The Future Climate of Amazonia Scientific Assessment Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target -
Global Forest Resources Assessment (FRA) 2020 Brazil
Report Brazil Rome, 2020 FRA 2020 report, Brazil FAO has been monitoring the world's forests at 5 to 10 year intervals since 1946. The Global Forest Resources Assessments (FRA) are now produced every five years in an attempt to provide a consistent approach to describing the world's forests and how they are changing. The FRA is a country-driven process and the assessments are based on reports prepared by officially nominated National Correspondents. If a report is not available, the FRA Secretariat prepares a desk study using earlier reports, existing information and/or remote sensing based analysis. This document was generated automatically using the report made available as a contribution to the FAO Global Forest Resources Assessment 2020, and submitted to FAO as an official government document. The content and the views expressed in this report are the responsibility of the entity submitting the report to FAO. FAO cannot be held responsible for any use made of the information contained in this document. 2 FRA 2020 report, Brazil TABLE OF CONTENTS Introduction 1. Forest extent, characteristics and changes 2. Forest growing stock, biomass and carbon 3. Forest designation and management 4. Forest ownership and management rights 5. Forest disturbances 6. Forest policy and legislation 7. Employment, education and NWFP 8. Sustainable Development Goal 15 3 FRA 2020 report, Brazil Introduction Report preparation and contact persons The present report was prepared by the following person(s) Name Role Email Tables Ana Laura Cerqueira Trindade Collaborator ana.trindade@florestal.gov.br All Humberto Navarro de Mesquita Junior Collaborator humberto.mesquita-junior@florestal.gov.br All Joberto Veloso de Freitas National correspondent joberto.freitas@florestal.gov.br All Introductory text Brazil holds the world’s second largest forest area and the importance of its natural forests has recognized importance at the national and global levels, both due to its extension and its associated values, such as biodiversity conservation. -
Environmental Change and the Carbon Balance of Amazonian Forests
Biol. Rev. (2014), 89, pp. 913–931. 913 doi: 10.1111/brv.12088 Environmental change and the carbon balance of Amazonian forests Luiz E. O. C. Aragao˜ 1,2,∗, Benjamin Poulter3, Jos B. Barlow4,5, Liana O. Anderson2,6, Yadvinder Malhi6, Sassan Saatchi7, Oliver L. Phillips8 and Emanuel Gloor8 1College of Life and Environmental Sciences, Geography University of Exeter, Exeter EX4 4RJ, U.K. 2Remote Sensing Division, National Institute for Space Research, Av. dos Astronautas, 1758, S˜ao Jos´e dos Campos, Sao Paulo 12227-010, Brazil 3Laboratoire des Sciences du Climat et de L’Environment, CEA, UVSQ, CNRS, 91190, Gif-sur Yvette, France 4Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K. 5Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Bel´em, Par´a 66077-830, Brazil 6School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, U.K. 7Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 8School of Geography, University of Leeds, Leeds LS2 9JT, U.K. ABSTRACT Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century. -
Amazon Alive!
Amazon Alive! A decade of discovery 1999-2009 The Amazon is the planet’s largest rainforest and river basin. It supports countless thousands of species, as well as 30 million people. © Brent Stirton / Getty Images / WWF-UK © Brent Stirton / Getty Images The Amazon is the largest rainforest on Earth. It’s famed for its unrivalled biological diversity, with wildlife that includes jaguars, river dolphins, manatees, giant otters, capybaras, harpy eagles, anacondas and piranhas. The many unique habitats in this globally significant region conceal a wealth of hidden species, which scientists continue to discover at an incredible rate. Between 1999 and 2009, at least 1,200 new species of plants and vertebrates have been discovered in the Amazon biome (see page 6 for a map showing the extent of the region that this spans). The new species include 637 plants, 257 fish, 216 amphibians, 55 reptiles, 16 birds and 39 mammals. In addition, thousands of new invertebrate species have been uncovered. Owing to the sheer number of the latter, these are not covered in detail by this report. This report has tried to be comprehensive in its listing of new plants and vertebrates described from the Amazon biome in the last decade. But for the largest groups of life on Earth, such as invertebrates, such lists do not exist – so the number of new species presented here is no doubt an underestimate. Cover image: Ranitomeya benedicta, new poison frog species © Evan Twomey amazon alive! i a decade of discovery 1999-2009 1 Ahmed Djoghlaf, Executive Secretary, Foreword Convention on Biological Diversity The vital importance of the Amazon rainforest is very basic work on the natural history of the well known. -
State of the Amazon: Freshwater Connectivity and Ecosystem Health WWF LIVING AMAZON INITIATIVE SUGGESTED CITATION
REPORT LIVING AMAZON 2015 State of the Amazon: Freshwater Connectivity and Ecosystem Health WWF LIVING AMAZON INITIATIVE SUGGESTED CITATION Macedo, M. and L. Castello. 2015. State of the Amazon: Freshwater Connectivity and Ecosystem Health; edited by D. Oliveira, C. C. Maretti and S. Charity. Brasília, Brazil: WWF Living Amazon Initiative. 136pp. PUBLICATION INFORMATION State of the Amazon Series editors: Cláudio C. Maretti, Denise Oliveira and Sandra Charity. This publication State of the Amazon: Freshwater Connectivity and Ecosystem Health: Publication editors: Denise Oliveira, Cláudio C. Maretti, and Sandra Charity. Publication text editors: Sandra Charity and Denise Oliveira. Core Scientific Report (chapters 1-6): Written by Marcia Macedo and Leandro Castello; scientific assessment commissioned by WWF Living Amazon Initiative (LAI). State of the Amazon: Conclusions and Recommendations (chapter 7): Cláudio C. Maretti, Marcia Macedo, Leandro Castello, Sandra Charity, Denise Oliveira, André S. Dias, Tarsicio Granizo, Karen Lawrence WWF Living Amazon Integrated Approaches for a More Sustainable Development in the Pan-Amazon Freshwater Connectivity Cláudio C. Maretti; Sandra Charity; Denise Oliveira; Tarsicio Granizo; André S. Dias; and Karen Lawrence. Maps: Paul Lefebvre/Woods Hole Research Center (WHRC); Valderli Piontekwoski/Amazon Environmental Research Institute (IPAM, Portuguese acronym); and Landscape Ecology Lab /WWF Brazil. Photos: Adriano Gambarini; André Bärtschi; Brent Stirton/Getty Images; Denise Oliveira; Edison Caetano; and Ecosystem Health Fernando Pelicice; Gleilson Miranda/Funai; Juvenal Pereira; Kevin Schafer/naturepl.com; María del Pilar Ramírez; Mark Sabaj Perez; Michel Roggo; Omar Rocha; Paulo Brando; Roger Leguen; Zig Koch. Front cover Mouth of the Teles Pires and Juruena rivers forming the Tapajós River, on the borders of Mato Grosso, Amazonas and Pará states, Brazil. -
Black Beauty: a Unique 4.4 Ga, Water-Rich Meteorite from Mars
CosmoELEMENTS BLACK BEAUTY: A UNIQUE 4.4 GA, WATER-RICH METEORITE FROM MARS Carl Agee* A polished FIGURE 3 Northwest Africa (NWA) 7034, and its pairings, surface of the interior of NWA is a new type of Martian meteorite discovered 7034 clearly exhibiting recently in Western Sahara. NWA 7034, also clasts of various known as “Black Beauty” because of its dark, lithologies set in a fi ne shiny appearance (FIG. 1), contains ten times grained matrix. PHOTO CREDIT: UNIVERSITY more water than other Martian meteorites. OF NEW MEXICO This, combined with its anomalous oxygen isotope values and ancient zircons, makes it an extraordinarily valuable specimen for under- standing surface processes, aqueous altera- tion, and atmosphere–lithosphere exchange reactions that existed on Mars as far back as 4.4 billion years ago. Black Beauty appears to be the fi rst Martian meteorite to match the sur- face geochemistry of Mars, as seen by landers and orbiters, and as such, it has particular rel- evance to the current Mars Science Laboratory mission at Gale Crater. The main mass of NWA 7034. Both the FIGURE 2 fusion-crusted exterior and a sawn face showing the interior breccia are visible. PHOTO CREDIT: UNIVERSITY OF NEW MEXICO At present, at least six different igneous rock types have been found in the 1–2 kg of the breccia now identifi ed as NWA 7034 (owing to new fi nds). These include basalt, trachyte, and andesite. These compositions are remark- Three hand samples of NWA 7034, the FIGURE 1 ably similar to the rocks analyzed by APXS Elemental SEM map of a thin section Martian meteorite known as Black Beauty FIGURE 4 of NWA 7034 showing clasts with clear due to its shiny black appearance. -
First Meteorite Linked to Martian Crust 3 January 2013
First meteorite linked to Martian crust 3 January 2013 on the Red Planet is not known. In fact, recent data from lander and orbiter missions suggest that they are a mismatch for the Martian crust. Mars. Image: NASA After extensive analyses by a team of scientists led by Carl Agee at the University of New Mexico, researchers have identified a new class of Martian meteorite that likely originated from the Mars's crust. It is also the only meteoritic sample dated to 2.1 billion years ago, the early era of the most recent geologic epoch on Mars, an epoch called the Amazonian. The meteorite was found to contain an order of magnitude more water than any other Martian meteorite. Researchers from the Carnegie Institution (Andrew Steele, Marilyn Fogel, Roxane Bowden, and Designated Northwest Africa (NWA) 7034, and nicknamed "Black Beauty," the Martian meteorite weighs Mihaela Glamoclija) studied carbon in the approximately 11 ounces (320 grams). Credit: NASA meteorite and have shown that organic carbon (macromolecular) similar to that seen in other Martian meteorites is also found in this meteorite. The research is published in the January 3, 2013, As co-author Andrew Steele, who led the carbon issue of Science Express. analysis at the Carnegie Institution's Geophysical Laboratory explained: "The texture of the NWA The unique meteorite, dubbed Northwest Africa meteorite is not like any of the SNC meteorites. It is (NWA) 7034, has some similarities to, but is very made of cemented fragments of basalt, rock that different from other Martian meteorites known as forms from rapidly cooled lava, dominated with SNC (for three members of the group: Shergotty, feldspar and pyroxene, most likely from volcanic Nakhla, and Chassign). -
The Amazon's Flora and Fauna
AMAZON Initiative The Amazon’s flora and fauna The Amazon biome, covering an area of 6.7 million km2 (more than twice the size of India) represents over 40% of the planet’s remaining tropical forests. Trees and plants The Amazon biome The Amazon is particularly rich in trees and plants, with more than 40,000 species landscape that play critical roles in regulating the global climate and sustaining the local water cycle. All have adapted to the abundant rain and often nutrient-poor soils. To • 79.9% tropical defend themselves from herbivores some have developed tough leaves, resins or evergreen forest • 6.8% anthropic (incl. latex outer coats enabling them to resist many predators. Others produce leaves pastures and land use that are nutritionally poor or poisonous. Nonetheless, many of the plants and trees changes) are valued for what they produce – timber, compounds valued in agriculture and • 4.0% savannas medicines such as curare, fibres including kapok, rubber, and food for both the • 3.9% flooded and people living in the Amazon and the wider world. swamp forest • 1.4% deciduous forest • 1.2% water bodies The kapok tree (Ceiba pentandra) is a tall rainforest tree, reaching 50 m. With • 2.8% others (incl. buttressed roots, a smooth grey trunk, and a wide top hosting an abundance of shrubland & bamboo) epiphytes and lianas, it is most commonly seen on forest edges, riverbanks and disturbed areas, where it receives more light. Kapok, a valued cotton-like fibre, With over 10% of all the surrounds the seeds and helps them disperse in the wind. -
EVIDENCE of LATE-STAGE FLUVIAL OUTFLOW in ECHUS CHASMA, MARS. M. G. Chapman1, G. Neukum2, A. Dumke2, G.Michaels2, S. Van Gasselt2, T
40th Lunar and Planetary Science Conference (2009) 1374.pdf EVIDENCE OF LATE-STAGE FLUVIAL OUTFLOW IN ECHUS CHASMA, MARS. M. G. Chapman1, G. Neukum2, A. Dumke2, G.Michaels2, S. van Gasselt2, T. Kneissl2, W. Zuschneid2, E. Hauber3, and N. Mangold4, 1U.S. Geological Survey, 2255 N. Gemini Dr., Flagstaff, Arizona, 86001 ([email protected]); 2Institute of Geo- sciences, Freie Universitaet Berlin, Germany; 3German Aerospace Center (DLR), Berlin, Germany; and 4LPGN, CNRS, Université Nantes, France. Introduction: New high-resolution datasets have We interpret this late-stage outflow to have been prompted a mapping-based study of the Echus Chasma formed by water based on several lines of evidence, and Kasei Valles system. Some of the highlights of the first being the “washed” appearance of the At5 lava our new findings from the Amazonian (<1.8 Ga) pe- lobe. Where the mouth of the lava-lobe-confined riod in this area include (1) a new widespread platy- south shallow channel debouches into Echus Chasma, flow surface material (unit Apf) that is interpreted to be the floor of the chasma is marked by a very straight, 2,100-km-runout flood lavas sourced from Echus likely fault controlled/confined, north boundary of Chasma; and (2) a fracture in Echus Chasma, identi- dark albedo material (white arrows on Fig. 2). This fied to have sourced at least one late-stage flood, that boundary correlates with the bottom edge of an up- may have been the origin for the platy-flow material lifted plate (insert Fig. 1). The albedo boundary is and young north-trending Kasei floods. -
Eating up the Amazon 1
EATING UP THE AMAZON 1 EATING UP THE AMAZON 2 EATING UP 3 THE AMAZON CONTENTS DESTRUCTION BY NUMBERS – THE KEY FACTS 5 INTRODUCTION: THE TRUTH BEHIND THE BEAN 8 HOW SOYA IS DRIVING THE AGRICULTURE FRONTIER INTO THE RAINFOREST 13 WHO PROFITS FROM AMAZON DESTRUCTION? 17 THE ENVIRONMENTAL COSTS OF AMAZON DESTRUCTION AND SOYA MONOCULTURE 21 BEYOND THE LAW: CRIMES LINKED TO SOYA EXPANSION IN THE AMAZON 27 CARGILL IN SANTARÉM: MOST CULPABLE OF THE SOYA GIANTS 37 EUROPEAN CORPORATE COMPLICITY IN AMAZON DESTRUCTION 41 STRATEGIES TO PROTECT THE AMAZON AND THE GLOBAL CLIMATE 48 DEMANDS 51 ANNEX ONE – GUIDANCE ON TRACEABILTY 52 ANNEX TWO – A SHORT HISTORY OF GM SOYA, BRAZIL AND THE EUROPEAN MARKET 55 REFERENCES 56 ENDNOTES 60 4 The Government decision to make it illegal to cut down Brazil nut trees has failed to protect the species from the expanding agricultural frontier. When farmers clear the land to plant soya, they leave Brazil nut trees standing in isolation in the middle of soya monocultures. Fire used to clear the land usually kills the trees. EATING UP 5 THE AMAZON DESTRUCTION BY NUMBERS – THE KEY FACTS THE SCENE: THE CRIME: THE CRIMINALS: PARTNERS IN CRIME: The Amazon rainforest is Since Brazil’s President Lula da Three US-based agricultural 80% of the world’s soya one of the most biodiverse Silva came to power in January commodities giants – Archer production is fed to the regions on earth. It is home 2003, nearly 70,000km2 of Daniels Midland (ADM), livestock industry.12 to nearly 10% of the world’s the Amazon rainforest has Bunge and Cargill – are mammals1 and a staggering been destroyed.4 responsible for about 60% Spiralling demand for 15% of the world’s known of the total financing of soya animal feed from land-based plant species, Between August 2003 and soya production in Brazil. -
Amazon Rainforest Fact Sheet
The Amazon Rainforest The Amazon rainforest is the lar gest remaining tropical rainforest in the world, blanketing the Earth’s surface in approximately three billion trees. Spanning nine countries in South America, the Amazon is an expansive and incredibly diverse biome— almost twenty-five times the size of the United Kingdom. Through the region snakes the Amazon River, flowing for more than 4,100 miles. ● One fifth of world’s flowing water runs through the Amazon. ● About 20% of the planet’s oxygen is produced in the Amazon. Biodiversity in the Amazon As of 2005, the Amazon is home to at least 10% of the entire planet’s known species, including, at least: ● 437 mammal species ● 1,300 bird species ● 378 reptile species ● 400 amphibian species ● 3,000 fish species ● 40,000 to 53,000 tree species These numbers don’t include the new animal or plant species that are catalogued approximately every two days in the region. Nor do they take into account the significant losses in biodiversity caused by deforestation. Cultural Diversity in the Amazon ● Nearly 400 distinct indigenous peoples, composing 9% (2.7 million) of the Amazon’s population, inhabit the region. ● These populations are made up of roughly 350 different ethnic groups. ● Many indigenous Amazon nations have lost their land to deforestation and development. Many live on land that governments do not officially recognize as theirs and so their claims to the land, that they have inhabited for generations, are not respected. ● Not only are indigenous nations losing physical land, but the land they do still live on is often polluted by mining and oil extraction. -
New Species Discoveries in the Amazon 2014-15
WORKINGWORKING TOGETHERTOGETHER TO TO SHARE SCIENTIFICSCIENTIFIC DISCOVERIESDISCOVERIES UPDATE AND COMPILATION OF THE LIST UNTOLD TREASURES: NEW SPECIES DISCOVERIES IN THE AMAZON 2014-15 WWF is one of the world’s largest and most experienced independent conservation organisations, WWF Living Amazon Initiative Instituto de Desenvolvimento Sustentável with over five million supporters and a global network active in more than 100 countries. WWF’s Mamirauá (Mamirauá Institute of Leader mission is to stop the degradation of the planet’s natural environment and to build a future Sustainable Development) Sandra Charity in which humans live in harmony with nature, by conserving the world’s biological diversity, General director ensuring that the use of renewable natural resources is sustainable, and promoting the reduction Communication coordinator Helder Lima de Queiroz of pollution and wasteful consumption. Denise Oliveira Administrative director Consultant in communication WWF-Brazil is a Brazilian NGO, part of an international network, and committed to the Joyce de Souza conservation of nature within a Brazilian social and economic context, seeking to strengthen Mariana Gutiérrez the environmental movement and to engage society in nature conservation. In August 2016, the Technical scientific director organization celebrated 20 years of conservation work in the country. WWF Amazon regional coordination João Valsecchi do Amaral Management and development director The Instituto de Desenvolvimento Sustentável Mamirauá (IDSM – Mamirauá Coordinator Isabel Soares de Sousa Institute for Sustainable Development) was established in April 1999. It is a civil society Tarsicio Granizo organization that is supported and supervised by the Ministry of Science, Technology, Innovation, and Communications, and is one of Brazil’s major research centres.