Effectiveness of Respiratory Rates in Determining Clinical Deterioration: a Systematic Review Protocol

Total Page:16

File Type:pdf, Size:1020Kb

Effectiveness of Respiratory Rates in Determining Clinical Deterioration: a Systematic Review Protocol SYSTEMATIC REVIEW PROTOCOL Effectiveness of respiratory rates in determining clinical deterioration: a systematic review protocol 1 2 2 Rikke Rishøj Mølgaard Palle Larsen Sasja Jul Ha˚konsen 1Department of Nursing, University College of Northern Denmark, Hjørring, Denmark, 2Danish Centre of Systematic Reviews: an Affiliate Center of the Joanna Briggs Institute; The Centre of Clinical Guidelines – Danish National Clearing House Review question/objective: The objective of this systematic review is to identify, appraise and synthesize the best available evidence on the effectiveness of manually measuring respiratory rates for 60 s or less in detecting clinical deterioration of inpatients. More specifically, the review question is: Is measurement of respiratory rates for 60 s more effective in detecting clinical deterioration than a shorter duration of measurement? Keywords Detection of clinical deterioration; inpatients; nursing; respiratory rate measurement; vital sign measurement Background several hours before other signs as the first indication 11,12 t is a universal practice to measure vital signs in of deterioration. Measurement of respiratory patients at the time of admission in hospitals. rate as a vital sign is important in detecting deteriora- I tion, as the respiratory rate often increases before Measurement of vital signs has been found to be 1,5,12–15 important and useful in detecting clinical deteriora- other vital signs show deterioration. Studies 1–5 have shown an increase in respiratory rates of up tion of inpatients. ‘‘A deteriorating patient is one 16,17 who progresses from one clinical state to a worse until 24 h prior to ICU admission. Nurses do not measure respiratory rates routinely clinical state which increases their individual risk of 5,9,15 morbidity, including organ dysfunction, protracted for many reasons. A qualitative study has high- hospital stay, disability, or death.’’6(p.1031) Different lighted that nurses tend not to measure the respir- types of early warning scoring systems for clinical atory rate if they judge that the patient’s condition is deterioration have been developed and evaluated. A stable. In cases where nurses do measure the respir- Cochrane review published in 20077 concluded that atory rates, they do not do so for a full minute implementation of early warning scoring systems is because it takes too much time, it is likely to be complex and its impact on practice can be variable. interrupted or the patient becomes agitated. It has Although algorithms for nurses’ interventions fol- also been noted that the reason for respiratory rate lowing measurement of vital signs have been devel- measurement being omitted is that some nurses do not think that it is important to measure the respir- oped, it was found that nurses’ knowledge base and 10 skills are lacking, particularly with regard to the atory rate routinely. Another issue with regard to rationale for the measurement of vital signs and the measurement of the respiratory rate is the hetero- how to respond adequately to these measure- geneity in the technique of measuring respiratory ments.7–10 rates by medical and nursing professionals. This, in It is widely acknowledged that detecting clinical turn, has generated a wide range of respiratory rates deterioration early is vital in avoiding intensive care and as a consequence of this, important information about the patient’s condition lacks an adequate unit (ICU) admission or cardiac arrest and death, 1 sepsis and other acute clinical conditions.2–4,11 An clinical response. increase in respiratory rates can often be detected It is considered best practice for manual measure- ment of respiratory rates to be carried out over a full minute to gain an effective measurement.1,11,14,18–20 Correspondence: Rikke Rishøj Mølgaard, [email protected] However, several methods were described in the There is no conflict of interest in this project. literature in which the rates were measured over a DOI: 10.11124/JBISRIR-2016-002973 JBI Database of Systematic Reviews and Implementation Reports ß 2016 THE JOANNA BRIGGS INSTITUTE 19 ©2016 Joanna Briggs Institute. Unauthorized reproduction of this article is prohibited. SYSTEMATIC REVIEW PROTOCOL R.R. Mølgaard et al. period of 15, 30 or 60 seconds. In one study, it was It is important to determine whether measure- found that there was a significant difference between ment of respiratory rate for a full minute or less has a manually measured rate and a recorded rate as the an impact on the detection of clinical deterioration. recorded rate was often likely to be 18 and 20 per It is asserted that an increase of three to five respir- minute, which was higher than a manually measured ations per minute may constitute a sign of clinical rate and was considered as a high rate.3 This deterioration. If the respiratory rate is counted for indicates an overrepresentation of even values when less than 60 seconds, there is a risk of overlooking an respiratory rates are recorded. A respiratory rate of increase in the total respiratory rate, and signs of more than 20 is defined as tachypnoe.19 It was also deterioration are at risk of being overlooked. It found that, if the respiratory rate increases by more isargued that an increase in respiratory rates often than three to five respirations per minute from the deteriorates before other vital signs. It is therefore patient’s normal rate, it is a sign of clinical deteriora- important to synthesize knowledge on best practice tion relating to respiratory distress or potential in accordance with the correct method to measure hypoxemia.11 respiratory rates to optimize detection of clinical A measurement of respiratory rate considered deterioration so that ICU admission, cardiac arrest, appropriate is to count for a full minute to assess sepsis and other acute clinical conditions can the respiratory condition and to detect clinical be reduced. deterioration. Measurement of respiratory rates An initial search of the topic in the databases includes counting the number of breaths, usually CINAHL, The Cochrane Library, The JBI Database per minute. The patient is unaware of the counting of Systematic Reviews and Implementation Reports of the respiratory rate. As the respiratory rate is one and PubMed did not identify previous reviews. Sys- of the first signs of deterioration, it is important to tematic reviews of topics regarding vital sign measure the respiratory rate accurately.1,3,8,21 It is measurement and different types of early warning therefore important to evaluate whether a difference scoring systems exist, but none of them investigate in the duration of manually measured respiratory the topic described in this review protocol. rates (for a full minute or less than 60 seconds) has an impact on clinical practice in detecting clinical Inclusion criteria deterioration. Types of participants Finally, the issues of lack of knowledge base, and The current review will consider studies that have competency in undertaking measurement and inter- included adult patients aged at least 18 years admit- preting the respiratory rates by nursing professionals ted to a surgical or medical ward and who therefore were also highlighted in the literature.10 However, have had their respiratory rates measured in the other studies demonstrated that it was possible to ward to detect clinical deterioration. increase the number of measured and recorded Types of interventions respiratory rates and vital signs if nurses were taught The current review will consider studies that have how and why it is important, and this intervention evaluated manual measurement of respiratory rates was shown to be ratified at follow-up in the way that for a full minute compared with durations of less respiratory rates were more often measured and 2,5,9,15 9 than 60 seconds. Studies that may have measured recorded. Bunkenborg showed in 2014 that respiratory rates for more than 60 seconds will, the development and implementation of a bedside when appropriate and relevant to the review ques- track and trigger system to detect clinical deteriora- tion, be analyzed and included in the discussion of tion had an effect in the prevention of unexpected the results. death and consequently a positive effect on patient safety. Bunkenborg also asserted that, in consider- Outcomes ation of the beneficial effects of measuring the Clinical deterioration can be measured by physio- respiratory and heart rates, it might benefit patient logic instability as abnormal values of vital signs safety to ensure optimization of these two vital such as tachypnea, tachycardia, hypotension and signs.9 It is therefore important to investigate if this decreased oxygen saturation.13,19 This review will optimization could include how the respiratory rate consider studies that include the following outcome is manually measured. measures: respiratory rate, blood pressure, pulse JBI Database of Systematic Reviews and Implementation Reports ß 2016 THE JOANNA BRIGGS INSTITUTE 20 ©2016 Joanna Briggs Institute. Unauthorized reproduction of this article is prohibited. SYSTEMATIC REVIEW PROTOCOL R.R. Mølgaard et al. rate, oxygen saturation and temperature, all of validity prior to inclusion in the review, using stand- which are considered as the actual measurement ardized critical appraisal instruments from the (continuous data). Mortality will also be considered Joanna Briggs Institute Meta Analysis of Statistics if reported in the included studies. Assessment and Review Instrument (JBI-MAStARI) (Appendix
Recommended publications
  • Respiratory Examination Cardiac Examination Is an Essential Part of the Respiratory Assessment and Vice Versa
    Respiratory examination Cardiac examination is an essential part of the respiratory assessment and vice versa. # Subject steps Pictures Notes Preparation: Pre-exam Checklist: A Very important. WIPE Be the one. 1 Wash your hands. Wash your hands in Introduce yourself to the patient, confirm front of the examiner or bring a sanitizer with 2 patient’s ID, explain the examination & you. take consent. Positioning of the patient and his/her (Position the patient in a 3 1 2 Privacy. 90 degree sitting position) and uncover Exposure. full exposure of the trunk. his/her upper body. 4 (if you could not, tell the examiner from the beginning). 3 4 Examination: General appearance: B (ABC2DEVs) Appearance: young, middle aged, or old, Begin by observing the and looks generally ill or well. patient's general health from the end of the bed. Observe the patient's general appearance (age, Around the bed I can't state of health, nutritional status and any other see any medications, obvious signs e.g. jaundice, cyanosis, O2 mask, or chest dyspnea). 1 tube(look at the lateral sides of chest wall), metered dose inhalers, and the presence of a sputum mug. 2 Body built: normal, thin, or obese The patient looks comfortable and he doesn't appear short of breath and he doesn't obviously use accessory muscles or any heard Connections: such as nasal cannula wheezes. To determine this, check for: (mention the medications), nasogastric Dyspnea: Assess the rate, depth, and regularity of the patient's 3 tube, oxygen mask, canals or nebulizer, breathing by counting the respiratory rate, range (16–25 breaths Holter monitor, I.V.
    [Show full text]
  • The Child with Altered Respiratory Status
    Path: K:/LWW-BOWDEN-09-0101/Application/LWW-BOWDEN-09-0101-016.3d Date: 3rd July 2009 Time: 16:31 User ID: muralir 1BlackLining Disabled CHAPTER 16 The Child With Altered Respiratory Status Do you remember the Diaz fam- Case History leave Lela, the baby sister, ily from Chapter 9, in which with Claudia’s mother, Selma, Jose has trouble taking his asthma medication, and head to the hospital. and in Chapter 4, in which Jose’s little sister, At the hospital the emergency department Lela, expresses her personality even as a new- nurse observes Jose sitting cross-legged and born? Jose is 4 years old and was diagnosed leaning forward on his hands. His mouth is with asthma this past fall, about 6 months ago. open and he is breathing hard with an easily Since that time Claudia, his mother, has audible inspiratory wheeze. He is using his noticed several factors that trigger his asthma subclavicular accessory muscles with each including getting sick, pollen, and cold air. breath. His respiratory rate is 32 breaths per One evening following a warm early-spring minute, his pulse is 112 beats per minutes, day, Jose is outside playing as the sun sets and and he is afebrile. Claudia explains that he the air cools. When he comes inside he was fine; he was outside running and playing, begins to cough. Claudia sets up his nebulizer and then came in and began coughing and and gives him a treatment of albuterol, which wheezing, and she gave him an albuterol lessens his coughing. Within an hour, Jose is treatment.
    [Show full text]
  • Breathing Sounds – Determination of Extremely Low Spl
    MATEC Web of Conferences 217, 03001 (2018) https://doi.org/10.1051/matecconf/201821703001 ICVSSD 2018 BREATHING SOUNDS – DETERMINATION OF EXTREMELY LOW SPL M. Harun1*, R. Teoh Y. S1, M. ‘A. A. Ahmad, M. Mohd. Mokji1, You K. Y1, S. A. R. Syed Abu Bakar1, P. I. Khalid1, S. Z. Abd. Hamid1 and R. Arsat1 1 School of Electrical Engineering, Universiti Teknologi Malaysia, *Email: [email protected] Phone: +6075535358 ABSTRACT Breathing sound is an extremely low SPL that results from inspiration and expiration process in the lung. Breathing sound can be used to diagnose persons with complications with breathing. Also, the sound can indicate the effectiveness of treatment of lung disease such as asthma. The purpose of this study was to identify SPL of breathing sounds, over six one octave center frequencies from 63 Hz to 4000 Hz, from the recorded breathing sounds in .wav files. Breathing sounds of twenty participants with normal weight BMI had been recorded in an audiometry room. The breathing sound was acquired in two states: at rest and after a 300 meters walk. Matlab had been used to process the breathing sounds that are in .wav files to come up with SPL (in dB). It has been found out that the SPL of breathing sound of all participants are positive at frequencies 63 Hz and 125 Hz. On the other hand, the SPL are all negatives at frequency 1000 Hz, 2000 Hz and 4000 Hz. In conclusion, SPL of breathing sounds of the participants, at frequencies 250 Hz and 500 Hz that have both positive and negative values are viable to be studied further for physiological and medicinal clues.
    [Show full text]
  • Clinical Management of Severe Acute Respiratory Infections When Novel Coronavirus Is Suspected: What to Do and What Not to Do
    INTERIM GUIDANCE DOCUMENT Clinical management of severe acute respiratory infections when novel coronavirus is suspected: What to do and what not to do Introduction 2 Section 1. Early recognition and management 3 Section 2. Management of severe respiratory distress, hypoxemia and ARDS 6 Section 3. Management of septic shock 8 Section 4. Prevention of complications 9 References 10 Acknowledgements 12 Introduction The emergence of novel coronavirus in 2012 (see http://www.who.int/csr/disease/coronavirus_infections/en/index. html for the latest updates) has presented challenges for clinical management. Pneumonia has been the most common clinical presentation; five patients developed Acute Respira- tory Distress Syndrome (ARDS). Renal failure, pericarditis and disseminated intravascular coagulation (DIC) have also occurred. Our knowledge of the clinical features of coronavirus infection is limited and no virus-specific preven- tion or treatment (e.g. vaccine or antiviral drugs) is available. Thus, this interim guidance document aims to help clinicians with supportive management of patients who have acute respiratory failure and septic shock as a consequence of severe infection. Because other complications have been seen (renal failure, pericarditis, DIC, as above) clinicians should monitor for the development of these and other complications of severe infection and treat them according to local management guidelines. As all confirmed cases reported to date have occurred in adults, this document focuses on the care of adolescents and adults. Paediatric considerations will be added later. This document will be updated as more information becomes available and after the revised Surviving Sepsis Campaign Guidelines are published later this year (1). This document is for clinicians taking care of critically ill patients with severe acute respiratory infec- tion (SARI).
    [Show full text]
  • PALS Helpful Hints 2015 Guidelines - December 2016 Mandatory Precourse Assessment at Least 70% Pass
    PALSPALS Helpful Helpful Hints Courtesy Hints are of CourtesyKey Medical of Resources, Key Medical Inc. Resources, www.cprclassroom.com Inc. PALS Helpful Hints 2015 Guidelines - December 2016 Mandatory precourse assessment at least 70% pass. Bring proof of completion to class. The PALS exam is 50 questions. Passing score is 84% or you may miss 8 questions. All AHA exams are now open resource, so you may use your books and/or handouts for the exam. For those persons taking PALS for the first time or updating/renewing with a current card, exam remediation is permitted should you miss more than 8 questions on the exam. Viewing the PALS book ahead of time with the online resources is very helpful. The American Heart Association link is www.heart.org/eccstudent has a pre-course self- assessment, supplementary written materials and videos. The code for these online resources is in the PALS Provider manual page ii. The code is PALS15. Basic Dysrhythmia knowledge is required. The exam has at least 5 strips to interpret. The course is a series of video segments then skills. The course materials well prepare you for the exam. Basic Dysrhythmias knowledge is required in relation to asystole, ventricular fibrillation, tachycardias in general and bradycardias in general. You do not need to know the ins and outs of each and every one. Tachycardias need to differentiate wide complex (ventricular tachycardia) and narrow complex (supraventricular tachycardia or SVT). Airway - child is grunting - immediate intervention. Airway - deteriorates after oral airway, next provide bag-mask ventilation. Airway - snoring with poor air entry bilaterally - reposition, oral airway.
    [Show full text]
  • Why Is Respiratory Rate the Neglected Vital Sign? a Narrative Review Malcolm Elliott*
    Elliott. Int Arch Nurs Health Care 2016, 2:050 Volume 2 | Issue 3 International Archives of ISSN: 2469-5823 Nursing and Health Care Review: Open Access Why is Respiratory Rate the Neglected Vital Sign? A Narrative Review Malcolm Elliott* School of Health, Charles Darwin University, Melbourne, Australia *Corresponding author: Malcolm Elliott, RN, PhD, Lecturer, School of Health, Charles Darwin University, Melbourne, Australia, E-mail: [email protected] Early identification of this change allows prompt intervention and Abstract thus reduces the risk of organ failure and death [10]. Tachypnoea Respiratory rate assessment is essential for detecting acute changes for example is one of the most significant predictors of in-hospital in a patient’s condition. Despite this, research has shown that it is the cardiac arrest and admission to intensive care [11]. The ability to most neglected vital sign in clinical practice. This literature review identify a deteriorating patient is also essential for avoiding poor identified three key reasons for this: inadequate knowledge regarding clinical outcomes and to ensure the effective intervention of rapid respiratory rate assessment; nurses’ perception of patient acuity; and lack of time. These factors suggest poor understanding of the response teams [12]. importance of respiratory rate as a vital sign. Despite its clinical importance, respiratory rate has consistently Although respiratory rate assessment is commonly neglected been the least frequently measured vital sign [13-15]. An audit of 211 in clinical practice, only three studies have explored the reasons adult post-operative patients in five Australian hospitals for example for this. It is not known what is taught at the undergraduate level found only 17% of medical records had complete documentation of regarding respiratory rate assessment.
    [Show full text]
  • Chest and Lung Examination
    Chest and Lung Examination Statement of Goals Understand and perform a complete examination of the normal chest and lungs. Learning Objectives A. Locate the bony landmarks of the normal chest: • Ribs and costal margin, numbering ribs and interspaces • Clavicle • Sternum, sternal angle and suprasternal notch • Scapula B. Define the vertical "lines" used to designate chest wall locations. Use the bony landmarks and conventional vertical "lines" when describing a specific area of the chest wall. • Midsternal line • Midclavicular line • Anterior, mid and posterior axillary lines • Scapular line • Vertebral line C. Describe the location of the trachea, mainstem bronchi, lobes of the lungs and pleurae with respect to the surface anatomy of the chest. D. Prepare for an effective and comfortable examination of the chest and lungs by positioning and draping the patient. Communicate with the patient during the exam to enlist the patient’s cooperation. E. Describe and perform inspection of the chest including the following: • Rate, rhythm, depth, and effort of breathing • Shape and movement of the chest F. Describe and perform palpation of the chest including the following: • Identify tender areas • Chest expansion • Tactile fremitus G. Describe and perform percussion of the chest, distinguishing a dull sound (below the diaphragm) from a resonant sound (over normal lung.) Use percussion to demonstrate symmetric resonance of the lung fields and to measure diaphragmatic excursion. H. Describe and perform auscultation of the lungs including the following: • Symmetric examination of the lung fields, posterior and anterior. • Normal breath sounds (vesicular, bronchovesicular, bronchial and tracheal), their usual locations and their characteristics. I. Define terms for three common adventitious lung sounds: • Wheezes are high pitched, continuous hissing or whistling sounds.
    [Show full text]
  • Adapting to Changes in Breathing When You Have ALS
    Adapting to Changes in Breathing When You Have ALS I ALS Sec 1 O_REV_FINAL.indd 1 4/1 /17 3:04 PM I ALS Sec 10_REV_FINAL.indd 2 4/1/17 3:04 PM ADAPTING TO CHANGES IN BREATHING WHEN YOU HAVE ALS Lee Guion, MA, RRT, RCP, FAARC The Forbes Norris ALS Research and Treatment Center, An ALS Association Certified Treatment Center of Excellence and Connie Paladenech, RRT, RCP, FAARC Wake Forest Baptist Health ALS Center, An ALS Association Certified Treatment Center of Excellence ALS Sec 10_REV_FINAL.indd 1 4/1/17 3:04 PM A note to the reader: The ALS Association has developed the Living with ALS resource guides for informational and educational purposes only. The information contained in these guides is not intended to replace personalized medical assessment and management of ALS. Your doctor and other qualified health care providers must be consulted before beginning any treatment. Living with ALS Adapting to Changes in Breathing When You Have ALS Copyright © 2017 by The ALS Association. All rights reserved. ALS Sec 10_REV_FINAL.indd 2 4/1/17 3:04 PM TABLE OF CONTENTS INTRODUCTION . 10-4 HOW THE LUNGS WORK . 10-4 MEASURING LUNG FUNCTION . 10-4 SYMPTOMS OF LUNG MUSCLE WEAKNESS . 10-7 MAXIMIZING LUNG FUNCTION . 10-8 BI-LEVEL POSITIVE AIRWAY PRESSURE (BI-LEVEL PAP) BREATHING . 10-10 ADDITIONAL BREATHING ASSISTANCE DEVICE OPTIONS . 10-14 CHALLENGES TO NONINVASIVE MECHANICAL ASSISTED BREATHING . 10-16 DIAPHRAGM PACING SYSTEM (DPS) . 10-17 A WORD ABOUT OXYGEN . 10-18 ADVANCED DECISION MAKING ABOUT RESPIRATORY SUPPORT . 10-19 SUMMARY STATEMENT .
    [Show full text]
  • The Roles of Bronchodilators, Supplemental Oxygen, and Ventilatory Assistance in the Pulmonary Rehabilitation of Patients with Chronic Obstructive Pulmonary Disease
    The Roles of Bronchodilators, Supplemental Oxygen, and Ventilatory Assistance in the Pulmonary Rehabilitation of Patients With Chronic Obstructive Pulmonary Disease Richard L ZuWallack MD Introduction What Pulmonary Rehabilitation Does and How It Works Enhancing the Effectiveness of Pulmonary Rehabilitation Exercise Training Bronchodilators Supplemental Oxygen Noninvasive Ventilation Summary In patients with chronic obstructive pulmonary disease, pulmonary rehabilitation significantly improves dyspnea, exercise capacity, quality of life, and health-resource utilization. These benefits result from a combination of education (especially in the promotion of collaborative self-management strategies and physical activity), exercise training, and psychosocial support. Exercise training increases exercise ca- pacity and reduces dyspnea. Positive outcomes from exercise training may be enhanced by 3 interven- tions that permit the patient to exercise train at a higher intensity: bronchodilators, supplemental oxygen (even for the nonhypoxemic patient), and noninvasive ventilatory support. Key words: broncho- dilators, oxygen, mechanical ventilation, pulmonary rehabilitation, chronic obstructive pulmonary disease, COPD, dyspnea, exercise capacity, quality of life, exercise training, exercise capacity, noninvasive ventilation. [Respir Care 2008;53(9):1190–1195. © 2008 Daedalus Enterprises] Introduction bilitation as “an evidence-based, multidisciplinary, and com- prehensive intervention for patients with chronic respiratory A recent statement from
    [Show full text]
  • Respiratory Examination Learnpediatrics.Com Narration Written by Drs
    Respiratory Examination Learnpediatrics.com Narration Written by Drs. C. Taylor, P. Gfeller, and T. Ring Introduction Hello and welcome to the respiratory module. I will be accompanying you through examination of the respiratory system in a cooperative child. Remember you must always adjust your approach and be flexible when examining a child, taking into consideration their age, personality and how well they are. A complete examination of the respiratory system must always include an examination of the ears, nose and throat. Acute Assessment Your first encounter with a patient allows you to make some general observations. Most essential in immediate observation is the acute assessment of the child. This information determines the pace, the focus and the thoroughness of the exam. In emergency situations, an acute assessment may require direct medical intervention prior to the commencement of any further historical or physical investigations. If the child appears well you will likely have time to complete a thorough history and physical examination. Keep in mind that much of the diagnosis of the respiratory problem in a child is formed through your observations. In your initial observations you should obtain a general impression of the state of the child’s health, observe the nature and effort of his or her breathing during both inspiration and expiration. Also observe any signs of respiratory problems, noisy breathing, the quality of any cough and the allergic salute or shiners. It is also important to make a quick assessment of the parent accompanying the child. You can gain valuable information and build rapport by recognizing the emotional state of the parent.
    [Show full text]
  • Measurement of Respiratory Rate with Inertial Measurement Units
    DE GRUYTER Current Directions in Biomedical Engineering 2020;6(3): 20203060 Simon Beck*, Bernhard Laufer, Sabine Krueger-Ziolek and Knut Moeller Measurement of respiratory rate with inertial measurement units Abstract: Demographic changes and increasing air pollution can be very uncomfortable during long term measurements or entail that monitoring of respiratory parameters is in the even impossible for older people, children, or people with focus of research. In this study, two customary inertial pre-existing disease conditions in general. measurement units (IMUs) are used to measure the breathing First initial approaches measuring respiratory parameters rate by using quaternions. One IMU was located ventral, and by focusing on movements of the thorax are dated back to the one was located dorsal on the thorax with a belt. The relative middle of the 20th century [3]. This topic is still a matter of angle between the quaternion of each IMU was calculated research, as a real breakthrough mainly refers to tidal volume and compared to the respiratory frequency obtained by a measurement did not occur. And even recent studies, based spirometer, which was used as a reference. A frequency on IMUs or strain gauges, with similar aims, did show a analysis of both signals showed that the obtained respiratory strong dependency on the sensor placement on the patients rates vary slightly (less than 0.2/min) between the two [4] or problems with motion artefacts [5]. systems. The introduced belt can analyse the respiratory rate The focus of this study was respiratory rate measurement and can be used for surveillance tasks in clinical settings.
    [Show full text]
  • 4. Pulmonary Function Tests and Alveolar Ventilation
    Introductory Human Physiology ©copyright Jennifer Carbrey & Emma Jakoi 4. Pulmonary function tests and alveolar ventilation 8 FORCED EXPIRATORY VITAL CAPACITY TEST 7 provides an indirect assessment of airway X resistance. In this pulmonary function test, the 6 subject inhales to total lung capacity and then 5 exhales into a spirometer as forcefully, rapidly, and VOLUME as completely as possible. The volume expired 4(LITERS) Y under these conditions is called the forced vital 3 capacity (FVC) (Fig 3). 2 Z The forced expiratory vital capacity test also 1 measures the volume exhaled in 1 second, called 0 2 4 6 8 10 the 1-second forced expiratory volume (FEV1). TIME (SECONDS) This value is often expressed as a % of FVC (i.e., FEV1/FVC %). Normally FEV1 is at least 80% of FVC (curve Y). Patients with restrictive lung disease Figure 3. Forced expiratory vital will have a normal value of 80% (curve Z). In patients capacity curves generated by such as asthmatics, who have obstructed airways, individuals X, Y and Z. this value will be reduced (<80%) (curve X). Exchange of Gases in Alveoli & Tissues Respiration involves two processes: (1) Delivery of O2 to and removal of CO2 from the cells of the body. (2) Use of O2 in oxidative metabolism to generate ATP, water, and CO2. In a steady state, the amount of O2 that is consumed by the cells per unit time is equal to the amount of O2 added to the blood in the lungs during the same time period. Likewise the rate at which CO2 is generated by the cells is equal to the rate at which CO2 leaves the blood in the lungs and is exhaled.
    [Show full text]