Fundamental Insights Into Ontogenetic Growth from Theory and Fish

Total Page:16

File Type:pdf, Size:1020Kb

Fundamental Insights Into Ontogenetic Growth from Theory and Fish Fundamental insights into ontogenetic growth from theory and fish Richard M. Siblya,1, Joanna Bakera, John M. Gradyb, Susan M. Lunac, Astrid Kodric-Brownb, Chris Vendittia, and James H. Brownb,d,1 aSchool of Biological Sciences, University of Reading, Reading, Berkshire RG6 6AS, United Kingdom; bBiology Department, University of New Mexico, Albuquerque, NM 87131; cFishBase Information and Research Group, Inc. (FIN), International Rice Research Institute (IRRI), Los Baños, 4031 Laguna, Philippines; and dSanta Fe Institute, Santa Fe, NM 87501 Contributed by James H. Brown, September 28, 2015 (sent for review May 4, 2015; reviewed by Andrew J. Kerkhoff and Kirk O. Winemiller) The fundamental features of growth may be universal, because body mass is generally around −1/4, but there has been debate as to growth trajectories of most animals are very similar, but a unified whether the same scaling applies to ontogenetic growth (9–11). mechanistic theory of growth remains elusive. Still needed is a Theoretical models and empirical studies of fish growth have synthetic explanation for how and why growth rates vary as body the potential to inform how metabolic processes fuel and regu- size changes, both within individuals over their ontogeny and late growth (4, 6, 9, 12). Fish vary in mature body size by nearly between populations and species over their evolution. Here, we nine orders of magnitude, from less than 5 mg for the dwarf use Bertalanffy growth equations to characterize growth of ray- pygmy goby (Pandaka pygmae) to more than 2 tons for the ocean finned fishes in terms of two parameters, the growth rate sunfish (Mola mola), and show substantial within-species as well coefficient, K, and final body mass, m∞. We derive two alternative as across-species variation in final body size. Interestingly, how- ever, with the exception of a few freshwater species the vast majority empirically testable hypotheses and test them by analyzing data ∼ from FishBase. Across 576 species, which vary in size at maturity of fish species start life at a nearly constant size, eggs 1mmin −0.23 diameter and 1 mg in mass (13, 14). To reach mature size, they grow by almost nine orders of magnitude, K scaled as m∞ . This sup- ports our first hypothesis that growth rate scales as m−0.25 as pre- less than 1 order of magnitude for the smallest species, such as the ∞ dwarf goby, and about 11 orders of magnitude for the largest fish, dicted by metabolic scaling theory; it implies that species that ECOLOGY such as ocean sunfish and giant tunas (www.fishbase.org). Fish oc- grow to larger mature sizes grow faster as juveniles. Within fish −0.35 cur in an enormous variety of environments, including nearly all species, however, K scaled as m∞ . This supports our second m−0.33 marine and fresh waters and a range of temperatures from below hypothesis, which predicts that growth rate scales as ∞ when freezing (0 °C) in the Antarctic Ocean to above 40 °C in hot springs. all juveniles grow at the same rate. The unexpected disparity be- It has long been known that mass-specific growth rates of fish, tween across- and within-species scaling challenges existing theo- like other animals, decrease with increasing body size, both retical interpretations. We suggest that the similar ontogenetic within individuals over ontogenetic development and across taxa m−0.33 programs of closely related populations constrain growth to ∞ over phylogenetic evolution (12, 15). Data on fish growth are scaling, but as species diverge over evolutionary time they evolve typically quantified using the Bertalanffy model, which has three the near-optimal m−0.25 scaling predicted by metabolic scaling theory. ∞ parameters: neonate mass, m0; final body mass, m∞;andagrowth Our findings have important practical implications because fish supply rate coefficient, K. We developed two models to account for how essential protein in human diets, and sustainable yields from wild K might scale with m∞. Scaling according to the −1/3 power is harvests and aquaculture depend on growth rates. expected if growth rate after hatching is the same for all fish. This is plausible if the fish are all of the same species, but might also metabolic theory of ecology | Bertalanffy growth | scaling theory hold across species because most start life at similar sizes, about 1 mg in mass. On the other hand, metabolic scaling theory predicts rowth is a universal attribute of life. All organisms have life Gcycles that include growth. Growing organisms take up en- Significance ergy and material resources from their environment, transform them within their bodies, and allocate them among maintenance, Understanding growth of fish is important, both for regulating growth, and reproduction. Over ontogeny, large, multicellular, harvests of wild populations for sustained yields, and for using complex animals increase in mass by many orders of magnitude, artificial selection and genetic engineering to increase pro- from microscopic zygotes to much larger mature adults. In such ductivity of domesticated fish stocks. We developed theory to animals, growth necessarily entails integration of three phenomena. account for how growth rate varies with body size, within in- First, growth is fueled by metabolism as energy-rich carbon com- dividuals as they grow to maturity and across species as they pounds are respired to generate the ATP that powers the assembly evolve. Data on fish growth in FishBase supported our theo- of organic molecules and essential elements to synthesize biomass. retical predictions. We found that growth rates scaled differ- Second, mass and energy balance are regulated so that uptake ently in populations of the same species than they scaled exceeds expenditure and a stock of biomass accumulates. Third, across species. We suggest that similar developmental pro- the synthetic process is integrated with ontogenetic development so grams of close relatives constrain growth, but as species di- that growth is regulated as body size increases by orders of mag- verge over evolutionary time they evolve the near-optimal −1/4 nitude and differentiated tissues and organs are produced. power scaling predicted by metabolic scaling theory. Growth trajectories of most animals are nearly identical when rescaled by body mass at maturity and time to reach mature size Author contributions: R.M.S., J.B., C.V., and J.H.B. designed research; R.M.S., J.B., C.V., and (Fig. 1). This suggests that the fundamental features of growth may J.H.B. performed research; S.M.L. extracted the data from FishBase; R.M.S., J.B., C.V., and be universal or nearly so (1–7; www.fishbase.org). Nevertheless, how J.H.B. analyzed data; and R.M.S., J.B., J.M.G., A.K.-B., C.V., and J.H.B. wrote the paper. energy and materials are processed to regulate growth as body size Reviewers: A.J.K., Kenyon College; and K.O.W., Texas A&M University. changes over both ontogeny and phylogeny remain poorly un- The authors declare no conflict of interest. derstood (8). Because growth is powered by metabolism, scaling of 1To whom correspondence may be addressed. Email: [email protected] or jhbrown@ metabolic rate, both within individuals over ontogenetic develop- unm.edu. ment and across species over phylogenetic evolution, is relevant. This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. Across species, the scaling of mass-specific metabolic rate with adult 1073/pnas.1518823112/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1518823112 PNAS Early Edition | 1of6 Downloaded by guest on September 30, 2021 −1=4 i) Hypothesis 1: K scales as m∞ . Consider first g when the fish is at a specified proportionn of finalo body mass—e.g., 1/2 m∞. 1 = 2 = 3 − Then Eq. gives gð1=2Þm∞ K 2 1 . Viewed in this way gð1=2Þm∞ is proportional to K,soK is an index of growth rate (16). Hence K is a biological rate, and metabolic theory predicts that mass-specific biological rates generally scale across species negatively with body size and positively with temperature T as follows: −α −E=cT K = K0m∞ e , [3] where K0 is a normalization constant; α is the allometric scaling exponent, which usually is ∼1/4; T is environmental temperature in kelvin (= °C + 273.2); E is an “activation energy,” which is usually ∼0.65 eV for processes governed by respiration; and c is − − Boltzmann’s constant (c = 8.62 × 10 5 eV·K 1) (11, 17). Taking logarithms, we get the following: = −α − = + [4] loge K loge m∞ E cT loge K0. So in a regression of loge K on loge m∞ and 1/cT the regression coefficients are predicted to be –α or approximately −1/4 and –E Fig. 1. Individual body mass plotted against age for the southern mouth- − brooder, Pseudocrenilabrus philander, and the guppy, Poecilia reticulata. or approximately 0.65, respectively. −1=3 The curves represent fitted Bertalanffy growth equations. ii) Hypothesis 2: K scales as m∞ . Our second hypothesis is also developed from Eq. 2. With the exception of a few freshwater species, offspring of nearly all bony fish hatch at very similar size, −1/4 scaling across species. We tested these predictions using around a millimeter long, corresponding to a mass of around 0.001 g empirical growth data from FishBase and found some support for (13, 14). So, neonate mass, m0, is nearly invariant, and rapid both models. Within-species coefficients scaled close to the −1/3 growth after hatching would seem to confer a large fitness advan- power, but across species they scaled close to −1/4. This un- tage. According to this idea, we might expect all juveniles to grow at expected disparity challenges existing theory.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
    Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users.
    [Show full text]
  • 28. Annexe 2 Haplochromis
    Description de ‘Haplochromis’ snoeksi ‘Haplochromis’ snoeksi (Perciformes: Cichlidae) a new species from the Inkisi River basin, Lower Congo Soleil WAMUINI L. *, ** Emmanuel VREVEN *** and Pierre VANDEWALLE** * I.S.P. Mbanza-Ngungu, Département de Biologie, B.P. 127 - Mbanza-Ngungu, Democratic Republic of Congo (DRC). E-mail: [email protected] ** Université de Liège, Faculté des Sciences, Laboratoire de Morphologie fonctionnelle et évolutive, B-4000 Liège, Belgium. E-mail: [email protected] *** Royal Museum for Central Africa, Vertebrate Section, Ichthyology, B-3080 Tervuren, Belgium; E-mail: [email protected] Abstract ‘Haplochromis’ snoeksi , new species, is described from a single locality, Ngeba village on the Ngeba /Ngufu River, a right bank affluent of the Inkisi River basin (Lower Congo; Democratic Republic of Congo). The species is distinguished from its riverine Congo River basin congeners by the following unique combination of characters: thorax partially naked, i.e. without small scales; 16 scales around caudal peduncle; and an upper lateral line with 23 scales. Résumé Une nouvelle espèce, ‘ Haplochromis ’ snoeksi , est décrite d’une seule localité, le village Ngeba sur la rivière Ngeba/Ngufu, un affluent de la rive droite de l’Inkisi (Bas-Congo; République Démocratique du Congo). Cette espèce se distingue des ses congénères des rivières de la province ichtyologiques du bassin du Congo par la combinaison des caractères suivants : un espace thoracique partiellement nu, c'est-à-dire dépourvu d’écailles, 16 écailles autour du pédoncule caudal et une ligne latéral supérieure avec 23 écailles. Introduction The family Cichlidae is characterized by a single nostril on either side of the head, a lateral line which is divided in two parts and a single continuous dorsal fin which has a spiny anterior and soft posterior fin-ray part (Snoeks, 1994; Nelson, 2006; Stiassny et al ., 2008).
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • American Society of Ichthyologists and Herpetologists Board of Governors Meeting Sheraton New Orleans Hotel New Orleans, Louisia
    American Society of Ichthyologists and Herpetologists Board of Governors Meeting Sheraton New Orleans Hotel New Orleans, Louisiana 12 July 2006 Maureen A. Donnelly Secretary Florida International University Biological Sciences 11200 SW 8th St. - OE 167 Miami, FL 33199 [email protected] 305.348.1235 30 May 2006 The ASIH Board of Governor's is scheduled to meet on Wednesday, 12 July 2006 from 1700- 1900 h in Grand Ballroom E (fifth floor) in the Sheraton New Orleans Hotel. President Frost plans to move blanket acceptance of all reports included in this book. Items that a governor wishes to discuss will be exempted from the motion for blanket acceptance and will be acted upon individually. Please remember to bring this booklet with you to the meeting. I will bring a few extra copies to New Orleans. Please contact me directly (email is best - [email protected]) with any questions you may have. Please notify me if you will not be able to attend the meeting so I can share your regrets with the Governors. I will leave for New Orleans on 10 July 2006 so try to contact me before that date if possible. The Annual Business Meeting will be held on Sunday 16 July 2005 from 1800-2000 h in Grand Ballroom A (fifth floor). Please plan to attend the BOG meeting and Annual Business Meeting because consideration of constitutional changes requires a quorum. I look forward to seeing you in New Orleans. Sincerely, Maureen A. Donnelly ASIH Secretary 1 ASIH BOARD OF GOVERNORS 2006 Past Presidents Executive Elected Officers Committee (not on EXEC) Atz, J.W.
    [Show full text]
  • The Ocean Genome: Conservation and the Fair, Equitable and Sustainable Use of Marine Genetic Resources
    Commissioned by BLUE PAPER The Ocean Genome: Conservation and the Fair, Equitable and Sustainable Use of Marine Genetic Resources LEAD AUTHORS Robert Blasiak, Rachel Wynberg, Kirsten Grorud-Colvert and Siva Thambisetty CONTRIBUTING AUTHORS Narcisa M. Bandarra, Adelino V.M. Canário, Jessica da Silva, Carlos M. Duarte, Marcel Jaspars, Alex D. Rogers, Kerry Sink and Colette C.C. Wabnitz oceanpanel.org About this Paper Established in September 2018, the High Level Panel for a Sustainable Ocean Economy (HLP) is a unique initiative of 14 serving heads of government committed to catalysing bold, pragmatic solutions for ocean health and wealth that support the Sustainable Development Goals and build a better future for people and the planet. By working with governments, experts and stakeholders from around the world, the HLP aims to develop a road map for rapidly transitioning to a sustainable ocean economy, and to trigger, amplify and accelerate responsive action worldwide. The HLP consists of the presidents or prime ministers of Australia, Canada, Chile, Fiji, Ghana, Indonesia, Jamaica, Japan, Kenya, Mexico, Namibia, Norway, Palau and Portugal, and is supported by an Expert Group, Advisory Network and Secretariat that assist with analytical work, communications and stakeholder engagement. The Secretariat is based at World Resources Institute. The HLP has commissioned a series of ‘Blue Papers’ to explore pressing challenges at the nexus of the ocean and the economy. These Blue Papers summarise the latest science and state-of-the-art thinking about innovative ocean solutions in the technology, policy, governance and finance realms that can help accelerate a move into a more sustainable and prosperous relationship with the ocean.
    [Show full text]
  • TRANSGENIC SALMON IS FRAUGHT with UNCERTAINTIES and IRREVERSIBLE HARMFUL CONSEQUENCES 2.Pdf
    www.theguardian.com TRANSGENIC SALMON IS FRAUGHT WITH UNCERTAINTIES AND IRREVERSIBLE HARMFUL CONSEQUENCES. In May 2016, the Canadian Food Inspection Agency approved the sale of the GM fish. In July 2017, AquaBounty Technologies said they had sold 4.5 tons of AquaAdvantage salmon fillets to customers in Canada. AquaBounty first asked the FDA to approve the fish for human consumption in 1996. But the FDA said because this was the first genetically modified animal that would be eaten by humans, the agency wanted to take it slow and weigh the pros and cons.Nov 19, 2015 Aquadvantage salmon FDA Approval The Food and Drug Administration (FDA) approved AquaBounty Technologies' application to sell the AquAdvantage salmon to U.S. consumers on November 19, 2015. ... The decision marks the first time a genetically modified animal has been approved to enter the United States food supply. The AquaBounty transgenic Salmon are only allowed to be raise in two land-bases tanks Submission to the FDA TRANSGENIC SALMON IS FRAUGHT WITH UNCERTAINTIES AND IRREVERSIBLE HARMFUL CONSEQUENCES. Sunday, 20 October 2013 21:54 By Joan Russow PhD Global Compliance Research Project It is reported that the FDA is poised to approve Genetically engineered Aquabounty Salmon for human consumption; If approved, it would be the first-ever GE animal permitted for human consumption in the U.S. On April 26 2013 the 120-day comment period ended with 1.8 million submissions opposing the approval of Aquabounty salmon. Once approved, will it be exported everywhere? Unless there is a global ban on genetically engineered food and crops, global citizens will have to be constantly vigilant and have to oppose over and over again each new product introduced by this rogue technology.
    [Show full text]
  • COMMON NAME SCIENTIFIC NAME BYCATCH UNIT CV FOOTNOTE(S) Mid-Atlantic Bottom Longline American Lobster Homarus Americanus 35.43 P
    TABLE 3.4.2a GREATER ATLANTIC REGION FISH BYCATCH BY FISHERY (2015) Fishery bycatch ratio = bycatch / (bycatch + landings). These fisheries include numerous species with bycatch estimates of 0.00; these 0.00 species are listed in Annexes 1-3 for Table 3.4.2a. All estimates are live weights. 1, 4 COMMON NAME SCIENTIFIC NAME BYCATCH UNIT CV FOOTNOTE(S) Mid-Atlantic Bottom Longline American lobster Homarus americanus 35.43 POUND 1.41 t Gadiformes, other Gadiformes 2,003.72 POUND .51 o, t Jonah crab Cancer borealis 223.42 POUND .67 t Monkfish Lophius americanus 309.83 POUND .49 e, f Night shark Carcharhinus signatus 593.28 POUND .7 t Offshore hake Merluccius albidus 273.33 POUND 1.41 Ray-finned fishes, other (demersal) Actinopterygii 764.63 POUND .64 o, t Red hake Urophycis chuss 313.85 POUND 1.39 k Scorpionfishes, other Scorpaeniformes 10.12 POUND 1.41 o, t Shark, unc Chondrichthyes 508.53 POUND .7 o, t Skate Complex Rajidae 27,670.53 POUND .34 n, o Smooth dogfish Mustelus canis 63,484.98 POUND .68 t Spiny dogfish Squalus acanthias 32,369.85 POUND 1.12 Tilefish Lopholatilus chamaeleonticeps 65.80 POUND 1.41 White hake Urophycis tenuis 51.63 POUND .85 TOTAL FISHERY BYCATCH 129,654.74 POUND TOTAL FISHERY LANDINGS 954,635.64 POUND TOTAL CATCH (Bycatch + Landings) 1,084,290.38 POUND FISHERY BYCATCH RATIO (Bycatch/Total Catch) 0.12 Mid-Atlantic Clam/Quahog Dredge American lobster Homarus americanus 4,853.05 POUND .95 t Atlantic angel shark Squatina dumeril 5,313.55 POUND .96 t Atlantic surfclam Spisula solidissima 184,454.52 POUND .93 Benthic
    [Show full text]
  • New Fossils of Cichlids from the Miocene of Kenya and Clupeids from the Miocene of Greece (Teleostei)
    The importance of articulated skeletons in the identification of extinct taxa: new fossils of cichlids from the Miocene of Kenya and clupeids from the Miocene of Greece (Teleostei) Dissertation zur Erlangung des Doktorgrades an der Fakultät für Geowissenschaften der Ludwig-Maximilians-Universität München Vorgelegt von Charalampos Kevrekidis München, 28. September 2020 Erstgutacher: Prof. Dr. Bettina Reichenbacher Zweitgutacher: PD Dr. Gertrud Rößner Tag der mündlichen Prüfung: 08.02.2021 2 Statutory declaration and statement I hereby confirm that my Thesis entitled “Fossil fishes from terrestrial sediments of the Miocene of Africa and Europe”, is the result of my own original work. Furthermore, I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the Ludwig-Maximilians-Universität München. München, 21.09.2020 Charalampos Kevrekidis 3 Abstract Fishes are important components of aquatic faunas, but our knowledge on the fossil record of some taxa, relative to their present diversity, remains poor. This can be due to a rarity of such fossils, as is the case for the family Cichlidae (cichlids). Another impediment is the rarity of well-preserved skeletons of fossil fishes.
    [Show full text]