Polytropes Astrophysics and Space Science Library

Total Page:16

File Type:pdf, Size:1020Kb

Polytropes Astrophysics and Space Science Library POLYTROPES ASTROPHYSICS AND SPACE SCIENCE LIBRARY VOLUME 306 EDITORIAL BOARD Chairman W.B. BURTON, National Radio Astronomy Observatory, Charlottesville, Virginia, U.S.A. ([email protected]); University of Leiden, The Netherlands ([email protected]) Executive Committee J. M. E. KUIJPERS, Faculty of Science, Nijmegen, The Netherlands E. P. J. VAN DEN HEUVEL, Astronomical Institute, University of Amsterdam, The Netherlands H. VAN DER LAAN, Astronomical Institute, University of Utrecht, The Netherlands MEMBERS I. APPENZELLER, Landessternwarte Heidelberg-Königstuhl, Germany J. N. BAHCALL, The Institute for Advanced Study, Princeton, U.S.A. F. BERTOLA, Universitá di Padova, Italy J. P. CASSINELLI, University of Wisconsin, Madison, U.S.A. C. J. CESARSKY, Centre d'Etudes de Saclay, Gif-sur-Yvette Cedex, France O. ENGVOLD, Institute of Theoretical Astrophysics, University of Oslo, Norway R. McCRAY, University of Colorado, JILA, Boulder, U.S.A. P. G. MURDIN, Institute of Astronomy, Cambridge, U.K. F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India K. SATO, School of Science, The University of Tokyo, Japan F. H. SHU, University of California, Berkeley, U.S.A. B. V. SOMOV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research Institute, Moscow, Russia Y. TANAKA, Institute of Space & Astronautical Science, Kanagawa, Japan S. TREMAINE, CITA, Princeton University, U.S.A. N. O. WEISS, University of Cambridge, U.K. POLYTROPES Applications in Astrophysics and Related Fields by G.P. HOREDT Deutsches Zentrum für Luft- und Raumfahrt DLR, Wessling, Germany KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBook ISBN: 1-4020-2351-0 Print ISBN: 1-4020-2350-2 ©2004 Springer Science + Business Media, Inc. Print ©2004 Kluwer Academic Publishers Dordrecht All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com and the Springer Global Website Online at: http://www.springeronline.com TABLE OF CONTENTS 1 Polytropic and Adiabatic Processes 1 1.1BasicConcepts.......................................... 1 1.2 Polytropic and Adiabatic Processes in a Perfect Gas ..................... 2 1.3 Polytropic Processes for a General Equation of State . 7 1.4 Adiabatic Processes in a Mixture of Black Body Radiation and Perfect Gas . 10 1.5 Adiabatic Processes in a Mixture of Electron-Positron Pairs and Black Body Radiation . 11 1.6 Adiabatic Processes in a Completely Degenerate Electron or Neutron Gas . 13 1.7 Numerical Survey of Equations of State, Adiabatic Exponents, and Polytropic Indices . 15 1.8Emden’sTheorem........................................ 24 2 Undistorted Polytropes 27 2.1GeneralDifferentialEquations.................................. 27 2.2 The Homology Theorem and Transformations of the Lane-Emden Equation . 33 2.2.1TheHomologyTheorem................................. 33 2.2.2 Milne Homology Invariant Variables .......................... 34 2.2.3EmdenVariables..................................... 35 2.2.4 Kelvin Variables ..................................... 37 2.3ExactAnalyticalSolutionsoftheLane-EmdenEquation................... 38 2.3.1 Ritter’s First Integral n =0............................... 38 2.3.2 Ritter’s Second Integral n =1.............................. 38 2.3.3 Schuster-Emden Integral n =(N +2)/(N − 2).................... 40 2.3.4SingularSolution..................................... 44 2.4ApproximateAnalyticalSolutions................................ 46 2.4.1 Series Expansion of Lane-Emden Functions near an Interior Point . 46 2.4.2 Expansion of Lane-Emden Functions near the Finite Boundary . 51 2.4.3AsymptoticExpansionsofLane-EmdenFunctions................... 53 2.4.4 Pad´eApproximantsforLane-EmdenFunctions.................... 57 2.4.5AnalyticalSolutionsClosetoanExactSolution.................... 60 2.4.6 Approximate Solutions by the Method of Multiple Scales . 64 2.5ExactNumericalSolutions.................................... 67 2.6PhysicalCharacteristicsofUndistortedPolytropes...................... 79 2.6.1Radius........................................... 79 2.6.2 Density, Pressure, and Temperature .......................... 79 2.6.3Volume,Surface,andMass............................... 80 2.6.4MeanDensity....................................... 82 2.6.5 Gravitational Acceleration and Gravitational Potential . 82 2.6.6TheVirialTheorem................................... 84 2.6.7GravitationalPotentialEnergyandInternalEnergy................. 92 2.6.8 Behaviour of Physical Characteristics as the Radius Increases . 97 2.6.9 Uniform Contraction or Expansion of N-dimensionalPolytropes........... 99 2.7TopologyoftheLane-EmdenEquation............................. 102 2.7.1 Polytropic Indices n = −1, ±∞ ............................. 106 2.7.2 Polytropic Index n = ±∞ ................................ 117 2.8 Composite and Other Spherical Polytropes . 122 2.8.1CompositePolytropes.................................. 122 2.8.2Two-componentPolytropes............................... 129 2.8.3 Loaded Polytropes .................................... 132 2.8.4BoltzmannFactorPolytropes.............................. 134 2.8.5TheEmden-Fowlerequation............................... 135 v vi Table of Contents 3 Distorted Polytropes 137 3.1Introduction............................................137 3.2 Chandrasekhar’s First Order Theory of Rotationally Distorted Spheres . 150 3.3 Chandrasekhar’s First Order Theory of Tidally Distorted Polytropes . 163 3.4Chandrasekhar’sDoubleStarProblem............................. 170 3.5 Second Order Extension of Chandrasekhar’s Theory to Differentially Rotating Polytropes 182 3.6 Double Approximation Method for Rotationally and Tidally Distorted Polytropic Spheres 191 3.7 Second Order Level Surface Theory of Rotationally Distorted Polytropes . 199 3.8 Numerical and Seminumerical Methods Concerning Distorted Polytropic Spheres . 205 3.8.1 James’ Calculations on Rotating Polytropes . 205 3.8.2 Stoeckly’s Method of Linearized Differences . 209 3.8.3 Williams’ Optimal Matching Method . 213 3.8.4 The Self-Consistent Field Method of Ostriker and Mark . 214 3.8.5 The Ellipsoidal Method of Roberts . 221 3.8.6Miketinac’sMethod................................... 224 3.8.7Eriguchi’sComplex-PlaneStrategy........................... 226 3.8.8 Tabulation of Numerical Results for Critically Rotating Spheroids . 230 3.9RotatingPolytropicCylindersandPolytropicRings..................... 235 3.9.1RotatingPolytropicCylinders.............................. 235 3.9.2PolytropicRings..................................... 238 3.10Magnetopolytropes....................................... 253 3.10.1Introduction....................................... 253 3.10.2 Roxburgh’s Theory of Spherical Magnetopolytropes . 255 3.10.3 Monaghan’s Magnetopolytropes with Poloidal Fields . 259 3.10.4PerturbationMethodsforMagnetopolytropes.................... 264 3.10.5MagneticFieldsinCylindricalPolytropes.......................280 4 Relativistic Polytropes 287 4.1 Undistorted Relativistic Polytropes ............................... 287 4.1.1 Spherical Polytropes with Einstein’s General Relativity . 287 4.1.2 Composite Polytropes in General Relativity . 299 4.1.3 Spherical Polytropes with Variable Gravitational Constant . 301 4.1.4 Polytropic Spheres in Bimetric Gravitation Theory . 304 4.1.5 Relativistic Polytropic Slabs and Cylinders ...................... 308 4.2 Rotationally Distorted Relativistic Polytropes . 309 4.2.1Introduction........................................ 309 4.2.2 Perturbation Theory in the Post Newtonian Approximation . 310 4.2.3 Stoeckly’s Method for Post Newtonian Rotating Polytropes . 319 4.2.4 Slowly Rotating, Fully Relativistic Polytropes . 320 4.2.5 Slowly Rotating and Fully Relativistic Polytropes in Bimetric Gravitation . 325 4.2.6 Rapidly Rotating and Fully Relativistic Polytropes . 325 5 Stability and Oscillations 341 5.1DefinitionsandGeneralConsiderations.............................341 5.2BasicEquations.......................................... 346 5.3 Radial Oscillations of Polytropic Spheres . 361 5.3.1 Approximate Values of the Fundamental Oscillation Frequency . 361 5.3.2 Linear Radial Oscillations of the Constant Density Polytrope n =0......... 363 5.3.3 Linear Radial Oscillations of the Roche Model ..................... 364 5.3.4 The Schuster-Emden Polytrope n =5 ......................... 365 5.3.5 Linear Radial Oscillations of Polytropes with 0 ≤ n<5 ............... 366 5.3.6 Nonlinear, Second Order Radial Oscillations of Polytropes . 368 5.3.7 Linear Radial Oscillations of Composite Polytropes . 370 5.3.8 Radial Oscillations of Isothermal Spheres n = ±∞ .................. 372 5.4 Instability of Truncated Polytropes . 373 Table of Contents vii 5.4.1 The Jeans Criterion for the Infinite Homogeneous Medium . 373 5.4.2 Radial Gravitational Instability of Polytropes under External Pressure . 374 5.5 Nonradial Oscillations of Polytropic Spheres . 383 5.5.1 Nonradial Oscillations of the Homogeneous Polytrope n =0............. 383 5.5.2 Nonradial Oscillations of Polytropes if 0 <n<5 ................... 386 5.6 Stability and Oscillations of Polytropic Cylinders . 392 5.6.1 The Incompressible Homogeneous Cylinder (n =0;Γ1 = ∞) ............ 392 5.6.2 The Compressible Homogeneous Cylinder
Recommended publications
  • Nuclear Astrophysics
    Nuclear Astrophysics Lecture 3 Thurs. Nov. 3, 2011 Prof. Shawn Bishop, Office 2013, Ex. 12437 www.nucastro.ph.tum.de 1 Summary of Results Thus Far 2 Alternative expressions for Pressures is the number of atoms of atomic species with atomic number “z” in the volume V Mass density of each species is just: where are the atomic mass of species “z” and Avogadro’s number, respectively Mass fraction, in volume V, of species “z” is just And clearly, Collect the algebra to write And so we have for : If species “z” can be ionized, the number of particles can be where is the number of free particles produced by species “z” (nucleus + free electrons). If fully ionized, and 3 The mean molecular weight is defined by the quantity: We can write it out as: is the average of for atomic species Z > 2 For atomic species heavier than helium, average atomic weight is and if fully ionized, Fully ionized gas: Same game can be played for electrons: 4 Temp. vs Density Plane Relativistic - Relativistic Non g cm-3 5 Thermodynamics of the Gas 1st Law of Thermodynamics: Thermal energy of the system (heat) Total energy of the system Assume that , then Substitute into dQ: Heat capacity at constant volume: Heat capacity at constant pressure: We finally have: 6 For an ideal gas: Therefore, And, So, Let’s go back to first law, now, for ideal gas: using For an isentropic change in the gas, dQ = 0 This leads to, after integration of the above with dQ = 0, and 7 First Law for isentropic changes: Take differentials of but Use Finally Because g is constant, we can integrate
    [Show full text]
  • Astronomy 112: the Physics of Stars Class 10 Notes: Applications and Extensions of Polytropes in the Last Class We Saw That Poly
    Astronomy 112: The Physics of Stars Class 10 Notes: Applications and Extensions of Polytropes In the last class we saw that polytropes are a simple approximation to a full solution to the stellar structure equations, which, despite their simplicity, yield important physical insight. This is particularly true for certain types of stars, such as white dwarfs and very low mass stars. In today’s class we will explore further extensions and applications of simple polytropic models, which we can in turn use to generate our first realistic models of typical main sequence stars. I. The Binding Energy of Polytropes We will begin by showing that any realistic model must have n < 5. Of course we already determined that solutions to the Lane-Emden equation reach Θ = 0 at finite ξ only for n < 5, which already hints that n ≥ 5 is a problem. Nonetheless, we have not shown that, as a matter of physical principle, models of this sort are unacceptable for stars. To demonstrate this, we will prove a generally useful result about the energy content of polytropic stars. As a preliminary to this, we will write down the polytropic relation (n+1)/n P = KP ρ in a slightly different form. Consider a polytropic star, and imagine moving down within it to the point where the pressure is larger by a small amount dP . The corre- sponding change in density dρ obeys n + 1 dP = K ρ1/ndρ. P n Similarly, since P = K ρ1/n, ρ P it follows that P ! K 1 dP ! d = P ρ(1−n)/ndρ = ρ n n + 1 ρ We can regard this relation as telling us how much the ratio of pressure to density changes when we move through a star by an amount such that the pressure alone changes by dP .
    [Show full text]
  • 20 — Polytropes [Revision : 1.1]
    20 — Polytropes [Revision : 1.1] • Mechanical Equations – So far, two differential equations for stellar structure: ∗ hydrostatic equilibrium: dP GM = −ρ r dr r2 ∗ mass-radius relation: dM r = 4πr2ρ dr – Two equations involve three unknowns: pressure P , density ρ, mass variable Mr — cannot solve – Try to relate P and ρ using a gas equation of state — e.g., ideal gas: ρkT P = µ ...but this introduces extra unknown: temperature T – To eliminate T , must consider energy transport • Polytropic Equation-of-State – Alternative to having to do full energy transport – Used historically to create simple stellar models – Assume some process means that pressure and density always related by polytropic equation of state P = Kργ for constant K, γ – Polytropic EOS resembles pressure-density relation for adibatic change; but γ is not necessarily equal to usual ratio of specific heats – Physically, gases that follow polytropic EOS are either ∗ Degenerate — Fermi-Dirac statistics apply (e.g., non-relativistic degenerate gas has P ∝ ρ5/3) ∗ Have some ‘hand-wavy’ energy transport process that somehow maintains a one-to- one pressure-density relation • Polytropes – A polytrope is simplified stellar model constructed using polytropic EOS – To build such a model, first write down hydrostatic equilibrium equation in terms of gradient of graqvitational potential: dP dΦ = −ρ dr dr – Eliminate pressure using polytropic EOS: K dργ dΦ = − ρ dr dr – Rearrange: Kγ dργ−1 dΦ = − γ − 1 dr dr – Solving: K(n + 1)ρ1/n = −Φ where n ≡ 1/(γ − 1) is the polytropic index (do not
    [Show full text]
  • Stellar Structure — Polytrope Models for White Dwarf Density Profiles and Masses
    Stellar Structure | Polytrope models for White Dwarf density profiles and masses We assume that the star is spherically symmetric. Then we want to calculate the mass density ρ(r) (units of kg/m3) as a function of distance r from its centre. The mass density will be highest at its centre and as the distance from the centre increases the density will decrease until it becomes very low in the outer atmosphere of the star. At some point ρ(r) will reach some low cutoff value and then we will say that that value of r is the radius of the star. The mass dnesity profile is calculated from two coupled differential equations. The first comes from conservation of mass. It is dm(r) = 4πr2ρ(r); (1) dr where m(r) is the total mass within a sphere of radius r. Note that m(r ! 1) = M, the total mass of the star is that within a sphere large enough of include the whole star. In practice the density profile ρ(r) drops off rapidly in the outer atmosphere of the star and so can obtain M from m(r) at some value of r large enough that the density ρ(r) has become small. Also, of course if r = 0, then m = 0: the mass inside a sphere of 0 radius is 0. Thus the one boundary condition we need for this first-order ODE is m(r = 0) = 0. The second equation comes from a balance of forces on a spherical shell at a radius r. The pull of gravity on the shell must equal the outward pressure at equilibrium; see Ref.
    [Show full text]
  • Homologous Stellar Models and Polytropes Equation of State, Mean
    Homologous Stellar Models and Polytropes Equation of State, Mean Molecular Weight and Opacity Homologous Models and Lane-Emden Equation Comparison Between Polytrope and Real Models Main Sequence Stars Post-Main Sequence Hydrogen-Shell Burning Post-Main Sequence Helium-Core Burning White Dwarfs, Massive and Neutron Stars Introduction The equations of stellar structure are coupled differential equations which, along with supplementary equations or data (equation of state, opacity and nuclear energy generation) need to be solved numerically. Useful insight can be gained, however, using analytical methods in- volving some simple assumptions. One approach is to assume that stellar models are homologous; • that is, all physical variables in stellar interiors scale the same way with the independent variable measuring distance from the stellar centre (the interior mass at some point specified by M(r)). The scaling factor used is the stellar mass (M). A second approach is to suppose that at some distance r from • the stellar centre, the pressure and density are related by P (r) = K ργ where K is a constant and γ is related to some polytropic index n through γ = (n + 1)/n. Substituting in the equations of hydrostatic equilibrium and mass conservation then leads to the Lane-Emden equation which can be solved for a specific poly- tropic index n. Equation of State Stellar gas is an ionised plasma, where the density is so high that the average particle 15 spacing is of the order of an atomic radius (10− m): An equation of state of the form • P = P (ρ, T, composition) defines pressure as needed to solve the equations of stellar structure.
    [Show full text]
  • Lecture 15: Stars
    Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 15: Stars 1 Introduction There are at least 100 billion stars in the Milky Way. Not everything in the night sky is a star there are also planets and moons as well as nebula (cloudy objects including distant galaxies, clusters of stars, and regions of gas) but it's mostly stars. These stars are almost all just points with no apparent angular size even when zoomed in with our best telescopes. An exception is Betelgeuse (Orion's shoulder). Betelgeuse is a red supergiant 1000 times wider than the sun. Even it only has an angular size of 50 milliarcseconds: the size of an ant on the Prudential Building as seen from Harvard square. So stars are basically points and everything we know about them experimentally comes from measuring light coming in from those points. Since stars are pointlike, there is not too much we can determine about them from direct measurement. Stars are hot and emit light consistent with a blackbody spectrum from which we can extract their surface temperature Ts. We can also measure how bright the star is, as viewed from earth . For many stars (but not all), we can also gure out how far away they are by a variety of means, such as parallax measurements.1 Correcting the brightness as viewed from earth by the distance gives the intrinsic luminosity, L, which is the same as the power emitted in photons by the star. We cannot easily measure the mass of a star in isolation. However, stars often come close enough to another star that they orbit each other.
    [Show full text]
  • Homework Assignment 12 — Solutions
    Homework Assignment 12 | Solutions • Q10.17 To confirm that the solution ξ2 p D (ξ) = 1 − ; ξ = 6 0 6 1 is correct, we must check that it satisfies the Lane-Emden equation and the associated boundary conditions. For a polytropic index n = 0, the Lane-Emden equation is 1 d dD ξ2 n = −1: ξ2 dξ dξ Substituting the solution into the left-hand side of this equation, we have 1 d dD 1 d d ξ2 ξ2 0 = ξ2 1 − ξ2 dξ dξ ξ2 dξ dξ 6 Working through the differentiations, this becomes 1 d dD 1 d ξ 1 ξ2 0 = ξ2 − = − ξ2 = −1: ξ2 dξ dξ ξ2 dξ 3 ξ2 The right-hand side matches the right-hand side of the Lane-Emden equation, and therefore the solution satisfies the equation. To check the boundary conditions, we note that 02 D (0) = 1 − = 1; 0 6 0 D0 (0) = − = 0; 0 3 and p 2 6 D (ξ ) = 1 − = 0: 0 1 6 Therefore, all boundary conditions are satisfied, and we have proven that the n = 0 polytrope has the given solution. • Q10.18 For any polytrope, the density structure is described by n ρ(r) = ρc[Dn(r)] (see Ostlie & Carroll, p. 336). In the n = 0 case, this becomes ρ(r) = ρc; indicating that the density is constant everywhere | that is, the polytrope has a homogeneous density structure. • Q10.19 The mass of a polytrope is given by 3 2 dDn M = −4πλ ρcξ : n 1 dξ ξ1 (Ostlie & Carroll, p. 338). In the n = 5 case, the solution of the Lane-Emden equation is 2 −1=2 D5(ξ) = [1 + ξ =3] 1 Figure 1: A plot of the normalized density ρ/ρc as a function of scaled radius r/λn, for the n = 0 (solid), n = 1 (dotted) and n = 5 (dashed) polytropes.
    [Show full text]
  • On the Calculation of the Effective Polytropic Index in Space Plasmas
    entropy Article On the Calculation of the Effective Polytropic Index in Space Plasmas Georgios Nicolaou 1,* , George Livadiotis 2 and Robert T. Wicks 1 1 Department of Space and Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, Surrey RH5 6NT, UK; [email protected] 2 Southwest Research Institute, San Antonio, TX 78238, USA; [email protected] * Correspondence: [email protected] Received: 25 September 2019; Accepted: 10 October 2019; Published: 12 October 2019 Abstract: The polytropic index of space plasmas is typically determined from the relationship between the measured plasma density and temperature. In this study, we quantify the errors in the determination of the polytropic index, due to uncertainty in the analyzed measurements. We model the plasma density and temperature measurements for a certain polytropic index, and then, we apply the standard analysis to derive the polytropic index. We explore the accuracy of the derived polytropic index for a range of uncertainties in the modeled density and temperature and repeat for various polytropic indices. Our analysis shows that the uncertainties in the plasma density introduce a systematic error in the determination of the polytropic index which can lead to artificial isothermal relations, while the uncertainties in the plasma temperature increase the statistical error of the calculated polytropic index value. We analyze Wind spacecraft observations of the solar wind protons and we derive the polytropic index in selected intervals over 2002. The derived polytropic index is affected by the plasma measurement uncertainties, in a similar way as predicted by our model. Finally, we suggest a new data-analysis approach, based on a physical constraint, that reduces the amount of erroneous derivations.
    [Show full text]
  • Chapter 2 Basic Assumptions, Theorems, and Polytropes
    1. Stellar Interiors Copyright (2003) George W. Collins, II 2 Basic Assumptions, Theorems and Polytropes . 2.1 Basic Assumptions Any rational structure must have a beginning, a set of axioms, upon which to build. In addition to the known laws of physics, we shall have to assume a few things about stars to describe them. It is worth keeping these assumptions in mind for the day you encounter a situation in which the basic axioms of stellar structure no longer hold. We have already alluded to the fact that a self-gravitating plasma will assume a spherical shape. This fact can be rigorously demonstrated from the nature of an attractive central force so it does not fall under the category of an axiom. 34 2⋅ Basic Assumptions, Theorems, and Polytropes However, it is a result which we shall use throughout most of this book. A less obvious axiom, but one which is essential for the construction of the stellar interior, is that the density is a monotonically decreasing function of the radius. Mathematically, this can be expressed as ρ(r) ≤ <ρ>(r) for r > 0 , (2.1.1) where <ρ>(r) / M(r)/[4πr3/3] , (2.1.2) and M(r) is the mass interior to a sphere of radius r and is just ∫4 π r2 ρ dr. In addition, we assume as a working hypothesis that the appropriate equation of state is the ideal-gas law. Although this is expressed here as an assumption, we shall shortly see that it is possible to estimate the conditions which exist inside a star and that they are fully compatible with the assumption.
    [Show full text]
  • General Bibliography
    General Bibliography These are selected, recently published books on the history of astronomy (excluding textbooks). Consult them in addition to article, Selected References. Preference is given to those books written in–or translated into–English, the language of this encyclopedia. References to biographies, institutional histories, conference procee- dings, and journal/compendium articles appear in individual entry bibliographies. Ince, Martin. Dictionary of Astronomy. Fitzroy Dearborn, 1997. RENAISSANCE ASTRONOMY GENERAL Crowe, Michael J. Theories of the World from Antiquity to the Copernican Revolu- Abetti, Giorgio. The History of Astronomy. H. Schuman, 1952. tion. Dover Publications, 1990. Berry, Arthur. A Short History of Astronomy from Earliest Times Through the Eleanor-Roos, Anna Marie. Luminaries in the Natural World: The Sun and Moon Nineteenth Century. Dover Publications, 1961. in England, 1400–1720. Peter Lang Publishing, 2001. Clerke, Agnes. A Popular History of Astronomy During the Nineteenth Century. Jervis, Jane. Cometary Theory in Fifteenth-Century Europe. D. Reidel Publishing A. and C. Black, 1902. Company, 1985. DeVorkin, David (editor). Beyond Earth: Mapping the Universe. National Geo- Koyré, Alexander. The Astronomical Revolution: Copernicus – Kepler – Borrelli. graphic Society, 2002. Dover Publications, 1992. Ferris, Timothy. Coming of Age in the Milky Way. William Morrow & Company, Kuhn, Thomas S. The Copernican Revolution: Planetary Astronomy in the 1988. Development of Western Thought. Harvard University Press, 1957. Grant, Robert. History of Physical Astronomy From the Earliest Ages to the Middle Randles, W. G. L. The Unmaking of the Medieval Christian Cosmos, 1500–1760: of the Nineteenth Century. Johnson Reprint Corporation, 1966. From Solid Heavens to Boundless Æther. Ashgate Publishing Company, Hoskin, Michael.
    [Show full text]
  • Lecture 5-3: Applications Polytrope Models
    Lecture 5-3: Applications polytrope models Literature: MWW Chapter 19 !" 1 g) Eddington’s standard model In this model, the energy equation and equation of diffusive radiative transfer are included (approximately) to arrive at simple solutions. In essence, this model boils down assuming a constant b throughout the star. We looked at this in section 5a. From a slightly different angle, with b is constant we have Prad/P is constant: 2 d lnT 3 Pκ Lr ∇ = = 4 d ln P 64πσ T GMr 4 P dPrad with Prad = 4σT 3c we can write: ∇ = 4Prad dP dP κL L L rad = r dP 4πcGM Mr M Introduce, ε ≡ dLr dMr r ε(r) = ∫ ε dMr Mr =Lr Mr 0 L L η(r) ≡ ε(r) ε(R) = r Mr M dP L rad = κ(r)η(r) dP 4πcGM 3 L Prad (r) = κ (r)η(r) P(r) with 4πcGM P(r) κ (r)η(r) = ∫ κη dP P(r), and we have, 0 L 1− β = κ (r)η(r) 4πcGM Now, realize that κ decreases rapidly inwards while η decreases rapidly outwards for main sequence stars. Eddington assumed that β is constant and that results in a simple T - P or T - ρ relation. 1/3 # 3ck 1− β & 1/3 T (r) = % ( ρ (r) $ 4σµmu β ' 4 4 1/3 P k T (! k $ 3 1− β + gas ρ * ( )- 4/3 P(r) = = = # & 4 ρ (r), see slide 4 lecture 5-1 m m a β µ u β )*"µ u % β ,- The constant in brackets is also equal to the constant K in slide 8 lecture 5-1 1/3 4π GM 2/3 K n = 3 = ( ) , or ( ) 2 1/3 4 ( 4 ! + *ξ (−θ3 ) - ) ,ξ1 2 1− β 4 ! M $ 4 = 0.002996µ # & , and β " Mo % 2/3 ! M $ T (r) = 4.62 ×106 βµ# & ρ1/3 (r) " Mo % but note β and M in this T - ρ relation5 are not independent One-parameter family of models: β decreases with increasing M Other properties: ρc = 54.18ρ " %2 4 17 M " RO % 2 Pc =1.242 ×10 $ ' $ ' dyne/cm # MO & # R & " % 6 M " RO % Tc =19.72 ×10 βµ $ '$ ' K # MO &# R & T = 0.5852Tc Standard model provides the run of density, temperature, and pressure.
    [Show full text]
  • Uses of Polytropes
    The Mass-Radius Relation for Polytropes The mass within any point of a polytropic star is 0 R ξ M 2 3 2 n = 4πr ρ dr = 4πrnρc ξ θ dξ (16.1.1) Z0 Z0 This can be simplified by substituting the left side of the Lane- Emden equation for θn 0 ξ M 0 3 − d 2 dθ 3 02 dθ (ξ ) = 4πrnρc ξ dξ = 4πrnρc ξ dξ dξ dξ 0 Z0 µ ¶ µ ¶ξ 3 2 3−3n (n + 1)K 2n +1 02 dθ = 4π ρc ξ − 4πG dξ 0 · ¸ µ ¶ξ 3 2 (3−n) (n + 1)K 2n 02 dθ = 4π ρc ξ − (16.1.2) 4πG dξ 0 · ¸ µ ¶ξ Now compare this to the radius 1 (n + 1)K 2 (1−n) r(ξ0)= r ξ0 = ρ 2n ξ0 (16.1.3) n 4πG c · ¸ If you solve for ρc in the mass equation (16.1.2) 2n 3 −1 3−n 2 M 4πG 02 dθ ρc = −ξ 4π (n + 1)K " dξ ξ0 # · ¸ · ¸ µ ¶ and eliminate it from the radius equation (16.1.3), you get n n−1 3−n 3−n 1 (n + 1)K 02 dθ 1−n r = (4π) n−3 −ξ M 3−n (16.1.4) G dξ · ¸ · ¸ In other words, the radius of a polytropic star is related to its mass by ∝ M(1−n)/(3−n) R T Note what this means: for a polytropic index of 3/2 (the γ = 5/3 case), R ∝ M−1/3. Thus, for a set of stars with the same K and n (i.e., white dwarfs, or a fully convective star that is undergoing mass transfer), the stellar radius is inversely proportional to the mass.
    [Show full text]