Introduction Speciation Is a Burning Issue in Evolutionary Biology, but It

Total Page:16

File Type:pdf, Size:1020Kb

Introduction Speciation Is a Burning Issue in Evolutionary Biology, but It Introduction Speciation is a burning issue in evolutionary biology, but it is both fascinating and frustrating. Defining speciation depends on one’s species concept viz., typological, biological, evolutionary, recognition etc. In its simplest form, speciation is lineage splitting (ancestor-descendent sequence of populations); the resulting lineages are genetically isolated and ecologically distinct. Speciation is the process of evolutionary mechanism by which new biological species (or taxa) arise. There are two ways of new species (or taxa) origin from the pre-existing one:- i. by splitting of the parent species into two or more species (by the splitting of phylogenetic lineage) and ii. by transformation of the old species into a new one in due course of time. The Biologist O.F. Cook (1906) seems to have been the first to coin the term ‘speciation’ for the splitting of lineages (cladogenesis).The process of evolutionary mechanism by which new biological plant species (or taxa) arise, is known as plant speciation. General Mechanism of Speciation operating in nature: The mechanism of speciation is a two- staged process in which reproductive isolating mechanisms (RIM's) arise between groups of populations. Stage 1 • gene flow is interrupted between two populations. • absence of gene flow allows two populations to become genetically distinct as a result of their adaptation to different local conditions (genetic drift plays an important role here). • as populations differentiate, RIMs appear because different gene pools are not mutually coadapted. • reproductive isolation appears primarily in the form of postzygotic RIMs: hybrid failure. • these early RIMs are a byproduct of genetic differentiation, not directly promoted by natural selection. Stage 2 • completion of genetic isolation • reproductive isolation develops mostly in the forms of prezygotic RIMs. ● development of prezygotic RIMs is directly promoted by natural selection: Formation of new species. There are four geographic modes of speciation operate in nature, based on the extent to which speciating populations are geographically isolated from one another, viz., Allopatric, Peripatric, Parapatric and Sympatric speciations which are briefly discussed here. Fig 1. Four Geographic modes of Speciation models (Source:http://www/en.wikipedia.org). Allopatric speciation (figs 2 & 5): Greek allos means ‘other’ and patra means ‘fatherland’. It is also often called as Geographic speciation. It occurs when biological populations of the same species become isolated (i.e. vicariant) from each other to an extent that prevents or interferes with genetic interchange, for example, by habitat fragmentation due to geographical change such as mountain building. The isolated (vicariant) populations then undergo genotypic or phenotypic changes as: (a) they become subjected to dissimilar selective pressures, (b) they independently undergo genetic drift, and (c) different mutations may arise in the gene pools of two isolated populations. Two separate populations over time may evolve distinctly different characteristics. If the geographical barriers are later removed, members of the two populations may be unable to successfully mate with each other, at which point, the genetically isolated groups have emerged as different species. Allopatric isolation is a key factor in speciation and a common process by which new species arise. Examples observed: Darwin’s Finches (birds) in different islands of Galapagos originated due to allopatric isolation. Fig 2. Explanation of allopatric speciation (Source:http://www.geo.arizona.edu) Peripatric speciation or Mayr’s Peripheral isolate model: When allopatric speciation occurs in the peripheral populations, then it is called as Peripatric speciation. Ernst Mayr (1940) showed this speciation model based on his work on birds. Mayr (1940) argued that peripheral populations have greater divergences and differences than central populations of a species range. It is a subform of allopatric speciation. In this speciation, new species are originated in isolated smaller peripheral populations which are prevented from exchanging genes with the main population. It occurs in a few members of the population, which exhibit a different appearance than the majority. Genetic drift plays a major role in this speciation. It is also similar to the concept of Founder Effect, as small populations undergo bottlenecks. Portions of a populations that exist along the edges of the parent population's geographic territory have higher likelihood of developing reproductive isolation. Such peripheral populations are likely to possess genes that are different from the parental population. After isolation, the founding population is less likely to represent the gene pool of the parent population. In addition, peripheral isolates are likely to represent a small number of individuals, meaning their gene pool is more susceptible to the effects of genetic drift (random chance). Furthermore, it is likely that the peripheral population will inhabit an environment different from its ancestral gene pool, likely causing it to be subjected to different selective pressures as it colonizes new areas. Example observed: Origin of the Australian bird, Petroica multicolour Fig 3. Successive stages in the process of peripatric speciation. A small 'daughter' population on the periphery of a more widespread 'parental' population evolves reproductive isolation. Both species remain distinct if the peripherally isolated species invades the geographic range of the parental species. Under this model, the peripherally isolated population diverges from the parental population such that the latter remains unchanged (Source: http://www.trinitygreenconsultancy.com/population dynamics-2/variants-on-the-basic- model.html-2012). Mayr’s explanation: Mayr (1940) hypothesized that founder populations, as they are small, may have reduced genetic variation and low fitness due to genetic drift. Drift may increase the frequency of alleles that were rare in the ancestral population. In such a situation, selection for new combinations of alleles that are compatible with the newly fixed alleles may occur and allow increased fitness in the new conditions. A possible result is a reorganization of the genome that makes it incompatible with the ancestral population. Parapatric speciation (Partially geographically isolated populations): This speciation is an example of continuous variation within a single connected habitat acting as a source of natural selection rather than the effects of isolation of habitats found in peripatric and allopatric speciations. This type of speciation occurs when the speciating populations are contiguous and only partially geographically isolated. Individuals of each different population of the same species are able to meet across a common boundary during the speciation process, but due to reduced fitness of the heterozygote leading to the selection for behaviours that prevent their interbreeding. Ecologists refer to Parapatric and Peripatric speciations in terms of ecological niches. A niche must be available in order for a new species to be successful. Example observed: i. Ring Species formation by the Herring Sea Gull (Larus argentatus) around the North Arctic Ocean. ii. The Grass, Anthoxanthum odoratum has been known to undergo parapatric speciation in mine-contaminated areas. Fig 4. The first steps of parapatric speciation observed in the grass species, Anthoxanthum odoratum. Some of these plants live near mines where the soil has become contaminated with heavy metals. The plants around the mines have experienced natural selection for genotypes that are tolerant of heavy metals. Meanwhile, neighboring plants that don't live in polluted soil have not undergone selection for this trait. The two types of plants are close enough that tolerant and non-tolerant individuals could potentially fertilize each other — so they seem to meet the first requirement of parapatric speciation, that of a continuous population. However, the two types of plants have evolved different flowering times. This change could be the first step in cutting off gene flow entirely between the two groups (Source:http://www.berkeley.edu/evosite/evo101/VC1dParapatric.shtml). Sympatric speciation (fig 1 & fig 5): In this type, the formation of two or more descendant species happened from a single ancestral species all occupying the same geographical area. In this type, species diverge while inhabiting the same place.This speciation requires a change in host, food and habitat preferences in order to prevent the new species being swamped by gene flow. In theory, it may occur where there is a polymorphism in the population conferring adaptations to two different habitats/niches. Reproductive isolation could then arise if the two morphs had a preference for their habitat. A common example of sympatric speciation occurs in plants through polyploidy. For example, Sand Dune Grass (Spartina townsendii) is a sympatric polyploidy originated from its parent, S. anglica due to polymorphism. More Examples observed: i. Diploid (2n=14), Tetraploid (2n=28) and Hexaploid (2n=42) wheat plants were originated by sympatric speciation through polyploidy. ii. Drosophila melanogaster (2n=8) and D. virilis (2n=12) were originated by sympatric speciation. Fig 5. Allopatric (left) and sympatric (right) models on speciation (Source: http://www.globalchange.umich.edu/speciation.html) Brief idea about other modes of speciation operating in nature: Phyletic speciation:
Recommended publications
  • The Mesozoic Era Alvarez, W.(1997)
    Alles Introductory Biology: Illustrated Lecture Presentations Instructor David L. Alles Western Washington University ----------------------- Part Three: The Integration of Biological Knowledge Vertebrate Evolution in the Late Paleozoic and Mesozoic Eras ----------------------- Vertebrate Evolution in the Late Paleozoic and Mesozoic • Amphibians to Reptiles Internal Fertilization, the Amniotic Egg, and a Water-Tight Skin • The Adaptive Radiation of Reptiles from Scales to Hair and Feathers • Therapsids to Mammals • Dinosaurs to Birds Ectothermy to Endothermy The Evolution of Reptiles The Phanerozoic Eon 444 365 251 Paleozoic Era 542 m.y.a. 488 416 360 299 Camb. Ordov. Sil. Devo. Carbon. Perm. Cambrian Pikaia Fish Fish First First Explosion w/o jaws w/ jaws Amphibians Reptiles 210 65 Mesozoic Era 251 200 180 150 145 Triassic Jurassic Cretaceous First First First T. rex Dinosaurs Mammals Birds Cenozoic Era Last Ice Age 65 56 34 23 5 1.8 0.01 Paleo. Eocene Oligo. Miocene Plio. Ple. Present Early Primate First New First First Modern Cantius World Monkeys Apes Hominins Humans A modern Amphibian—the toad A modern day Reptile—a skink, note the finely outlined scales. A Comparison of Amphibian and Reptile Reproduction The oldest known reptile is Hylonomus lyelli dating to ~ 320 m.y.a.. The earliest or stem reptiles radiated into therapsids leading to mammals, and archosaurs leading to all the other reptile groups including the thecodontians, ancestors of the dinosaurs. Dimetrodon, a Mammal-like Reptile of the Early Permian Dicynodonts were a group of therapsids of the late Permian. Web Reference http://www.museums.org.za/sam/resource/palaeo/cluver/index.html Therapsids experienced an adaptive radiation during the Permian, but suffered heavy extinctions during the end Permian mass extinction.
    [Show full text]
  • Evolution of Reptiles
    Evolution of Reptiles: Reptiles were 1st vertebrates to make a complete transition to life on land (more food & space) Arose from ancestral reptile group called cotylosaurs (small, lizard like reptile) Cotylosaurs adapted to other environments in Permian period 1. Pterosaurs – flying reptiles 2. Ichthyosaurs & plesiosaurs – marine reptiles 3. Thecodonts – small, land reptiles that walked on back legs Mesozoic Era called “age of reptiles” Dinosaurs dominated life on land for 160 million years Brachiosaurs were largest dinosaurs Herbivores included Brontosaurus & Diplodocus, while Tyrannosaurus were carnivores Dinosaurs became extinct at end of Cretaceous period Mass extinction of many animal species possibly due to impact of huge asteroid with earth; Asteroid Impact Theory Amniote (shelled) egg allowed reptiles to live & reproduce on land Amniote Egg: Egg had protective membranes & porous shell enclosing the embryo Has 4 specialized membranes — amnion, yolk sac, allantois, & chorion Amnion is a thin membrane surrounding a salty fluid in which the embryo “floats” Yolk sac encloses the yolk or protein-rich food supply for embryo Allantois stores nitrogenous wastes made by embryo until egg hatches Chorion lines the inside of the shell & regulates oxygen & carbon dioxide exchange Shell leathery & waterproof Internal fertilization occurs in female before shell is formed Terrestrial Adaptations: Dry, watertight skin covered by scales made of a protein called keratin to prevent desiccation (water loss) Toes with claws to
    [Show full text]
  • 29 | Vertebrates 791 29 | VERTEBRATES
    Chapter 29 | Vertebrates 791 29 | VERTEBRATES Figure 29.1 Examples of critically endangered vertebrate species include (a) the Siberian tiger (Panthera tigris), (b) the mountain gorilla (Gorilla beringei), and (c) the Philippine eagle (Pithecophega jefferyi). (credit a: modification of work by Dave Pape; credit b: modification of work by Dave Proffer; credit c: modification of work by "cuatrok77"/Flickr) Chapter Outline 29.1: Chordates 29.2: Fishes 29.3: AmphiBians 29.4: Reptiles 29.5: Birds 29.6: Mammals 29.7: The Evolution of Primates Introduction Vertebrates are among the most recognizable organisms of the animal kingdom. More than 62,000 vertebrate species have been identified. The vertebrate species now living represent only a small portion of the vertebrates that have existed. The best-known extinct vertebrates are the dinosaurs, a unique group of reptiles, which reached sizes not seen before or after in terrestrial animals. They were the dominant terrestrial animals for 150 million years, until they died out in a mass extinction near the end of the Cretaceous period. Although it is not known with certainty what caused their extinction, a great deal is known about the anatomy of the dinosaurs, given the preservation of skeletal elements in the fossil record. Currently, a number of vertebrate species face extinction primarily due to habitat loss and pollution. According to the International Union for the Conservation of Nature, more than 6,000 vertebrate species are classified as threatened. Amphibians and mammals are the classes with the greatest percentage of threatened species, with 29 percent of all amphibians and 21 percent of all mammals classified as threatened.
    [Show full text]
  • L22-Speciation Announcements
    L22-Speciation Announcements 1st Drafts for papers due Oct 29th -DO NOT INCLUDE YOUR NAME TITLE OF PAPER by --first and last initials and ZS1234 last four-digits of student ID --include the recitation date and time as well. Announcements Supplemental materials on speciation posted to Carmen (will be in exam 3) PollEverywhere msg that “maximum responses reached”...don’t worry! THINK-PAIR-SHARE (90 sec) If 'things' look alike, what would qualify them as being of the same species? _________ speciation follows subdivision of a population due to physical barriers. A. parapatric B. peripatric C. sympatric D. allopatric Low relative genetic diversity is a consequence of the founder effect in peripatric speciation. A. True B. False THINK-PAIR-SHARE (90 sec) Why are there so many unusual species on the Galapagos Islands or in Madagascar? What kind of speciation might explain this phenomenon? Modes of speciation: Parapatric speciation A gradient or cline causes adjacent populations to experience different selective conditions -but the populations can still mate, generating hybrids Hybrids may lack traits that facilitate success in any part of the cline, causing them to be outcompeted by nonhybrids Modes of speciation: Parapatric speciation A gradient or cline causes adjacent populations to experience different selective conditions -but the populations can still mate, generating hybrids Bounded hybrid superiority suggests that hybrids occupying the HZ harbor unique traits exclusive of the progenitors that make them well-suited to environmental conditions
    [Show full text]
  • Allopatric Speciation
    Lecture 21 Speciation “These facts seemed to me to throw some light on the origin of species — that mystery of mysteries”. C. Darwin – The Origin What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. What is speciation? • in Darwin’s words, speciation is the “multiplication of species”. • according to the BSC, speciation occurs when populations evolve reproductive isolating mechanisms. • these barriers may act to prevent fertilization – this is prezygotic isolation. • may involve changes in location or timing of breeding, or courtship. • barriers also occur if hybrids are inviable or sterile – this is postzygotic isolation. Modes of Speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation 2. Peripatric speciation 3. Parapatric speciation 4. Sympatric speciation Modes of Speciation 1. Allopatric speciation Allopatric Speciation ‘‘The phenomenon of disjunction, or complete geographic isolation, is of considerable interest because it is almost universally believed to be a fundamental requirement for speciation.’’ Endler (1977) Modes of Speciation 1.
    [Show full text]
  • Tetrapod Phylogeny
    © J989 Elsevier Science Publishers B. V. (Biomédical Division) The Hierarchy of Life B. Fernholm, K. Bremer and H. Jörnvall, editors 337 CHAPTER 25 Tetrapod phylogeny JACQUES GAUTHIER', DAVID CANNATELLA^, KEVIN DE QUEIROZ^, ARNOLD G. KLUGE* and TIMOTHY ROWE^ ' Deparlmenl qf Herpelology, California Academy of Sciences, San Francisco, CA 94118, U.S.A., ^Museum of Natural Sciences and Department of Biology, Louisiana State University, Baton Rouge, LA 70803, U.S.A., ^Department of ^oology and Museum of Vertebrate ^oology. University of California, Berkeley, CA 94720, U.S.A., 'Museum of ^oology and Department of Biology, University of Michigan, Ann Arbor, MI 48109, U.S.A. and ^Department of Geological Sciences, University of Texas, Austin, TX 78713, U.S.A. Introduction Early sarcopterygians were aquatic, but from the latter part of the Carboniferous on- ward that group has been dominated by terrestrial forms commonly known as the tet- rapods. Fig. 1 illustrates relationships among extant Tetrápoda [1-4J. As the clado- grams in Figs. 2•20 demonstrate, however, extant groups represent only a small part of the taxonomic and morphologic diversity of Tetrápoda. We hope to convey some appreciation for the broad outlines of tetrapod evolution during its 300+ million year history from late Mississippian to Recent times. In doing so, we summarize trees de- rived from the distribution of over 972 characters among 83 terminal taxa of Tetrápo- da. More than 90% of the terminal taxa we discuss are extinct, but all of the subter- minal taxa are represented in the extant biota. This enables us to emphasize the origins of living tetrapod groups while giving due consideration to the diversity and antiquity of the clades of which they are a part.
    [Show full text]
  • The Temporal Dimension of Marine Speciation
    Evol Ecol DOI 10.1007/s10682-011-9488-4 ORIGINAL PAPER The temporal dimension of marine speciation Richard D. Norris • Pincelli M. Hull Received: 2 September 2010 / Accepted: 7 May 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Speciation is a process that occurs over time and, as such, can only be fully understood in an explicitly temporal context. Here we discuss three major consequences of speciation’s extended duration. First, the dynamism of environmental change indicates that nascent species may experience repeated changes in population size, genetic diversity, and geographic distribution during their evolution. The present characteristics of species therefore represents a static snapshot of a single time point in a species’ highly dynamic history, and impedes inferences about the strength of selection or the geography of spe- ciation. Second, the process of speciation is open ended—ecological divergence may evolve in the space of a few generations while the fixation of genetic differences and traits that limit outcrossing may require thousands to millions of years to occur. As a result, speciation is only fully recognized long after it occurs, and short-lived species are difficult to discern. Third, the extinction of species or of clades provides a simple, under-appre- ciated, mechanism for the genetic, biogeographic, and behavioral ‘gaps’ between extant species. Extinction also leads to the systematic underestimation of the frequency of spe- ciation and the overestimation of the duration of species formation. Hence, it is no surprise that a full understanding of speciation has been difficult to achieve. The modern synthe- sis—which united genetics, development, ecology, biogeography, and paleontology— greatly advanced the study of evolution.
    [Show full text]
  • Modes of Speciation Core Course: ZOOL3014 B.Sc. (Hons’): Vith Semester
    Microevolution: Modes of speciation Core course: ZOOL3014 B.Sc. (Hons’): VIth Semester Prof. Pranveer Singh Modes of Speciation The key to speciation is the evolution of genetic differences between the incipient species For a lineage to split once and for all, the two incipient species must have genetic differences that are expressed in some way that cause matings between them to either not happen or to be unsuccessful These need not be huge genetic differences A small change in the timing, location, or rituals of mating could be enough. But still, some difference is necessary This change might evolve by natural selection or genetic drift Reduced gene flow probably plays a critical role in speciation Modes of speciation are often classified according to how much the geographic separation of incipient species can contribute to reduced gene flow Allopatric (allo = other, geographically patric = place) isolated populations Peripatric (peri = near, a small population patric = place) isolated at the edge of a larger population Parapatric a continuously (para = beside, distributed patric = place) population Sympatric within the range of (sym = same, the ancestral patric = place) population Allopatric Speciation: The Great Divide Allopatric speciation is just a fancy name for speciation by geographic isolation In this mode of speciation, something extrinsic to the organisms prevents two or more groups from mating with each other regularly, eventually causing that lineage to speciate Isolation might occur because of great distance or a physical
    [Show full text]
  • Evolution 2 Speciation
    Evolution 2 Evolution Speciation • The evolution of life is directly connected to the evolution of earth. • Evidence: – Fossils –Geology – Biogeography • Similarities in rock types • Glaciation • Fossil distributions Plate tectonics Plate tectonics Alfred Wegener (1880-1930) His theory was based on several 1915 – he suggested that 300 observations: mya all of the continents 1. The fit of the continents. formed a supercontinent that 2. Similarity of rock types across he called “Pangea”. Atlantic. 3. Glacial “tracks”. 4. Fossil distributions. Plate Tectonics Plate Tectonics Continental Margins 1 Plate Tectonics Plate Continental Margins Tectonics Near perfect fit when continents are joined by continental margins. South America Africa Plate Tectonics Plate Tectonics Glacial striations reveal ancient continental connections. Matching rock assemblages across the Atlantic Ocean. Plate Tectonics Plate Tectonics Glacial striations reveal ancient continental connections. Glacial Striations 2 Plate Tectonics Plate Tectonics Glacial Striations Glacial Striations Plate Tectonics Plate tectonics New evidence supporting Overlapping Fossil Wegener: assemblages 1. Sea floor spreading 2. Magnetic sea floor patterns 3. Sea floor age patterns Plate Tectonics Plate Tectonics Evidence of sea floor spreading The planet experience periodic reversals in the poles. Rock reflect direction of magnetism when they are created. Sea floor reveals a mirror image of rock magnetism. 3 Plate Tectonics Plate Tectonics Evidence of sea floor spreading Sea floor spreading The planet experience Age of seafloor N . A periodic reversals in the increases at m Europe a e n ri poles. equal rates i ca h India relative to C Rock reflect direction of oceanic rifts. Africa magnetism when they The oldest sea are created.
    [Show full text]
  • Diagnosis of the Class Mammalia
    FAUNA of AUSTRALIA 14. DIAGNOSIS OF THE CLASS MAMMALIA WILLIAM A. CLEMENS 1 14. DIAGNOSIS OF THE CLASS MAMMALIA 2 14. DIAGNOSIS OF THE CLASS MAMMALIA INTRODUCTION These days, the production of new definitions of the Class Mammalia appears to be a healthy cottage industry. The products vary according to the different philosophies of classification espoused by their authors and the applications for which they are intended. Here, I shall discuss classifications that may be appropriate for two different types of inquiries: First are definitions of the Class for the purposes of comparing members of the Mammalia with members of other groups of comparable rank, especially Reptilia or Aves. Assessment of the fidelity with which a classification represents patterns and rates of evolution is particularly important when studies emphasise comparison of characters of modern members of the classes. Second, other definitions have been proposed for the purpose of circumscribing the Mammalia and distinguishing its membership from the animals that usually are dubbed the ‘mammal-like reptiles’. These commonly are based on a foundation made up of the living mammals – monotremes, marsupials and eutherians. Then, on different criteria, related prehistoric species are included. In some, membership is strictly defined to include only modern mammals, their last common ancestor and members of all extinct lineages derived from that common ancestor. Other definitions have been variously designed to recognise the origin of a mammalian grade of evolution, typus or Bauplan with a specific character or suite of characters arbitrarily chosen to define membership. A survey of the classifications produced by these different approaches shows that in both the apparent common ancestors of all living mammals usually are included in the Class.
    [Show full text]
  • Adaptive Speciation
    Adaptive Speciation Edited by Ulf Dieckmann, Michael Doebeli, Johan A.J. Metz, and Diethard Tautz PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http: //www.cambridge.org c International Institute for Applied Systems Analysis 2004 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of the International Institute for Applied Systems Analysis. http://www.iiasa.ac.at First published 2004 Printed in the United Kingdom at the University Press, Cambridge Typefaces Times; Zapf Humanist 601 (Bitstream Inc.) System LATEX A catalog record for this book is available from the British Library ISBN 0 521 82842 2 hardback Contents Contributing Authors xi Acknowledgments xiii Notational Standards xiv 1 Introduction 1 Ulf Dieckmann, Johan A.J. Metz, Michael Doebeli, and Diethard Tautz 1.1 AShiftinFocus............................... 1 1.2 AdaptiveSpeciation............................. 2 1.3 AdaptiveSpeciationinContext....................... 6 1.4 SpeciesCriteria................................ 9 1.5 RoutesofAdaptiveSpeciation.......................
    [Show full text]
  • Ring Species As Bridges Between Microevolution and Speciation
    Genetica 112–113: 223–243, 2001. 223 © 2001 Kluwer Academic Publishers. Printed in the Netherlands. Ring species as bridges between microevolution and speciation Darren E. Irwin1, Jessica H. Irwin1 & Trevor D. Price Department of Biology 0116, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; 1Present address: Department of Ecology, Section of Animal Ecology, Ecology Building, Lund University, S-223 62 Lund, Sweden (Phone: (46) 46 222 3706; Fax: (46) 46 222 4716; E-mail: [email protected]) Key words: circular overlap, gene flow, Greenish warbler, Phylloscopus trochiloides, ring species, sexual selection, song, speciation Abstract A demonstration of how small changes can lead to species-level differences is provided by ring species, in which two reproductively isolated forms are connected by a chain of intermediate populations. We review proposed cases of ring species and the insights they provide into speciation. Ring species have been viewed both as illustrations of the history of divergence of two species from their common ancestor and as demonstrations that speciation can occur in spite of gene flow between the diverging forms. Theoretical models predict that speciation with gene flow can occur when there is divergent ecological selection, and geographical differentiation increases the likelihood of speciation. Thus ring species are ideal systems for research into the role of both ecological and geographical differentiation in speciation, but few examples have been studied in detail. The Greenish warbler is a ring species in which two northward expansions around the Tibetan plateau have been accompanied by parallel evolution in morphology, ecology, and song length and complexity.
    [Show full text]