Redalyc.ACTIVITY of the ENZYME POLYPHENOL OXIDASE AND
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
LIST of OPERATIVE ACCOUNTS for the DATE : 23/07/2021 A/C.TYPE : CA 03-Current Dep Individual
THE NEW URBAN CO-OP. BANK LTD. - RAMPUR , HEAD OFFICE LIST OF OPERATIVE ACCOUNTS FOR THE DATE : 23/07/2021 A/C.TYPE : CA 03-Current Dep Individual A/C.NO NAME BALANCE LAST OPERATE DATE FREEZE TELE NO1 TELE NO2 TELE NO3 Branch Code : 207 234 G.S. ENTERPRISES 4781.00 CR 30/09/2018 Normal 61 ST 1- L-1 Rampur - 244901 286 STEEL FABRICATORS OF INDIA 12806.25 CR 01/01/2019 Normal BAZARIYA MUULA ZARIF ST 1- POSITS INDIVIDUAL Rampur - 244901 331 WEEKLY AADI SATYA 4074.00 CR 30/09/2018 Normal DR AMBEDKAR LIBRARY ST 1- POSITS INDIVIDUAL Rampur - 244901 448 SHIV BABA ENTERPRISES 43370.00 CR 30/09/2018 Normal CL ST 1- POSITS INDIVIDUAL Rampur - 244901 492 ROYAL CONSTRUCTION 456.00 CR 04/07/2019 Normal MORADABAD ROAD ST 1- L-1 RAMPUR - 244901 563 SHAKUN CHEMICALS 895.00 CR 30/09/2018 Normal C-19 ST 1- POSITS INDIVIDUAL Rampur - 244901 565 SHAKUN MINT 9588.00 CR 30/09/2018 Normal OPP. SHIVI CINEMA ST 1- POSITS INDIVIDUAL Rampur - 244901 586 RIDDHI CLOTH HOUSE 13091.00 CR 30/09/2018 Normal PURANA GANJ ST 1- POSITS INDIVIDUAL Rampur - 244901 630 SAINT KABEER ACADEMY KANYA 3525.00 CR 06/12/2018 Normal COD FORM ST 1- POSITS INDIVIDUAL Rampur - 244901 648 SHIVA CONTRACTOR 579.90 CR 30/09/2018 Normal 52 ST 1- POSITS INDIVIDUAL Rampur - 244901 Print Date : 23/07/2021 4:10:05PM Page 1 of 1 Report Ref No : 462/2 User Code:HKS THE NEW URBAN CO-OP. BANK LTD. -
Road Map for Developing & Strengthening The
KENYA ROAD MAP FOR DEVELOPING & STRENGTHENING THE PROCESSED MANGO SECTOR DECEMBER 2014 TRADE IMPACT FOR GOOD The designations employed and the presentation of material in this document do not imply the expression of any opinion whatsoever on the part of the International Trade Centre concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This document has not formally been edited by the International Trade Centre. ROAD MAP FOR DEVELOPING & STRENGTHENING THE KENYAN PROCESSED MANGO SECTOR Prepared for International Trade Centre Geneva, december 2014 ii This value chain roadmap was developed on the basis of technical assistance of the International Trade Centre ( ITC ). Views expressed herein are those of consultants and do not necessarily coincide with those of ITC, UN or WTO. Mention of firms, products and product brands does not imply the endorsement of ITC. This document has not been formally edited my ITC. The International Trade Centre ( ITC ) is the joint agency of the World Trade Organisation and the United Nations. Digital images on cover : © shutterstock Street address : ITC, 54-56, rue de Montbrillant, 1202 Geneva, Switzerland Postal address : ITC Palais des Nations 1211 Geneva, Switzerland Telephone : + 41- 22 730 0111 Postal address : ITC, Palais des Nations, 1211 Geneva, Switzerland Email : [email protected] Internet : http :// www.intracen.org iii ACRONYMS AND ABBREVIATIONS Unless otherwise specified, all references to dollars ( $ ) are to United States dollars, and all references to tons are to metric tons. The following abbreviations are used : AIJN European Fruit Juice Association BRC British Retail Consortium CPB Community Business Plan DC Developing countries EFTA European Free Trade Association EPC Export Promotion Council EU European Union FPEAK Fresh Produce Exporters Association of Kenya FT Fairtrade G.A.P. -
Understand Bearing Habit in Mango
Mini Review Curr Trends Biomedical Eng & Biosci Volume 7 Issue 2 - August 2017 Copyright © All rights are reserved by Nimisha Sharma DOI: 10.19080/CTBEB.2017.07.555707 Understand Bearing Habit in Mango Nimisha Sharma1, Sanjay Kumar Singh1, Jai Prakash1, Manish Srivastav1, Ajay Kumar Mahato2 and Nagendra Kumar Singh2 1Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, India 2ICAR- National Research Centre on Plant Biotechnology, New Delhi, India Submission: August 03, 2017; Published: August 21, 2017 *Correspondingauthor: Nimisha Sharma, Scientist, IARI, New Delhi, India, Email: Introduction commercial varieties of North India, namely, Dashehari, Langra India is the major producer of various fruit crops like and Chausa are biennial bearers, while south Indian varieties mangoes, banana, citrus, etc. In the world, although it’s relative like Totapuri Red Small, Bangalora, and Neelum are known to share in the world production has been gradually declining. The be regular bearers. Among the most important commercial decline in production is attributed not only due to the incidence varieties of the South, Neelum (Kazaladdu), Banganapalli (Sappatai), Bangalora (Kizhimooku, Totapuri) Kalepad and of pests and diseases, but also influenced by other factors like Senthura (Chinnaswarnarekha) are moderate to heavy bearers irregular bearing etc. Alternate bearer fruit cultivars present a poor germination percentage, lack of efficient rootstocks, and are considered to be fairly regular. Choice varieties such as serious economic problem to fruit growers. During a good year, Alphonso (Gundu), Imam Pasand (Himayuddin), Mulgoa, Peter a tree can be loaded with bumper yield; however, crop quality (Pairi, Nadusalai) etc., are mostly erratic in bearing. -
Mango Production in Pakistan; Copyright © 1
MAGO PRODUCTIO I PAKISTA BY M. H. PAHWAR Published by: M. H. Panhwar Trust 157-C Unit No. 2 Latifabad, Hyderabad Mango Production in Pakistan; Copyright © www.panhwar.com 1 Chapter No Description 1. Mango (Magnifera Indica) Origin and Spread of Mango. 4 2. Botany. .. .. .. .. .. .. .. 9 3. Climate .. .. .. .. .. .. .. 13 4. Suitability of Climate of Sindh for Raising Mango Fruit Crop. 25 5. Soils for Commercial Production of Mango .. .. 28 6. Mango Varieties or Cultivars .. .. .. .. 30 7. Breeding of Mango .. .. .. .. .. .. 52 8. How Extend Mango Season From 1 st May To 15 th September in Shortest Possible Time .. .. .. .. .. 58 9. Propagation. .. .. .. .. .. .. .. 61 10. Field Mango Spacing. .. .. .. .. .. 69 11. Field Planting of Mango Seedlings or Grafted Plant .. 73 12. Macronutrients in Mango Production .. .. .. 75 13. Micro-Nutrient in Mango Production .. .. .. 85 14. Foliar Feeding of Nutrients to Mango .. .. .. 92 15. Foliar Feed to Mango, Based on Past 10 Years Experience by Authors’. .. .. .. .. .. 100 16. Growth Regulators and Mango .. .. .. .. 103 17. Irrigation of Mango. .. .. .. .. .. 109 18. Flowering how it takes Place and Flowering Models. .. 118 19. Biennially In Mango .. .. .. .. .. 121 20. How to Change Biennially In Mango .. .. .. 126 Mango Production in Pakistan; Copyright © www.panhwar.com 2 21. Causes of Fruit Drop .. .. .. .. .. 131 22. Wind Breaks .. .. .. .. .. .. 135 23. Training of Tree and Pruning for Maximum Health and Production .. .. .. .. .. 138 24. Weed Control .. .. .. .. .. .. 148 25. Mulching .. .. .. .. .. .. .. 150 26. Bagging of Mango .. .. .. .. .. .. 156 27. Harvesting .. .. .. .. .. .. .. 157 28. Yield .. .. .. .. .. .. .. .. 163 29. Packing of Mango for Market. .. .. .. .. 167 30. Post Harvest Treatments to Mango .. .. .. .. 171 31. Mango Diseases. .. .. .. .. .. .. 186 32. Insects Pests of Mango and their Control . -
Dumbarton House Annual Report
Dumbarton House Annual Report Fiscal Year 2013 September 2012 – August 2013 Headquarters & Museum ~ The National Society of The Colonial Dames of America Letter from the Executive Director and chairman Dear Friends, Our temporary exhibition this past year—Metamo’rphosis I—provides a fitting theme for our 2013 fiscal year activities here at Dumbarton House, with exciting transformations afoot at your NSCDA national headquarters and museum. In the museum, new collections acquisitions have allowed us to enrich our interpretation of life in our national capital’s earliest days, while the Metamo’rphosis I exhibition encouraged contemporary artists to find inspiration for their modern creations in our historic collection. In the museum interiors, the Dining Room received a stunning facelift, returning it to its authentic Federal period aesthetic. Outside, a transformation of another sort commenced with extensive upgrades to irrigation and garden lighting systems performed alongside emergency repairs of the air conditioning compressor and multiple sink holes. Inside, summer renovations carved out dedicated collections storage space from a former custodial supply closet and office space, and created a headquarters entrance, reception, meeting, and office space in the building’s west wing. Meanwhile, a team of skilled engineers, conservators, preservation architects, and sustainability consultants conducted a year-long study of the site’s HVAC system, funded through a grant from the National Endowment for the Humanities. The NSCDA 2012 Biennial kick-started this year of metamorphoses as members elected new national leadership (including Anna Duff as new NSCDA Vice President-Headquarters, Dumbarton House) and unveiled an engaging new brand for the Society. Our numerous museum programs, serving just under 20,000 this past year, and these numerous preservation efforts would not be possible without the generous support of friends like you from across the country. -
DURING FROZEN STORAGE by ANGELA RINCON
EFFECT OF PREFREEZING TREATMENTS ON QUALITY OF MANGO (Manguifera Indica L.) DURING FROZEN STORAGE by ANGELA RINCON (Under the direction of William L. Kerr) ABSTRACT At the moment there is a high demand for high-quality fruit ingredients to be used in many food formulations such as pastry and confectionery products, ice cream, frozen desserts and sweets, fruit salads, cheese and yoghurt. The overall objective was to improve quality of frozen mango using two types of food cryoprotection: one was the reduction of water content of the fruit (osmotic dehydration) and the other was the formulation of mango pulp with carbohydrates of different molecular weight to increase frozen stability. Osmotic dehydration was able to modify quality parameters of slices before and after frozen storage. Values for some parameters such as vitamin C, lightness (L*), chroma (C*), and firmness for non osmotically dehydrated slices were significantly higher than osmotically dehydrated slices. However, treatments carried out with osmotic solutions (especially those with high concentrations of sucrose) improved significantly the quality of mango slices after frozen storage. Higher moisture losses and solid gain values were reported for slices from the highest osmotic solution concentration. Thus, slices dipped in 30oBrix were better protected against freezing damage. Effects of sucrose concentration on the slices and ripening stage on frozen-thawed mango flavor perception were determined. Six flavor descriptors (color, flavor, sweetness, sourness, firmness and juiciness) were evaluated by a sensory trained panel. All descriptors were affected by sugar content and ripening stage. To study the effect of mango fruit composition on frozen stability, five pulp samples were prepared and evaluated in terms of glass transition temperature modification and its influence on ascorbic acid retention. -
Changes in the Sensory Characteristics of Mango Cultivars During the Production of Mango Purée and Sorbet
DIFFERENCES IN SENSORY CHARACTERISTICS AMONG VARIOUS MANGO CULTIVARS IN THE FORM OF FRESH SLICED MANGO, MANGO PURÉE, AND MANGO SORBET by CHRISTIE N. LEDEKER B.S., University of Delaware, 2008 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Interdisciplinary Food Science Graduate Program Department of Human Nutrition KANSAS STATE UNIVERSITY Manhattan, Kansas 2011 Approved by: Major Professor Dr. Delores H. Chambers Abstract Fresh mangoes are highly perishable, and therefore, they are often processed to extend shelf-life and facilitate exportation. Studying the transformation that mango cultivars undergo throughout processing can aid in selecting appropriate varieties for products. In the 1st part of this study, the flavor and texture properties of 4 mango cultivars available in the United States (U.S.) were analyzed. Highly trained descriptive panelists in the U.S. evaluated fresh, purée, and sorbet samples prepared from each cultivar. Purées were made by pulverizing mango flesh, passing it through a china cap, and heating it to 85 °C for 15 s. For the sorbets, purées were diluted with water (1:1), sucrose was added, and the bases were frozen in a batch ice cream freezer. Much of the texture variation among cultivars was lost after fresh samples were transformed into purées, whereas much of the flavor and texture variation among cultivars was lost once fresh mangoes and mango purées were transformed into sorbets. Compared to the other cultivars, Haden and Tommy Atkins underwent greater transformations in flavor throughout sorbet preparation, and processing reduced the intensities of some unpleasant flavors in these cultivars. -
"Ripening of Mangos Following Low-Temperature Storage "
perature, concentration and exposure time to acetylene on initi- of acetylene and ethylene gas on initiation of banana ripening. ation of banana ripening. J. Sci. Food Agr. 40:43-50. Ann. Applied Biol. 101:407-410. 18. Subramanyam, H., N.V.N. Moorthy, S. Lakshminarayana, and 20. Wang, C.Y. and W.M. Mellenthin. 1972. Internal ethylene lev- S. Krishnamurthy. 1972. Studies on harvesting, transport and els during ripening and climacteric in Anjou pears. Plant Physiol. storage of mango. Intl. Soc. Hort. Sci. 24:260-264. 50:311-312. 19. Thompson, A.K. and G.B. Seymour. 1982. Comparative effects J. AMER. SOC. HORT. SCI. 115(3):430-434. 1990. Ripening of Mangos Following Low-temperature Storage A.P. Medlicott1 Overseas Development and Natural Resources Institute, 56-62 Gray’s Inn Road, London, WX1X 8LU, England J.M.M. Sigrist Instituto de Tecnologia de Alimentos, Av. Brasil 2880, Campinas SP 13100, Brazil O. Sy Institut de Technologie Alimentaire, Route des Pères Maristes, Hann, Dakar BP 2765, Senegal Additional index words. Mangifera indica, harvest maturity, postharvest physiology; quality control Abstract. The effects of harvest maturity of mangos (Mangifera indica L.) on storage tinder various low-temperature regimes and the influence of storage on quality development during subsequent ripening at higher temperatures were investigated. The capacity for storage of mango fruit depended on harvest maturity, storage temperature, and the time of harvest within the season. Development of peel and pulp color, soluble solids concentration, pH, and softening in ‘Amelie’, ‘Tommy Atkins’, and ‘Keitt’ mangos occurred progressively during storage for up to 21 days at 12C. -
Processing-And-Drying-Of-Tropical
Processing and Drying of Tropical Fruits Processing and Drying of Tropical Fruits Editors: Chung Lim Law, Ching Lik Hii, Sachin Vinayak Jangam and Arun Sadashiv Mujumdar 2017 Processing and Drying of Tropical Fruits Copyright © 2017 by authors of individual chapter ISBN: 978-981-11-1967-5 All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the copyright holder. This book contains information from recognized sources and reasonable efforts are made to ensure their reliability. However, the authors, editor and publisher do not assume any responsibility for the validity of all the materials or for the consequences of their use. Preface Tropical fruits are abundant source of nutrients and bio-active compounds that provide numerous health benefits and have been proven in many scientific studies. In today’s fast moving society and ever changing food habit of consumers have led to the development of natural food products to fulfill not only the nutritional needs but also product specifications demanded by consumers. This e-book aims to present the latest research works carried out by researchers worldwide for drying and preservation of tropical fruits ranging from the very common (e.g. mango, pineapple) to the more exotic selections (e.g. ciku, durian, dragon fruit). By converting fresh tropical fruits into dried products via advanced drying/dehydration techniques, this helps to provide an alternative choice of healthy fruit snacks especially to consumers residing outside tropical climate regions. This e-book and also several others can be freely downloaded from Prof. -
Genetic Diversity and Relationships Among Mango Varieties Using RAPD Molecular Markers
Int.J.Curr.Microbiol.App.Sci (2016) 5(1): 778-787 ISSN: 2319-7706 Volume 5 Number 1(2016) pp. 778-787 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.501.079 Genetic Diversity and Relationships among Mango Varieties using RAPD Molecular Markers R. Pruthvish1 and B.K.Chikkaswamy2* 1Department of Biotechnology, Acharya Institute of Technology, Soladevanahalli Hesaraghatta Road, Bangalore, India 2Sigma BioScience Research Center, Indira Nagar Bangalore-560038, India *Corresponding author A B S T R A C T K e y w o r d s Mango is the genus of tree & bushy tree in the family Mangnoliaceae. Most of the Genetic Mango varieties are dioceous and cross-pollinate to produce to produce fertile Diversity, hybrids suggesting a closer genetic relationship which is not expected at species Mango level. The traditional methods using morphological characters are not successful in Varieties, establishing the diversity and relationship among 19 different Mango varieties RAPD, because of the environmental influence.PCR based molecular marker method, Molecular RAPD was employed to study the genetic diversity and Inter-relationship among Markers 19 Mango varieties. On an average RAPD analysis generated 5-6 discrete bands/ varieties with 10 nucleotides primers. The size of the amplified products ranged Article Info from 100-3500 base pairs in length. With an average of 5-10 bands per primer. Of Accepted: 21 amplified fragments 50 were polymorphic (80%) with at least one pair wise 25 December 2015 comparison between 19 varieties. RAPD analysis identified varieties specific Available Online: amplification products which will be useful in germplasm classification and 10 January 2016 introgression studies. -
Mango Grower's Summit, Tuesday, September 28, 2021
Mango Grower’s Summit, Tuesday, September 28, 2021 Hilton Daytona Beach Oceanfront Resort, 100 North Atlantic Avenue, Daytona Beach, FL 32118. Dear Commercial Mango Growers: We are inviting you to attend to the Mango Grower’s Summit 2021 at the Hilton Daytona Beach Oceanfront Resort, 100 North Atlantic Avenue, Daytona Beach, FL 32118 on Tuesday, September 28, 2021. The Florida State Horticultural Society will hold the Mango Grower’s Summit, a one-day event, as part of the 134th Annual Meeting of the Florida State Horticultural Society to be held September 26 to 28, 2021. Commercial mango growers will have the benefit to attend to all the lectures during the FSHS meeting. This is an opportunity to network with growers and to take an in-depth look at quality mango production. The FSHS conferences are open to the mango growers for more information. please visit: https://fshs.org/meetings/. Free Admission for mango farmers, sponsored by National Mango Board. Registration is required, please contact Wanda Ramos [email protected] Cell: 321-947-3629 AGENDA 9:00 Registration 12:00 p.m. Lunch (Included) 1:20 p.m. Welcome 1: 30 p.m. National Mango Board Tools for the Mango Industry Mitton, R.V1, 1National Mango Board, U.S.A; 2Food Safety Consulting & Training Solutions LLC , Orlando Fl, USA. 1:45 p.m. Mango Internal Discoloration (“Cutting Black” or “Corte Negro”). Jeffrey K. Brecht, University of Florida, IFAS, Horticultural Sciences Department, Gainesville, FL, USA. 2:00 p.m ‘Rapoza’ A Potential Mango Cultivar for the Americas, Noris Ledesma, Hervert Yair Ordoñez 2:15 p.m. -
Effect of Temperature on the Flowering Biology and Fertilization of Mangoes (Mangifera Indica L.)
1. Appl. Hort., 1(2):79-83, July-December, 1999 Effect of temperature on the flowering biology and fertilization of mangoes (Mangifera indica L.) Z.H.Shii* Fengshan Tropical Horticultural Experiment Station, TARI, Fengshan, Kaohsiung, Taiwan, 830, Republic of China *Presently at Department of Plant Industry, National Pingtung University of Science and Technology, Pingtung, Taiwan 912, R. O. C.E-mail:[email protected] .,edu.tw Abstract -'Haden', 'Irwin', 'Keitt' and 'Local' mangoes were treated with three temperature regimes to investigate the influence of temperatures on the flowering biology and fertilization. Oompared to 2500/1900, warm temperature (31°0/25°0), hastened growth rates of panicles and flowers, shortened flowering duranon and life span of individual flower. If also decreased numbers of hermaphrodite and male flowers. But warm temperature increased the rates and percentages of anther dehiscence and fertilization. In contrast, cool temperature (19°0/13°0), lingered growth rates of panicles and flowers, extended flowering duration and life span of flowers. It also increased numbers of hermaphrodite and male flowers. Sex ratio was statistically not different among the plants under the three temperature regimes. The highest number of hermaphrodite and male flowers occurred at the first one third and the half time, respectively, of the entire flowering period. Keywords: Mango, flowering, temperature, sex ratio, fertilization Introduction were used in this experiment. Forty uniform three- year-old trees, 25 'Haden' and 5 each for the other Mangoes are grown widely in tropical and subtropical three cultivars, of the four cultivars were grown in 35 areas around the world. Biennial bearing (Mukherjee, cm pots and put in the field.