APPLICATIONS of IEEE-1394 and Gige VISION DIGITAL CAMERA in the TLS C

Total Page:16

File Type:pdf, Size:1020Kb

APPLICATIONS of IEEE-1394 and Gige VISION DIGITAL CAMERA in the TLS C TUPB30 Proceedings of DIPAC 2007, Venice, Italy APPLICATIONS OF IEEE-1394 AND GigE VISION DIGITAL CAMERA IN THE TLS C. Y. Wu, C. H. Kuo, Jenny Chen, S. Y. Hsu, Demi Lee, P.C. Chiu, K. T. Hsu NSRRC, Hsinchu 30076, Taiwan Abstract The interface supports asynchronous (guaranteed Digital cameras comply with IEEE-1394 and GigE delivery) and isochronous (guaranteed bandwidth and Vision standard are applied for beam diagnostic latency) data transfers. By applying digital IEEE1394 applications at NSRRC. These cameras provide low camera system, we are able to eliminate the frame- distortion for image transmission over long distance and grabber stage of processing and directly transfer data at flexible camera parameters adjustment with remote maximum rates of 400 MB/sec. IEEE1394 general interface. These digital interfaces include of FireWire and purposed CMOS cameras (Prosilica CV640, 659 x 494 gigabit Ethernet. The wide bandwidth bus can reduce 4.65 μm square pixels) were chosen for screen monitor latency time and timing jitter effectively and provides application. There is no frame grabber or additional high quality image transportation. It also provides lossless power supply required. Frame rates of up to 30 fps can be compressed image with high update rate. Experiences achieved adequately in the full frame. accompany with both kinds of cameras will be The GigE Vision standard from the Advanced Imaging summarized. System integration with control system and Association (AIA) is a new interface standard for the applications will also include in the report. latest vision of cameras with high performance. GigE Vision combined features of high data rates (required for INTRODUCTION uncompressed video or imaging applications), ubiquitous computer interface hardware, low cost cabling, and Imaging applications in the accelerator community are widespread popularity makes Gigabit Ethernet an often utilized to measure beam profile and interference attractive interface option for accelerator applications. fringes. The beam profile may convert form fluorescence, The GigE Vision standard including of both the hardware various optical diagnostics (SR, OTR, DR, etc.). A interface standard (Gigabit Ethernet) and the fluorescence screen/OTR and a synchrotron light source communications protocols, can be utilized for controlling radiation monitor are mostly employed to measures beam and communication of cameras. The GigE Vision camera profile and beam size of the accelerator system in order to control registers are based on a command structure called optimize performance, check routine operation and study GenICam which is administered through the European various beam physics. These tools are beneficial to Machine Vision Association (EMVA). GenICam seeks to characterize and analyze properties of electron beam. For establish a common camera control interface so that the example, the beam emittance is calculated from the third party software can communicate with the cameras measured beam size. from various manufacturers without customization. Digital cameras were adopted to enhance functionality GenICam is incorporated as a part of the GigE Vision of accelerator diagnostics [1-4]. The major upgrades of standard. GigE Vision is analogous to FireWire's DCAM data acquisition and analysis have been implemented. The (IIDC) and beneficial to facilitate system integration and main goals are to increase the signal transmission quality, thus reduce costs. the dynamic range, the linearity of the profile monitor, and the superior supports for data analysis. Using a fully digital camera has two major advantages APPLICATIONS OF IEEE-1394 AND GigE compared to analogue CCD camera. First, the A/D VISION CAMERA AT TLS conversion is performed closer to the CCD/CMOS sensor FireWire camera was adopted for synchrotron radiation and therefore minimizes electronic noise. Once the at the booster synchrotron and the storage ring very digitized signal is immune to noise, we can implement successful since 2003 [1]. Qimaging QICAM 12 bits long haul (10 m ~ 103 m) applications in the accelerator camera was selected to capture synchrotron radiation diagnostics. Various long hops solution is supported by profile. Parameters of the camera are completely the IEEE1394A/B interface. Noise immunity and programmable so that this is very useful to accommodate isolation are provided by this solution that must be with various beam conditions and effectively increase favourable in the accelerator environment. Second, unlike reliability. analogue camera systems, digital systems do not suffer FireWire CMOS camera was adopted for the transport from pixel jitter. Each captured pixel value corresponds to line screen monitor since 2004 [2] as shown in Fig. 1,2 a well-defined pixel on the CCD/CMOS chip. The and 3. Functionality is satisfactory while the only problem IEEE1394 interface is a hot swappable and self- is less reliability near the injection kicker of the storage configuring high performance serial bus interface that is ring. The problem might be caused from bad grounding of capable of 400 Mbit/sec data transmission and will be the kickers and the cameras which might be hanged due enhanced to 3.2 Gbit/s for the next generation products. to the noise induced by the long IEEE-1394 cable. After Beam Instrumentation and Feedback Profile and Transverse 138 Proceedings of DIPAC 2007, Venice, Italy TUPB30 the kicker grounding improved and the camera with modulator, the camera is occasionally hanged during IEEE-1394B fibre interface replaced, the reliability is klystron power off. A remote power reset will be applied increased drastically. as a solution of this problem. Control Consoles WS/Unix PC/Linux Control Network PC/WindowsXP PC/WindowsXP IEEE-1394 Hub IEEE-1394B Fiber Link IEEE-1394 Hub IEEE-1394 Hub Synchrotron Radiation Monitor Figure 1: Topology of the IEEE-1394 camera installation. Figure 4: A GigE Vision camera installed at exit of 50 MeV linaer accelerator for test. CCD Image Projected horizontal profile 8000 50 6000 100 4000 150 Amp 2000 200 Vertical Pixel Vertical 250 0 300 -2000 100 200 300 400 0 10 20 30 40 50 Horizontal Pixel mm Projected vertical profile 6000 5000 4000 3000 Amp 2000 1000 Figure 2: The VI for transport line screen monitors 0 -1000 0 10 20 30 40 50 operation. mm Figure 5: Profile measured by the GigE Vision camera. 8 4 7 3.5 6 ) ) 2 5 2 3 (mm (mm 2 x 4 2 y 2.5 σ σ 3 2 2 1 1.5 0 1 2 3 4 0 0.5 1 1.5 2 2.5 Q3 current(A) Q3 current(A) ε = 1.09 mm.mrad ε = 0.97 mm.mrad x y 10 4 raw hor. profile raw Ver. profile Figure 3: Example of transverse beam emittance 8 fitted hor. profile 3.5 fitted Ver. profile measurements at transport line by using quadrupole scan ) ) 2 6 2 3 ε (mm (mm method. Fitted emittance is x = 238 nm-rad. 2 x 4 2 y 2.5 σ σ 2 2 The new GigE camera interface is also applied for 0 1.5 preliminary evaluation. Set up of the experiment is shown 0 1 2 3 4 0 0.5 1 1.5 2 2.5 K(m-1) K(m-1) in Fig. 4. Figure 5 shown a typical profile measurement result. Emittance is measured by the quadrupole scan Figure 6: Measured horizontal and vertical emittance of method in the exit of the 50 MeV linaer accelerator. The the 50 MeV lianc by quadrupole scan method. The fitted beam profile as a function of one nearest quadrupole normized emittance is εx = 1.09 mm-mrad and εy = 0.97 strength was measured as shown in Figure 6. The profile mm-mrad in the horizontal and vertical respectively. image is captured and analyzed by using Matlab scripts. Emittance will be immediately adjusted and reduced from the machine parameter by the measured data. Performance and reliability of the GigE Vision camera is evaluated. Since the camera is installed near the klystron Beam Instrumentation and Feedback Profile and Transverse 139 TUPB30 Proceedings of DIPAC 2007, Venice, Italy EXPERIENCES OF IEEE-1394 AND GbE disadvantage, a remote power on/off control was VISION CAMERA FOR BEAM implemented. DIAGNOSTIC APPLICATION Radiation Damage Both of IEEE-1394 cameras and GigE Vision cameras The FireWire cameras have been operated over two were tested and applied for several diagnostics for the years, there are no severe damages observed. Similarly, TLS. Some of the experience is summarized in the the GigE Vision cameras have been operated over 6 following paragraphs. months, no observable radiation damage was observed. So, the radiation damage is similar with the analogue Control System Integration camera. To simplify the control system integration, a PC/ running Windows/XP was adopted for FireWire camera SUMMARY server as well as GigE Vision camera. There are few drivers supporting both kinds of interface. The standard FireWire camera and GigE Vision cameras are tested DCAM camera driver with LabVIEW and other COTS at TLS for several diagnostic applications. Their setup softwares are supported for FireWire camera. The GigE allowed images to be transmitted digitally, removing the standard camera driver is being developing now. We use request from cumbersome frame grabbers and coax non-standard windows XP/Linux camera driver in this switches. Furthermore, the simplicity of triggered report. User interface was written by LabVIEW. The user acquisition made this mode be a standard rather than a interface was developed by LabVIEW and Matlab to special case. Both FireWire cameras and GigE Vision support various experiments and remote controls. cameras with the TLS control system allow seamless integration with control room displays and are easy to access image for various machine studies. Experiences Cabling gain form these experiments and image quality are Maximum copper cable length in the FireWire is excellent. Varying exposure time is very helpful to around 10 meters with full speed. Hub is essential to increase the dynamic range.
Recommended publications
  • HP Z230 Workstation Tower / SFF Single Quad Core CPU
    Avid Configuration Guidelines HP Z230 Workstation Tower / SFF Single Quad Core CPU Page 1 of 18 Joe Conforti – Avid Technology – August 8th 2014 HP Z230 Workstation – Tower / SFF Rev B Config Guide 1.) HP Z230 Tower and SFF [Small Form Factor] AVID Qualified System Specification: Please Note: The SFF will not support 1394 Firewire camera’s / decks with Avid software because it does not have the required PCI 32-bit / 33MHz slot needed to accommodate the required Startech 1394 Firewire HBA. If the user requires support of a 1394 camera / deck the Z230 Tower is required with the appropriate 1394 controller installed in slot #5 Z230 / AVID Qualified Operating System: Supported: Microsoft® Windows 7 Professional 64-bit Edition withSP1 (SP1 required) Supported: Microsoft® Windows 8 - Professional (64bit) and Windows 8 Enterprise (64bit) Supported: Microsoft® Windows 8.1 - Professional (64bit) and Windows 8 Enterprise (64bit) Not Supported Not Supported - Microsoft® Windows 7 – any 32-bit version, or any version of Home, Ultimate or Enterprise editions. Not Supported - Microsoft® Windows XP 32 or 64-bit (any version) Not Supported - Microsoft® Windows Vista 32 or 64-bit (any version) Note regarding Service packs: As of this writing Service Pack 1 is the current Service Pack release for Win7. SP1 is required for Media Composer 6.0, and NewsCutter 10 and later releases. As future Service Packs are released Avid will evaluate and announce formal support when testing is completed. - Z230 / AVID Qualified Hardware Configuration Qualified CPU 1.) Single Intel® Quad-Core Xeon® E3-1245 V3 Processor @ 3.4GHz / 8MB cache / 1600MHz memory. The Xeon® E3-1245 V3 Processor includes Intel embedded graphics – HD P4600.
    [Show full text]
  • Allied Vision Stingray Technical Manual
    Stingray Technical Manual V4.6.4 2018-Jan-05 Allied Vision Technologies GmbH Taschenweg 2a 07646 Stadtroda / Germany Contacting Allied Vision Contacting Allied Vision Connect with Allied Vision colleagues by function: www.alliedvision.com/en/contact Find an Allied Vision office or distributor: www.alliedvision.com/en/about-us/where-we-are.html Email: [email protected] (for commercial and general inquiries) [email protected] (for technical assistance with Allied Vision products) Sales offices Europe, Middle East, and Africa: +49 36428-677-230 UK, Ireland, Nordic countries: +44 207 1934408 France: +33 6 7383 9543 North and South America: +1 (877) USA-1394 Asia-Pacific: +65 6634-9027 China: +86 (21) 64861133 Headquarters Allied Vision Technologies GmbH Taschenweg 2a, 07646 Stadtroda, Germany Tel: +49 (36428) 677-0 Fax +49 (36428) 677-24 President/CEO: Frank Grube Registration Office: AG Jena HRB 208962 Tax ID: DE 184383113 Stingray Technical Manual V4.6.4 2 Contents Contents Contacting Allied Vision...................................................................................2 Introduction.............................................................................................................9 Document history ........................................................................................................... 9 Manual overview........................................................................................................... 21 Conventions used in this manual.....................................................................................
    [Show full text]
  • Evolution LC Megapixel Firewire Camera
    Evolution™ LC Megapixel Firewire Camera Kit The Digital Alternative to Analog Video Microscopy Overview Evolution LC Digital Kits provide a cost-effective solution for image capture, enhancement, and reporting. These cameras offer high-resolution megapixel capability with the convenience of FireWire (IEEE 1394) to capture low latency video streams and digital still images at four times the resolution of video cameras. Evolution LC Description The Evolution LC monochrome and color cameras use the FireWire (IEEE 1394) digital bus protocol to streamline the capture, digitization and processing of megapixel color video streams. These cameras are designed to simplify real-time uncompressed video streaming and digital still image acquisition while maintaining uncompromising video and digital still- image quality. One FireWire cable can manage power distribution, PC-based control and real-time video streaming capabilities of the attached camera. Evolution LC Features Evolution LC Features (cont.) All-in-one megapixel FireWire C-mount FireWire cable carries video data, camera cameras commands and power— no additional cables Stream uncompressed video or capture still required. images Image-Pro® driver controls for: FireWire digital interface simplifies installation Gamma correction, signal gain, and eliminates the need for framegrabbers exposure time Flexible and full-featured CMOS image sensor Imager subwindow size and position with high resolution 1.3 megapixel array (1280 Image flip and mirror × 1024 pixels) Choice of 8-bit or 10-bit
    [Show full text]
  • Lightwise LW-1.3-S-1394 1.3 Megapixel Firewire Camera Features
    LightWise LW-1.3-S-1394 1.3 Megapixel FireWire Camera Features o Low Noise Progressive Scan 1.3 Megapixel o Arbitrary Region of Interest Image Sensor. Color or Monochrome o Multiple Trigger Modes including Single-Shot o IEEE-1394 IIDC DCAM Specification Version 1.3 Compliant Interface o Programmable I/Os for lighting and synchronization control o High Frame Rate: 30 fps (1280x1024), 90+ fps VGA (640x480) o On-board 16MByte Multi-Image Buffer for Monochrome and 32MByte for Color. Full ISG Color Image Processing Pipeline. o RGB, YUV or Raw Bayer Data Out o 1 Million gate Onboard FPGA and Programmable “Smart” architecture enables All color processing: color balance, hue, custom configurations o saturation and dynamic range parameters rd programmable. o Compatible with a wide range of 3 Party Software Applications Ultra High Quality Smooth Digital Zoom and o Pan for any Region of Interest. Fully o Soft-load Firmware-Upgradeable from Host controllable by host computer Computer o Automatic White Balance and Gain. Manual o C-Mount Included modes also supported. o API Specification and SDK Available o 2 1394 ports allows Cascading of cameras in remote installations o Single 1394 Cable for Image, Power and Control. Accessory 1394 Connector. Imaging Solutions Group of NY, Inc. www.isgchips.com 585-388-5220 Summary LightWise LW-1.3-S-1394 The new LightWise area scan smart cameras combine advanced digital processing technology and the FireWire™ standard to give a low-cost, high performance solution to machine vision applications. These compact cameras shorten the typical integration time associated with vision systems and offer flexibility for OEM solutions.
    [Show full text]
  • Installation Manual CCD Color Camera Optical Microscope Accessory
    Installation Manual Optical Microscope Accessory CCD color camera XC30 English CCD color camera XC30 Any copyrights relating to this manual shall belong to Olympus Soft Imaging Solutions GmbH. We at Olympus Soft Imaging Solutions GmbH have trieD to make the information containeD in this manual as accurate and reliable as possible. Nevertheless, Olympus Soft Imaging Solutions GmbH Disclaims any warranty of any kind, whether expressed or implied, as to any matter whatsoever relating to this manual, incluDing without limitation the merchantability or fitness for any particular purpose. Olympus Soft Imaging Solutions GmbH will from time to time revise the software Described in this manual and reserves the right to make such changes without obligation to notify the purchaser. In no event shall Olympus Soft Imaging Solutions GmbH be liable for any indirect, special, incidental, or consequential Damages arising out of purchase or use of this manual or the information contained herein. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the prior written permission of Olympus Soft Imaging Solutions GmbH. Windows, WorD, Excel and Access are trademarks of Microsoft Corporation which can be registered in various countries. Adobe and Acrobat are traDemarks of ADobe Systems Incorporated which can be registereD in various countries. © Olympus Soft Imaging Solutions GmbH All rights reserved Printed in Germany 510_UMA_XC30_en_05__08-March-2016 Olympus Soft Imaging Solutions GmbH, Johann-Krane-Weg 39, D-48149 Münster, Tel. (+49)251/79800-0, Fax.: (+49)251/79800-6060 Contents 1 The CCD color camera XC30 .
    [Show full text]
  • LIBS Install.Pdf
    LIBS Imaging Module Installation and Operation Instructions Description The Ocean Optics LIBS Imaging Module consists of a PixeLINK™ Megapixel FireWire Camera (black and white or color) in a box mounted in between the LIBS laser and the LIBS Sample Chamber (LIBS-SC) as they are stacked on top of each other. This product is designed to enable you to precisely adjust the laser to focus on the exact spot on the sample that you wish to analyze. The LIBS Imaging Module also comes with PixeLINK software for the camera to capture high quality images on your PC. The camera is connected to the PC by a single FireWire interface and all camera functions are controlled by the PixeLINK software. The LIBS Imaging Module was designed to work only with the LIBS Sample Chamber (LIBS-SC). Laser-induced Breakdown Spectroscopy (LIBS) is a laser spark analytical technique used to determine the elemental composition of various solids, liquids and gases. A high-power laser pulse is focused on to a sample to create a plasma or laser spark. The atoms and ions in the plasma emit light energy that is collected by a lens or fiber optic cable and analyzed by a time-gated spectrometer. The atomic spectral lines can be used to determine elemental composition (and concentrations in some systems). One of the benefits is that little or no sample preparation is required, making the technique field- portable. Additionally, the system needs only trace amounts of a sample to make measurements, so it’s a practical tool for scanning applications. For more information about the Ocean Optics LIBS systems, visit our website at http://www.oceanoptics.com.
    [Show full text]
  • A Cost-Effective Multiple Camera Vision System Using Firewire Cameras and Software Synchronization
    A Cost-effective Multiple Camera Vision System using FireWire Cameras and Softwarehelp in recreating Synchronization 3D models and applications such as Virtual Reality, which Piyush Kumar Rai Kamal Tiwari Prithwijit Guha Amitabha Mukerjee need mixing of humans with artificial data. Undergraduate Student Undergraduate Student PhD. Student Professor Multiple camera systems such as AVIARY Computer Science and Computer Science & andElectrical Easy-Living Engg., (by ComMicrosoftputer ScienceResearch) and Engg., Engg., wereIIT Kanpur, among the first of Engg.,this kind of systems. IT-BHU, Varanasi-5, IIT Kanpur, However,Kanpur, UP, problem India.s aroseIIT with Kanpur, these systems UP, India. Kanpur, UP, India. [email protected] to reasons such Kanpur,as high-cost UP, India. (costly rai_piy ush@y ahoo.co.in kama [email protected] cameras and [email protected] cards), lack of mobility and complicated hardware Abstract: synchronization mechanisms (which hinder In this paper, we describe a cost-effective the mobility of such systems). Multiple-Camera Vision system using low cost Hence, in our approach, we are using simple simple FireWire web cameras. The FireWire and low-cost FireWire web cameras for cameras, like other FireWire devices operate on image-acquisition, which operate on the high speed FireWire bus. Current supported bandwidth is 400 Mbps. Right from its FireWire (IEEE 1394). The IEEE 1394 introduction, the FireWire (synonymously known specification offers a bandwidth of 400 as IEEE 1394) bus interface specification has Mbps, which is suitable for such systems proved its capabilities and has been supported dealing with large amounts of data transfer. by both developers and users.
    [Show full text]
  • Replacing a Neurocheck Firewire (NCF, FWX) Camera by a Neurocheck Gige (NCG) Camera
    Replacing a NeuroCheck FireWire (NCF, FWX) camera SE-CG-353-EN by a NeuroCheck GigE (NCG) camera May 8, 2017 Author: NeuroCheck GmbH, E-Mail: [email protected] Content: This whitepaper describes the process to replace a NeuroCheck NCF or FWX-FireWire camera by a NeuroCheck NCG Gigabit Ethernet Camera. It contains descriptions of all necessary steps: From the choice of hardware-components to the software configuration. The most common use cases for replacement are: • Reorganizing the planning of new systems/duplicates • Replacement because of a defect of an old camera • Preventive replacement of all old cameras • Adding NCG cameras to a system with NCF cameras Note: This document is not part of the official product documentation of the NeuroCheck software. NeuroCheck GmbH does not accept responsibility for the correctness, accuracy or completeness of the information provided in this document. Status: 8th of May 2017 © 1994-2017 NeuroCheck GmbH. All rights reserved. Last changed: 2017-05-08 14:38 Page 1 of 9 Table of contents: 1. Introduction ...................................................................................................... 3 2. Summary of the single steps .......................................................................... 3 3. Selection of the hardware components ......................................................... 4 3.1. Camera ....................................................................................................................4 3.2. Network card ..........................................................................................................4
    [Show full text]
  • Stingray. the Transformer Camera AVT STINGRAY
    AVT STINGRAY Stingray. The Transformer Camera AVT STINGRAY STINGRAY F-033B/C STINGRAY F-046B/C STINGRAY F-080B/C STINGRAY F-033B/C fiber STINGRAY F-046B/C fiber STINGRAY F-080B/C fiber Image device Type 1/2 (diag. 8 mm); progr. scan SONY CCD Type 1/2 (diag. 8 mm); progr. scan SONY CCD Type 1/3 (diag. 6 mm); progr. scan SONY CCD Picture Size 656 (H) x 492 (V) 780 (H) x 580 (V) 1032 (H) x 776 (V) Cell Size 9.9 μm x 9.9 μm 8.3 μm x 8.3 μm 4.65 μm x 4.65 μm Resolution depth 8 bit / 14 bit (16 bit in High SNR mode) 8 bit / 14 bit (16 bit in High SNR mode) 8 bit / 14 bit (16 bit in High SNR mode) Lens mount C-Mount / CS-Mount C-Mount / CS-Mount C-Mount / CS-Mount Digital interface IEEE 1394b, (S 800 daisy chain) IEEE 1394b, (S 800 daisy chain) IEEE 1394b, (S 800 daisy chain) Transfer rate 100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s 100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s 100 Mbit/s, 200 Mbit/s, 400 Mbit/s, 800 Mbit/s Frame rates Up to 84 fps (full frames) Up to 61 fps (full frames) Up to 31 fps (full frames) Gain control Manual: 0...24 dB, auto gain Manual: 0...24 dB, auto gain Manual: 0...24 dB, auto gain Shutter speed 30 μs…67 s, auto shutter 30 μs…67 s, auto shutter 48 μs…67 s, auto shutter Image pre-processing LUT; shading correction; High SNR mode; LUT; shading correction; High SNR mode; LUT; shading correction; High SNR mode; white balance; color interpolation (debayering); white balance; color interpolation (debayering); white balance; color interpolation (debayering); local color anti aliasing; hue; saturation; local color
    [Show full text]
  • Microscope Image Capture with Qcolor Firewire Camera Using Qcapture Pro Software Standard Operating Procedure Faculty Supervisor: Prof
    Microscope Image Capture with QColor Firewire Camera using QCapture Pro Software Standard Operating Procedure Faculty Supervisor: Prof. Robert White, Mechanical Engineering (x72210) Safety Office: Peter Nowak x73246 (Just dial this directly on any campus phone.) (617)627-3246 (From off-campus or from a cell phone) Tufts Emergency Medical Services are at x66911. Revised: August 19, 2009 1.0 Material Requirements: 1.1 Equipment: substrate, wafer tweezers 1.2 Personal Protective Equipment: nitrile gloves, safety glasses 1.3 Hardware: Qcolor Firewire CCD camera mounted to reflectance type microscope via the trinocular port. Computer with firewire input port and QCapture software, USB key. 2.0 Procedure: Turn on the system: 1. Turn on the computer. 2. Log in to the computer. The username and password are written on the computer. 3. Plug in the CCD camera to the firewire cable if it isn’t already plugged in. (It should already be plugged in) 4. Load your sample on the microscope stage, turn on the microscope light (switch is on the base of the microscope on the left), and adjust the intensity of the light source to an intermediate level. Capturing a microscope image: 1. Start QCapture Pro by double-clicking on the desktop icon. 2. If QCapture complains it cannot find the camera, close the software, unplug the firewire cord from the camera and plug it back in, and try again. If it still cannot find the camera, reboot the computer. 3. Once QCapture has started correctly, click the “Preview” button at the top of the QImaging tool pallete to see an image preview.
    [Show full text]
  • Table of Contents
    Table of Contents Table of Contents Table of Contents..................................................................................................................................................1 Installation Guidelines..........................................................................................................................................3 Introduction ...........................................................................................................................................................3 System Requirements...........................................................................................................................................3 Equipment Standards - Windows..................................................................................................................3 Equipment Standards - Mac..........................................................................................................................4 Equipment Standards – General...................................................................................................................5 What is in the Box..................................................................................................................................................5 Installing the Software ..........................................................................................................................................5 Windows Installation .......................................................................................................................................5
    [Show full text]
  • PL-A641, PL-A642 Megapixel Firewire Camera Datasheet
    Technical Specification Sheet Megapixel FireWire Cameras PL-A641 – MONOCHROME PL-A642 – COLOR Highlights The PixeLINK™ PL-A641 and PL-A642 Cameras offer high-resolution megapixel capability with the convenience of FireWire (IEEE 1394) to capture low latency video streams and digital still images. The Developer’s Kit includes all of the software and hardware necessary for customized application development. The PL-A641 and PL-A642 are encased in a rugged yet lightweight magnesium housing. Features All-in-one megapixel FireWire C-mount cameras Stream uncompressed video or capture still images Applications FireWire digital interface simplifies installation and eliminates the Microscopy need for framegrabbers Medical and biometric imaging Flexible and full-featured CMOS image sensor with high resolution Video conferencing systems 1.3 megapixel array (1280 × 1024 pixels) Surveillance and security cameras Up to 14 fps at 1280 × 1024 resolution, 30 fps at 640 × 480 Webcasting systems FireWire cable carries video data, camera commands and power— no additional cables required. Photo ID systems Includes application (PixeLINK Capture) and API (Dev. Kit only), to provide controls for: Gamma correction, signal gain, exposure time Imager subwindow size and position Image flip and mirror Choice of 8-bit or 10-bit data and data rate Supports 3rd party software applications via three industry standard software interfaces: DirectShow® TWAIN™ QuickTime General Description The PL-A641 and PL-A642 Cameras use the FireWire (IEEE The Developer’s Kit offers an extensive Application Program 1394) digital bus protocol to streamline the capture, digitization Interface (API). This API is designed to simplify the most and processing of megapixel video streams.
    [Show full text]