation of Nod2 elicits Ag-specific T cell immunity. n p

Figure 22: Specific stimulation of Nod2 elicits Ag specific B cell immunity. n p

Nod2 is required for optimal elicitation of T and B cell responses in a model of CFA immunization M. butyricum γ γ γ

Figure 23: Comparison of Lymphocyte Populations of Wild-Type and Nod2-Deficient Mice. β

Figure 24: Analysis Nod2-Deficient T and B Lymphocytes Function.

Nod2 cooperates with TLRs for the increased production of Th1-polarizing mediators S. aureus

Figure 25: Altered Ag-specific T cell responses in Nod2-deficient mice immunized with CFA. A κ M. butyricum κ p n B γ + p<

(Figure 25 continued) C γ γ D n p

Figure 26: Nod2 cooperates with TLR2 and TLR4 for the increased production of Th1- polarizing mediators. A B p

Figure 27: Activation of macrophages and DCs independent of Nod2. A B

S. aureus α γ

Figure 28: Critical role of Nod2 for the production of Th1-polarizing mediators upon detection of peptidoglycan. A B C αγ p

c.Discussion

γ

4. Nod1 and Nod2 in Salmonella enterica Typhimurium infection a. Introduction

Salmonella Salmonella

Salmonella Salmonella Salmonella

b. Results Nod1 deficiency impairs intestinal LPMC homeostasis

Figure 29: Normal cell populations in MLN, PP, and LP of Nod1 -/- compared to WT mice.

Figure 30: Myeloid populations of WT and Nod1 -/- intestinal lamina propria.

LPMC-dependent entry of Salmonella uncovers a role for Nod1 in host defense Salmonella enterica Typhimurium, ∆ ∆ ∆ S. Typhimurium S. Typhimurium ∆ spi1 S. Typhimurium

Figure 31: Nod1 deficiency increases susceptibility to Spi1 -deficient but not wild-type S. Typhimurium . S. Typhimurium ∆ S. Typhimurium

S. Typhimurium S. Typhimurium S. Typhimurium S. Typhimurium ∆ S. Typhimurium S. Typhimurium S. Typhimurium ∆ S. Typhimurium ∆

Nod1 expression in LPMCs controls host colonization S. Typhimurium ∆

Figure 32: Lack of contribution of Nod1 after S. Typhimurium intraperitoneal infection. S. Typhimurium S. Typhimurium ∆

Figure 33: Nod2 deficiency does not alter susceptibility to S. Typhimurium infection. S. Typhimurium S. Typhimurium ∆ .

Figure 34: Nod1 in the hematopoietic compartment is crucial for the response to Spi1- deficient bacteria. S. Typhimurium ∆

S. Typhimurium ∆ S. Typhimurium

Nod1 deficiency impairs the response of specific LPMC subsets to Salmonella infection. S. Typhimurium ∆ S. Typhimurium ∆ S. Typhimurium ∆ S. Typhimurium ∆

Figure 35: Increased infection of LPMCs from Nod1-deficient mice. S. Typhimurium ∆

Figure 36: Defect of Nod1-deficient macrophages and dendritic cells in response to S. Typhimurium infection. S. Typhimurium S. Typhimurium ∆

S. Typhimurium ∆ S. Typhimurium ∆ S. Typhimurium ∆ S. Typhimurium ∆

Figure 37: Hematopoietic defect in Nod1-deficient lamina propria myeloid cells. S. Typhimurium ∆

Figure 38: Impaired cellular response of Nod1 -/- deficient LPMCs after oral infection. S. Typhimurium ∆ S. Typhimurium ∆

c. Discussion S. Typhimurium ∆

S. Typhimurium S. Typhi Salmonella S. Typhimurium S. Typhimurium ∆ S. Typhimurium ∆ S. Typhimurium ∆ S. Typhimurium ∆ S. Typhimurium ∆

S. Typhimurium ∆ S. Typhimurium Salmonella S. Typhimurium ∆ S. Typhimurium Salmonella S. Typhimurium ∆ S. Typhimurium

S. Typhimurium S. Typhimurium S. Typhimurium S. Typhimurium S. Typhimurium S. Typhimurium

5. Unpublished observations and work in progress

a. Detection of Salmonella enterica Typhimurium in epithelial cells κ Shigella flexneri Helicobacter pylori E. coli κ S. Typhimurium. S. Typhimurium κ S. Typhimurium κ β S. Typhimurium α κ S. Typhimurium S. Typhimurium κ S. Typhimurium κ κ S. flexneri κ S. Typhimurium Spi1 κ

Spi2 κ κ S. Typhimurium κ S. Typhimurium κ S. Typhimurium

Figure 39: Nod1 detects invasive S. Typhimurium in HEK293 cells. κ ∆ ∆ ∆ S. Typhimurium

b. Role of Nod1 and Nod2 in Salmonella Typhimurium adaptive response. S. Typhimurium S. Typhimurium S. Typhimurium ∆ S. Typhimurium S. Typhimurium ∆ S. Typhimurium S. Typhimurium S. Typhimurium ∆ S. Typhimurium

S. Typhimurium S. Typhimurium S. Typhimurium γ,

Figure 40: Nod1 and Nod2 deficiency in adaptive immunity to S. Typhimurium ∆∆∆AroA . S. Typhimurium ∆ S. Typhimurium S. Typhimurium

Figure 41: Nod1 deficiency in adaptive immunity to S. Typhimurium ∆∆∆AroA after i.p. injection. S. Typhimurium ∆ S. Typhimurium S. Typhimurium

Figure 42: Nod1 deficiency in the non-hematopoietic compartment and adaptive immunity to S. Typhimurium ∆∆∆AroA. S. Typhimurium ∆ S. Typhimurium S. Typhimurium

Conclusions and future directions γ Salmonella Typhimurium

Experimental Procedures Helicobacter

γ

Salmonella minnesota H. pylori Mycobacterium butyricum Mycobacterium smegmatis

κ β κ κ β γβ α ββα

γ γ γ γ γ γ γ

H. pylori

Salmonella minnesota γ β H. pylori

Helicobacter Salmonella enterica Typhimurium Salmonella

− − −

References

9 46 20 171 278 413 202 223 455 22

98 274 441 35 197 177 281 38

285 197 167 127 39 175 4 265 203 30

57 8 204 304 5 16 10 38 8 164 181

320 29 6 33 453 59 42 1 198

7 38 227 7 11 35 29 26 86 314 167 300

278 2 36 174 140 404 439 192 166 9 205

50 173 26 303 3 408 96 163 24 9 195

2 283 9 314 105 411 14 206 69

204 274 276 278 84 5 176 31 40 22 166

20 99 440 173 3 62 11 7 19 6 36 5

72 28 1 Suppl 1 7 110 307 10 75 201 86 181 71

98 203 9 150 198 181 3 181 6 441

25 430 440 27 14 10 440 56 163 442 7 14 203

38 451 314 17 778 441 446 280 183 307 276

164 96 97 290 21 438 52 19 314 282 3 356

124 20 6 23 118 170 74 172 6 7

124 8 55 2 6 164 135 206 6 311 173

83 175 24 203 416 73 448 21 169 165 9

8 165 280 5 9 7 277 105 401

5 180 108 118 5 116 172 13 314 203 8 408

27 108 301 169 395 308 194 45 5 26

205 446 52 358