The Bacterial Peptidoglycan-Sensing Molecules NOD1 and NOD2 Promote CD8 + Thymocyte Selection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Expression of NOD2, NLRP3 and NLRC5 and Renal Injury in Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis
Wang et al. J Transl Med (2019) 17:197 https://doi.org/10.1186/s12967-019-1949-5 Journal of Translational Medicine RESEARCH Open Access The expression of NOD2, NLRP3 and NLRC5 and renal injury in anti-neutrophil cytoplasmic antibody-associated vasculitis Luo‑Yi Wang1,2,3, Xiao‑Jing Sun1,2,3, Min Chen1,2,3* and Ming‑Hui Zhao1,2,3,4 Abstract Background: Nucleotide‑binding oligomerization domain (NOD)‑like receptors (NLRs) are intracellular sensors of pathogens and molecules from damaged cells to regulate the infammatory response in the innate immune system. Emerging evidences suggested a potential role of NLRs in anti‑neutrophil cytoplasmic antibody (ANCA)‑associated vasculitis (AAV). This study aimed to investigate the expression of nucleotide‑binding oligomerization domain con‑ taining protein 2 (NOD2), NOD‑like receptor family pyrin domain containing 3 (NLRP3) and NOD‑like receptor family CARD domain containing 5 (NLRC5) in kidneys of AAV patients, and further explored their associations with clinical and pathological parameters. Methods: Thirty‑four AAV patients in active stage were recruited. Their renal specimens were processed with immu‑ nohistochemistry to assess the expression of three NLRs, and with double immunofuorescence to detect NLRs on intrinsic and infltrating cells. Analysis of gene expression was also adopted in cultured human podocytes. The associa‑ tions between expression of NLRs and clinicopathological parameters were analyzed. Results: The expression of NOD2, NLRP3 and NLRC5 was signifcantly higher in kidneys from AAV patients than those from normal controls, minimal change disease or class IV lupus nephritis. These NLRs co‑localized with podocytes and infltrating infammatory cells. -
Genetic Variation in Pattern-Recognition Receptors and Association with Leprosy 145
DOI: 10.5772/intechopen.73871 ProvisionalChapter chapter 8 Genetic Variation inin Pattern-RecognitionPattern-Recognition ReceptorsReceptors and and Association withwith LeprosyLeprosy Karina Talita de Oliveira Santana JorgeJorge andand Frederico Marianetti SorianiSoriani Additional information isis available atat thethe endend ofof thethe chapterchapter http://dx.doi.org/10.5772/intechopen.73871 Abstract Mycobacterium leprae is a highly infectious and low pathogenic microorganism that is the causal agent of leprosy. The differences in vulnerability to leprosy, the spectral immune response, and the clinical manifestations of this disease are related to different genetic backgrounds among individuals. In this sense, genetic variants, especially in genes related to mycobacteria recognition and host immune response, may be key factors to explain individual susceptibility and resistance to leprosy and their conditions. In this chapter, studies regarding association of genetic variants in pattern-recognition receptors (PRRs) and leprosy will be reviewed revealing the importance of molecules such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in leprosy initiation and maintenance. Keywords: polymorphisms, pattern-recognition receptors, mycobacterium leprae, leprosy 1. Introduction Leprosy is caused by Mycobacterium leprae, which is an intracellular bacterium with high infectivity and low pathogenicity. It means that there are a large number of people exposed to this pathogen; however, the majority of them are naturally resistant. On the other hand, some people develop leprosy once challenged with M. leprae. The people who develop disease may present different clinical forms of leprosy. Some of them develop a localized disease, named tuberculoid leprosy, with a strong host response, which does not avoid development of nerve injury and physical disabilities. -
Cytotoxic T Cells Class I- Dependent Lymphocyte Killing by NLRC5 Deficiency Selectively Impairs
The Journal of Immunology NLRC5 Deficiency Selectively Impairs MHC Class I- Dependent Lymphocyte Killing by Cytotoxic T Cells Francesco Staehli,* Kristina Ludigs,* Leonhard X. Heinz,† Queralt Seguı´n-Este´vez,‡ Isabel Ferrero,x Marion Braun,x Kate Schroder,{ Manuele Rebsamen,† Aubry Tardivel,* Chantal Mattmann,* H. Robson MacDonald,x Pedro Romero,x Walter Reith,‡ Greta Guarda,*,1 and Ju¨rg Tschopp*,1,2 Nucleotide-binding oligomerization domain-like receptors (NLRs) are intracellular proteins involved in innate-driven inflamma- tory responses. The function of the family member NLR caspase recruitment domain containing protein 5 (NLRC5) remains a matter of debate, particularly with respect to NF-kB activation, type I IFN, and MHC I expression. To address the role of NLRC5, we generated Nlrc5-deficient mice (Nlrc5D/D). In this article we show that these animals exhibit slightly decreased CD8+ T cell percentages, a phenotype compatible with deregulated MHC I expression. Of interest, NLRC5 ablation only mildly affected MHC I expression on APCs and, accordingly, Nlrc5D/D macrophages efficiently primed CD8+ T cells. In contrast, NLRC5 deficiency dramatically impaired basal expression of MHC I in T, NKT, and NK lymphocytes. NLRC5 was sufficient to induce MHC I expression in a human lymphoid cell line, requiring both caspase recruitment and LRR domains. Moreover, endogenous NLRC5 localized to the nucleus and occupied the proximal promoter region of H-2 genes. Consistent with downregulated MHC I expression, the elimination of Nlrc5D/D lymphocytes by cytotoxic T cells was markedly reduced and, in addition, we observed low NLRC5 expression in several murine and human lymphoid-derived tumor cell lines. -
Post-Transcriptional Inhibition of Luciferase Reporter Assays
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 287, NO. 34, pp. 28705–28716, August 17, 2012 © 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Post-transcriptional Inhibition of Luciferase Reporter Assays by the Nod-like Receptor Proteins NLRX1 and NLRC3* Received for publication, December 12, 2011, and in revised form, June 18, 2012 Published, JBC Papers in Press, June 20, 2012, DOI 10.1074/jbc.M111.333146 Arthur Ling‡1,2, Fraser Soares‡1,2, David O. Croitoru‡1,3, Ivan Tattoli‡§, Leticia A. M. Carneiro‡4, Michele Boniotto¶, Szilvia Benko‡5, Dana J. Philpott§, and Stephen E. Girardin‡6 From the Departments of ‡Laboratory Medicine and Pathobiology and §Immunology, University of Toronto, Toronto M6G 2T6, Canada, and the ¶Modulation of Innate Immune Response, INSERM U1012, Paris South University School of Medicine, 63, rue Gabriel Peri, 94276 Le Kremlin-Bicêtre, France Background: A number of Nod-like receptors (NLRs) have been shown to inhibit signal transduction pathways using luciferase reporter assays (LRAs). Results: Overexpression of NLRX1 and NLRC3 results in nonspecific post-transcriptional inhibition of LRAs. Conclusion: LRAs are not a reliable technique to assess the inhibitory function of NLRs. Downloaded from Significance: The inhibitory role of NLRs on specific signal transduction pathways needs to be reevaluated. Luciferase reporter assays (LRAs) are widely used to assess the Nod-like receptors (NLRs)7 represent an important class of activity of specific signal transduction pathways. Although pow- intracellular pattern recognition molecules (PRMs), which are erful, rapid and convenient, this technique can also generate implicated in the detection and response to microbe- and dan- www.jbc.org artifactual results, as revealed for instance in the case of high ger-associated molecular patterns (MAMPs and DAMPs), throughput screens of inhibitory molecules. -
Autophagy Suppresses Ras-Driven Epithelial Tumourigenesis by Limiting the Accumulation of Reactive Oxygen Species
OPEN Oncogene (2017) 36, 5576–5592 www.nature.com/onc ORIGINAL ARTICLE Autophagy suppresses Ras-driven epithelial tumourigenesis by limiting the accumulation of reactive oxygen species This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue. J Manent1,2,3,4,5,12, S Banerjee2,3,4,5, R de Matos Simoes6, T Zoranovic7,13, C Mitsiades6, JM Penninger7, KJ Simpson4,5, PO Humbert3,5,8,9,10 and HE Richardson1,2,5,8,11 Activation of Ras signalling occurs in ~ 30% of human cancers; however, activated Ras alone is not sufficient for tumourigenesis. In a screen for tumour suppressors that cooperate with oncogenic Ras (RasV12)inDrosophila, we identified genes involved in the autophagy pathway. Bioinformatic analysis of human tumours revealed that several core autophagy genes, including GABARAP, correlate with oncogenic KRAS mutations and poor prognosis in human pancreatic cancer, supporting a potential tumour- suppressive effect of the pathway in Ras-driven human cancers. In Drosophila, we demonstrate that blocking autophagy at any step of the pathway enhances RasV12-driven epithelial tissue overgrowth via the accumulation of reactive oxygen species and activation of the Jun kinase stress response pathway. Blocking autophagy in RasV12 clones also results in non-cell-autonomous effects with autophagy, cell proliferation and caspase activation induced in adjacent wild-type cells. Our study has implications for understanding the interplay between perturbations in Ras signalling and autophagy in tumourigenesis, -
ATP-Binding and Hydrolysis in Inflammasome Activation
molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure. -
Blau Syndrome Polymorphisms in NOD2 Identify Nucleotide Hydrolysis and Helical Domain 1 As Signalling Regulators ⇑ Rhiannon Parkhouse A, Joseph P
FEBS Letters 588 (2014) 3382–3389 journal homepage: www.FEBSLetters.org Blau syndrome polymorphisms in NOD2 identify nucleotide hydrolysis and helical domain 1 as signalling regulators ⇑ Rhiannon Parkhouse a, Joseph P. Boyle a,b, Tom P. Monie a,b, a Department of Biochemistry, University of Cambridge, Cambridge, UK b Department of Veterinary Medicine, University of Cambridge, Cambridge, UK article info abstract Article history: Understanding how single nucleotide polymorphisms (SNPs) lead to disease at a molecular level Received 10 June 2014 provides a starting point for improved therapeutic intervention. SNPs in the innate immune recep- Revised 23 July 2014 tor nucleotide oligomerisation domain 2 (NOD2) can cause the inflammatory disorders Blau Syn- Accepted 23 July 2014 drome (BS) and early onset sarcoidosis (EOS) through receptor hyperactivation. Here, we show Available online 2 August 2014 that these polymorphisms cluster into two primary locations: the ATP/Mg2+-binding site and helical Edited by Renee Tsolis domain 1. Polymorphisms in these two locations may consequently dysregulate ATP hydrolysis and NOD2 autoinhibition, respectively. Complementary mutations in NOD1 did not mirror the NOD2 phenotype, which indicates that NOD1 and NOD2 are activated and regulated by distinct methods. Keywords: Nucleotide-binding, leucine-rich repeat Ó 2014 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical containing receptor Societies. This is an open access article under the CC BY license (http://creativecommons.org/licenses/ -
IL-1 Secretion Innate T Cell Responses Through Effects On
Autophagy Regulates IL-23 Secretion and Innate T Cell Responses through Effects on IL-1 Secretion This information is current as Celia Peral de Castro, Sarah A. Jones, Clíona Ní Cheallaigh, of September 24, 2021. Claire A. Hearnden, Laura Williams, Jan Winter, Ed C. Lavelle, Kingston H. G. Mills and James Harris J Immunol 2012; 189:4144-4153; Prepublished online 12 September 2012; doi: 10.4049/jimmunol.1201946 Downloaded from http://www.jimmunol.org/content/189/8/4144 Supplementary http://www.jimmunol.org/content/suppl/2012/09/12/jimmunol.120194 Material 6.DC1 http://www.jimmunol.org/ References This article cites 48 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/8/4144.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Autophagy Regulates IL-23 Secretion and Innate T Cell Responses through Effects on IL-1 Secretion Celia Peral de Castro,*,† Sarah A. -
The Association of ATG16L1 Variations with Clinical Phenotypes of Adult-Onset Still’S Disease
G C A T T A C G G C A T genes Article The Association of ATG16L1 Variations with Clinical Phenotypes of Adult-Onset Still’s Disease Wei-Ting Hung 1,2, Shuen-Iu Hung 3 , Yi-Ming Chen 4,5,6 , Chia-Wei Hsieh 6,7, Hsin-Hua Chen 6,7,8 , Kuo-Tung Tang 5,6,7 , Der-Yuan Chen 9,10,11,* and Tsuo-Hung Lan 1,5,12,13,* 1 Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei 11221, Taiwan; [email protected] 2 Department of Medical Education, Taichung Veterans General Hospital, Taichung 40705, Taiwan 3 Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; [email protected] 4 Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan; [email protected] 5 School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; [email protected] 6 Rong Hsing Research Center for Translational Medicine & Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan; [email protected] (C.-W.H.); [email protected] (H.-H.C.) 7 Division of Allergy, Immunology, and Rheumatology, Taichung Veterans General Hospital, Taichung 40705, Taiwan 8 Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 40705, Taiwan 9 Translational Medicine Laboratory, Rheumatology and Immunology Center, China Medical University Hospital, Taichung 40447, Taiwan 10 Rheumatology and Immunology Center, China Medical University Hospital, Taichung 40447, Taiwan Citation: Hung, W.-T.; Hung, S.-I.; 11 School of Medicine, China Medical University, Taichung 40447, Taiwan Chen, Y.-M.; Hsieh, C.-W.; Chen, 12 Tsao-Tun Psychiatric Center, Ministry of Health and Welfare, Nantou 54249, Taiwan H.-H.; Tang, K.-T.; Chen, D.-Y.; Lan, 13 Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli 35053, Taiwan T.-H. -
Mesenchymal Stromal Cells Inhibit NLRP3 Inflammasome Activation In
www.nature.com/scientificreports OPEN Mesenchymal stromal cells inhibit NLRP3 infammasome activation in a model of Coxsackievirus Received: 21 February 2017 Accepted: 16 January 2018 B3-induced infammatory Published: xx xx xxxx cardiomyopathy Kapka Miteva1,2, Kathleen Pappritz1,2, Marzena Sosnowski1, Muhammad El-Shafeey1,3, Irene Müller1,2, Fengquan Dong1, Konstantinos Savvatis1, Jochen Ringe1,4, Carsten Tschöpe1,2,5 & Sophie Van Linthout1,2,5 Infammation in myocarditis induces cardiac injury and triggers disease progression to heart failure. NLRP3 infammasome activation is a newly identifed amplifying step in the pathogenesis of myocarditis. We previously have demonstrated that mesenchymal stromal cells (MSC) are cardioprotective in Coxsackievirus B3 (CVB3)-induced myocarditis. In this study, MSC markedly inhibited left ventricular (LV) NOD2, NLRP3, ASC, caspase-1, IL-1β, and IL-18 mRNA expression in CVB3-infected mice. ASC protein expression, essential for NLRP3 infammasome assembly, increased upon CVB3 infection and was abrogated in MSC-treated mice. Concomitantly, CVB3 infection in vitro induced NOD2 expression, NLRP3 infammasome activation and IL-1β secretion in HL-1 cells, which was abolished after MSC supplementation. The inhibitory efect of MSC on NLRP3 infammasome activity in HL-1 cells was partly mediated via secretion of the anti-oxidative protein stanniocalcin-1. Furthermore, MSC application in CVB3-infected mice reduced the percentage of NOD2-, ASC-, p10- and/or IL-1β-positive splenic macrophages, natural killer cells, and dendritic cells. The suppressive efect of MSC on infammasome activation was associated with normalized expression of prominent regulators of myocardial contractility and fbrosis to levels comparable to control mice. In conclusion, MSC treatment in myocarditis could be a promising strategy limiting the adverse consequences of cardiac and systemic NLRP3 infammasome activation. -
The ATG5-Binding and Coiled Coil Domains of ATG16L1 Maintain
AUTOPHAGY 2019, VOL. 15, NO. 4, 599–612 https://doi.org/10.1080/15548627.2018.1534507 RESEARCH PAPER The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis Shashank Raia*, Maryam Arasteha*, Matthew Jeffersona*, Timothy Pearsona, Yingxue Wanga, Weijiao Zhanga, Bertalan Bicsaka, Devina Divekara, Penny P. Powella, Ronald Naumannb, Naiara Berazac, Simon R. Cardingc, Oliver Floreyd, Ulrike Mayer e, and Thomas Wilemana,c aNorwich Medical School, University of East Anglia, Norwich, Norfolk, UK; bMax-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany; cQuadram Institute Bioscience, Norwich, Norfolk, UK; dSignalling Programme, Babraham Institute, Cambridge, UK; eSchool of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK ABSTRACT ARTICLE HISTORY Macroautophagy/autophagy delivers damaged proteins and organelles to lysosomes for degradation, Received 8 February 2018 and plays important roles in maintaining tissue homeostasis by reducing tissue damage. The transloca- Revised 28 September 2018 tion of LC3 to the limiting membrane of the phagophore, the precursor to the autophagosome, during Accepted 5 October 2018 autophagy provides a binding site for autophagy cargoes, and facilitates fusion with lysosomes. An KEYWORDS autophagy-related pathway called LC3-associated phagocytosis (LAP) targets LC3 to phagosome and ATG16L1; brain; endosome membranes during uptake of bacterial and fungal pathogens, and targets LC3 to swollen LC3-associated endosomes containing particulate material or apoptotic cells. We have investigated the roles played by phagocytosis; sequestosome autophagy and LAP in vivo by exploiting the observation that the WD domain of ATG16L1 is required for 1/p62 inclusions; tissue LAP, but not autophagy. -
The Role of Tlrs, Nlrs, and Rlrs in Mucosal Innate Immunity and Homeostasis
nature publishing group REVIEW See ARTICLE page 29 The role of TLRs, NLRs, and RLRs in mucosal innate immunity and homeostasis E C L a v e l l e 1 , C M u r p h y 2 , L A J O ’ N e i l l 2 a n d E M C r e a g h 2 The mucosal surfaces of the gastrointestinal tract are continually exposed to an enormous antigenic load of microbial and dietary origin, yet homeostasis is maintained. Pattern recognition molecules (PRMs) have a key role in maintaining the integrity of the epithelial barrier and in promoting maturation of the mucosal immune system. Commensal bacteria modulate the expression of a broad range of genes involved in maintaining epithelial integrity, inflammatory responses, and production of antimicrobial peptides. Mice deficient in PRMs can develop intestinal inflammation, which is dependent on the microbiota, and in humans, PRM polymorphisms are associated with exacerbated inflammatory bowel disease. Innate immune responses and epithelial barrier function are regulated by PRM-induced signaling at multiple levels, from the selective expression of receptors on mucosal cells or compartments to the expression of negative regulators. Here, we describe recent advances in our understanding of innate signaling pathways, particularly by Toll-like receptors and nucleotide-binding domain and leucine-rich repeat containing receptors at mucosal surfaces. INTRODUCTION mucosal immune compartment, which comprises the lamina Activation of the innate immune system is triggered when patho- propria, Peyer ’ s patches, and mesenteric lymph nodes.4 The gen-associated molecular patterns or endogenous damage-asso- ability to contain the microbiota in this region is dependent on ciated molecular patterns engage pattern recognition molecules PRMs, as a deficiency in TLR signaling results in the increased (PRMs) on cells including epithelial cells, macrophages, and den- uptake of bacteria into the spleens of mice.