Spatial Patterns of Density and Size Structure of Penaeid Shrimps <I

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Patterns of Density and Size Structure of Penaeid Shrimps <I BULLETIN OF MARINE SCIENCE, 79(2): 259–271, 2006 SPatial Patterns of DensitY anD SIZE structure of PenaeiD SHrimPS FARFANTEPENAEUS BRASILIENSIS anD FARFANTEPENAEUS NOTIALIS in A HYPersaline laGoon in THE YucatÁN Peninsula, MEXico Marco Antonio May-Kú and Uriel Ordóñez-López ABSTRACT Spatial variation in the density and size structure of penaeid shrimps Farfante- penaeus brasiliensis (Latreille, 1817) and Farfantepenaeus notialis (Pérez-Farfante, 1967) was investigated in Río Lagartos, a coastal lagoon with hypersaline conditions (mean salinity 58.1). We evaluated the influence of salinity, temperature, and re- cruit density on the density of shrimps. A total of 2060 shrimps belonging to three Farfantepenaeus species was collected on a monthly basis from November 1996 to April 1997. Of the 1349 identified shrimps, F. brasiliensis was the dominant species, accounting for 79.5% of the total catch followed by F. notialis (17.5%) and Farfante- penaeus duorarum Burkenroad, 1939 (3.0%). The remaining 34.5% were small un- identified shrimps classified as recruits (i.e., < 6.0 mm CL). Shrimps were collected only in hydrological zones with a mean salinity < 50 and were completely absent in the innermost zones (mean salinity > 60). We found a common pattern of density and size structure for penaeid shrimp species: decreasing densities and increasing sizes from outer (near sea inlet) to inner zones. Multiple-regression analysis indi- cated that salinity was the most important hydrological variable in the F. brasilien- sis, F. notialis, and recruit catch models, showing a strong negative relationship with density. Recruit density also significantly influenced the density of F. brasiliensis and along with salinity explained 42% of the overall variation of this species. The preference of penaeid shrimps for zones proximal to the sea inlets has implications for management strategies designed to protect this resource during the artisanal shrimp-fishing season. Four sympatric penaeid shrimp species of the genus Farfantepenaeus Burukovsky, 1997 have been reported in coastal lagoons in the Yucatán Peninsula: the brown shrimp Farfantepenaeus aztecus (Ives, 1891), the pink spotted shrimp Farfante- penaeus brasiliensis (Latreille, 1817), the pink shrimp Farfantepenaeus duorarum (Burkenroad, 1939), and the southern pink shrimp Farfantepenaeus notialis (Pérez- Farfante, 1967) (Gracia et al., 1997; Pérez-Castañeda and Defeo, 2001). The adults of these species spawn in offshore waters and the eggs, after hatching, develop through a series of larval stages before becoming postlarvae. The larvae are advected towards the shore by hydrodynamic processes and settle as benthic postlarvae in the juvenile habitats (Dall et al., 1990, Vance et al., 1996). This transition to the benthos (or settle- ment) occurs primarily in structurally complex habitats such as seagrass meadows or algal beds. In these habitats the patterns of density and size structure of penaeid shrimps provide an indicator of the nursery habitat value (Minello and Zimmerman, 1991; Beck et al., 2001). The settlement process is a critical period in the life cycle of shrimps, and densities of benthic postlarvae and recruits can be the most impor- tant factor in determining the density of subsequent life history stages (Vance et al., 1996, 1998; Meager et al., 2003; Pérez-Castañeda and Defeo, 2005). Furthermore, salinity, aquatic vegetation, and distance from the sea inlet are key factors affecting shrimp distribution in juvenile habitats (Zimmerman et al., 1990; Howe and Wallace, Bulletin of Marine Science 259 © 2006 Rosenstiel School of Marine and Atmospheric Science of the University of Miami 260 BULLETIN OF MARINE SCIENCE, VOL. 79, NO. 2, 2006 2000; Hass et al., 2001; Pérez-Castañeda and Defeo, 2001; 2004; Ahmad-Adnan et al., 2002). Hypersaline lagoons occur over a very limited spatial extent in arid and semi-arid regions characterized by low rainfall and high evaporation rates. Salinities in these lagoons are typically > 40 as a result of their minimal exchange with the sea, high wa- ter residence time, and low water flux (Britton and Morton, 1989;H errera-Silveira et al., 1998). In these lagoons the density and diversity of flora and fauna decrease as sa- linity increases, a result of a reduced ability to respond to osmotic stress experienced under hypersaline conditions (Britton and Morton, 1989; Herrera-Silveira et al., 1998; Ortegón-Aznar and González-González, 2000; Vega-Cendejas and Hernández de Santillana, 2004). There are few studies documenting the shrimp fauna in these hy- persaline lagoons and the environmental factors affecting their spatial distributions. The Laguna Madre in Tamaulipas, Mexico, one of the largest hypersaline lagoons in the world, is the main juvenile habitat for F. aztecus, which has been associated with shoalgrass Halodule wrightii Ascherson, 1868. This species, along withF. duorarum, has been collected in salinities > 60 (Britton and Morton, 1989). The Río Lagartos lagoon, located in the northeastern Yucatán Peninsula, is des- ignated a Special Biosphere Reserve. It is the largest coastal lagoon in Yucatán State with hypersaline conditions (mean salinity 57; Herrera-Silveira et al., 1998). This la- goon supports a small but valuable artisanal shrimp fishery, principally exploited between November and February, when hundreds of fishermen participate (SEMAR- NAP, 1998–2001). This fishing period coincides with the major recruitment peak for penaeid shrimps in the Yucatán Peninsula (Pérez-Castañeda and Defeo, 2001). How- ever, there is a lack of data for shrimps in the Río Lagartos lagoon. In this study we describe the spatial pattern of density and size structure for two sympatric penaeid shrimp species (F. brasiliensis, F. notialis) as it relates to salinity, temperature, recruit density from November to April. Methods Study Area.—Río Lagartos lagoon, located in the southern Gulf of Mexico on the north- eastern coast of the Yucatán Peninsula, Mexico (21°26′ N, 87°30′ W; 21°38′ N, 88°15′ W), is part of the Special Biosphere Reserve of Ría Lagartos. The lagoon is connected to the sea through three sea inlets, situated in front of the towns of San Felipe and Río Lagartos (Fig. 1), and measures 80 km long, with a mean depth of 0.5 m and overall area of 96 km–2. Freshwater input from groundwater discharge is negligible and from rivers is nil. The lagoon is divided into three natural basins: Río Lagartos (outer zone), Las Coloradas (middle zone), and El Cuyo (inner zone), each with different hydrological, physical, and biological characteristics H( er- rera-Silveira and Ramírez-Ramírez, 1998; Herrera-Silveira et al., 1998. Ortegón-Aznar and González-González, 2000; Vega-Cendejas and Hernández de Santillana, 2004). Mean water temperature is 26°C, mean salinity is 57 (range: 25–150), with marine conditions near the sea inlets (33–38) and permanently hypersaline conditions (> 70) in the inner zone (Her- rera-Silveira and Ramírez-Ramírez, 1998; Herrera-Silveira et al., 1998). Only the outer zone has submerged aquatic vegetation (SAV) with coverage estimated as 15% of the total surface of the lagoon, represented by the seagrasses H. wrightii, and Thalassia testudinum Banks ex König, 1805, and numerous species of macroalgae, principally Laurencia poiteaui (Lamou- rox) Howe, 1918, and Caulerpa spp., with a mean biomass of 20–500 g dry wt m–2. The bottom of the middle zone is covered by a stromatolithic association of red-bacteria and cyanophyte algae, whereas the inner zone is unvegetated soft substrate (Espinoza-Avalos, 1996; Herre- ra-Silveira et al., 1998; Ortegón-Aznar and González-González, 2000). The climatic regime MAY-KÚ AND ORDÓÑEZ-LÓPEZ: PENAEID SHRIMPS IN HYPERSALINE CONDITIONS 261 Figure 1. Map of the sampling sites (numbered 1–21) in the Río Lagartos lagoon, Mexico. Five hydrologically similar zones (Roman numerals) were identified in the study area using an ag- glomeration analysis. HZ I and II comprise the artisanal shrimp fishing area. has three seasons: dry (March–May: air temperature 36–38ºC, precipitation 0–30 mm mo–1, weak southeast winds < 15 km h–1), rainy (June–October: air temperature 38ºC, precipita- tion 220 mm mo–1, weak southeast winds < 15 km h–1), and “nortes” (November–February: air temperature < 22°C, precipitation 40 mm mo–1, strong winds from the north > 80 km h–1; Herrera-Silveira et al., 1998; Medina-Gómez and Herrera-Silveira, 2003). Sampling Design.—We selected 21 sampling sites distributed throughout the lagoon (Fig. 1). Shrimps were collected monthly from November 1996 to April 1997 (“nortes” and early dry seasons). This period coincides with the major recruitment peak for penaeid shrimps in the Yucatán Peninsula (Pérez-Castañeda and Defeo, 2001). From an anchored boat we hand- hauled one trawl per sampling site along the bottom (0.5–1.5 m depth), covering a distance of 30 m (48 m2 area) using a Renfro beam trawl with a 1.6 × 0.5 m mouth, 1.5 m total length, and 1.0 mm mesh. Samples were taken at night during the new moon to coincide with the period of maximum activity for Farfantepenaeus spp. (Garcia, 1985). The catch efficiency of the Renfro beam trawl, regardless of penaeid shrimp density, has been estimated at 15% over T. testudinum meadows, and over nonvegetated habitats efficiency increases to 28%G ( racia et al., 1994). Although catch efficiency of this gear is low, it was easy to use, produced clean samples, and allowed for a large sampling area (Rozas and Minello, 1997). Before each trawl, salinity and temperature were measured using a field multianalyzer (YSI model 85–25 ft). Shrimp samples were preserved in 10% formaldehyde, kept in plastic bags, and then trans- ported to the laboratory. The carapace length (CL) of each shrimp was measured to the near- est 0.1 mm with an ocular micrometer for organisms < 10.0 mm CL and with a standard vernier caliper for larger organisms. Total length (TL) was also recorded for a representative portion of the samples to determine the TL–CL conversion relationship.
Recommended publications
  • GROWTH of Litopenaeus Schmitti (BURKENROAD, 1936) and Farfantepenaeus Paulensis (PEREZ-FARFANTE, 1967) SHRIMP REARED in RECIRCULATION CULTURE SYSTEM
    BRAZILIAN JOURNAL OF OCEANOGRAPHY, 62(4):323-330, 2014 GROWTH OF Litopenaeus schmitti (BURKENROAD, 1936) AND Farfantepenaeus paulensis (PEREZ-FARFANTE, 1967) SHRIMP REARED IN RECIRCULATION CULTURE SYSTEM Marcelo Barbosa Henriques*, Pedro Mestre Ferreira Alves, Oscar José Sallée Barreto and Marcelo Ricardo de Souza Instituto de Pesca - Secretaria de Agricultura e Abastecimento do Estado de São Paulo (Av. Bartolomeu de Gusmão, 192, 11030-906 Santos, SP, Brasil) *Corresponding author: [email protected] http://dx.doi.org/10.1590/S1679-87592014078806204 A B S T R A C T The Litopenaeus schmitti and Farfantepenaeus paulensis shrimp captured in estuaries are marketed as live bait for recreational fishing. As an alternative to shrimp extractive activities, the authors evaluated the rearing of these species in a recirculation culture system. For each species, the grow-out study was carried out in two 120-day production cycles, using 3,300 juveniles of an average length of 25 mm and weight of 0.9 grams in each, distributed in 12 tanks of 1,500 liters and 1.32 m2, at a population density of 208.3 shrimp per m2. The growth parameters were obtained using the von Bertalanffy model based on the length (mm) and age (weeks) data. The adjustments were made in the R environment of the non-linear least-square method. The von Bertalanffy growth model showed a proper fit, with determination coefficients of 0.900 for L. schmitti and 0.841 for F. paulensis. The values of L∞ and k were 172.66 and 0.027 mm for L. schmitti and 110.13 mm and 0.050 for F.
    [Show full text]
  • Redalyc.Diel Variation in the Catch of the Shrimp Farfantepenaeus Duorarum (Decapoda, Penaeidae) and Length-Weight Relationship
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Brito, Roberto; Gelabert, Rolando; Amador del Ángel, Luís Enrique; Alderete, Ángel; Guevara, Emma Diel variation in the catch of the shrimp Farfantepenaeus duorarum (Decapoda, Penaeidae) and length-weight relationship, in a nursery area of the Terminos Lagoon, Mexico Revista de Biología Tropical, vol. 65, núm. 1, 2017, pp. 65-75 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44950154007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Diel variation in the catch of the shrimp Farfantepenaeus duorarum (Decapoda, Penaeidae) and length-weight relationship, in a nursery area of the Terminos Lagoon, Mexico Roberto Brito, Rolando Gelabert*, Luís Enrique Amador del Ángel, Ángel Alderete & Emma Guevara Centro de Investigación de Ciencias Ambientales, Facultad de Ciencias Naturales, Universidad Autónoma del Carmen. Av. Laguna de Términos s/n, Col. Renovación 2dª Sección C.P. 24155, Ciudad del Carmen, Camp. México; [email protected], [email protected]*, [email protected], [email protected], [email protected] * Correspondence Received 02-V-2016. Corrected 06-IX-2016. Accepted 06-X-2016. Abstract: The pink shrimp, Farfantepenaeus duorarum is an important commercial species in the Gulf of Mexico, which supports significant commercial fisheries near Dry Tortugas, in Southern Florida and in Campeche Sound, Southern Gulf of Mexico.
    [Show full text]
  • The Brown Shrimp Penaeus Aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Nile Delta, Egypt: an Exploitable Resource for Fishery and Mariculture?
    BioInvasions Records (2018) Volume 7, Issue 1: 51–54 Open Access DOI: https://doi.org/10.3391/bir.2018.7.1.07 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication The brown shrimp Penaeus aztecus Ives, 1891 (Crustacea, Decapoda, Penaeidae) in the Nile Delta, Egypt: an exploitable resource for fishery and mariculture? Sherif Sadek¹, Walid Abou El-Soud2 and Bella S. Galil3,* 1Aquaculture Consultant Office, 9 Road 256 Maadi, Cairo, Egypt 2Egyptian Mariculture Company, Dibah Triangle Zone, Manzala Lake, Port-Said, Egypt 3The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69978, Israel *Corresponding author E-mail: [email protected] Received: 21 October 2017 / Accepted: 12 January 2018 / Published online: 27 January 2018 Handling editor: Cynthia McKenzie Abstract The penaeid shrimp Penaeus aztecus is recorded for the first time from Egypt. The West Atlantic species was first noted off Damietta, on the Mediterranean coast of Egypt, in 2012. This species has already been recorded in the Mediterranean Sea from the southeastern Levant to the Gulf of Lion, France. The impacts of the introduction of P. aztecus on the local biota, and in particular on the native and previously introduced penaeids, are as yet unknown. Shrimp farmers at the northern Nile Delta have been cultivating P. aztecus since 2016, depending on postlarvae and juveniles collected from the wild in the Damietta branch of the Nile estuary. Key words: brown shrimp, first record, non-indigenous species, shrimp farming, wild fry Introduction Italy, Montenegro, and Turkey (for recent distribution maps see Galil et al. 2017; Scannella et al.
    [Show full text]
  • L'annexe IV Du Règlement N° 216/2009 Au Format
    L 87/16 FR Journal officiel de l'Union européenne 31.3.2009 ANNEXE IV LISTE DES ESPÈCES POUR LESQUELLES DES DONNÉES SONT À COMMUNIQUER POUR CHACUNE DES PRINCIPALES ZONES DE PÊCHE Les espèces énumérées ci-dessous sont celles pour lesquelles des captures ont été déclarées dans les statistiques officielles. Les États membres doivent communiquer, si possible, des données pour chacune des espèces identifiées. Lorsque des espèces individuelles ne peuvent pas être identifiées, les données doivent être agrégées et communiquées sous le poste représentant le niveau de détail le plus élevé possible. Remarque: «n.c.a.» et «n.e.i.» sont les abréviations de «non compris ailleurs» et «not elsewhere indicated». ATLANTIQUE DU CENTRE-EST (principale zone de pêche 34) Identifiant Nom français alphabétique Nom scientifique Nom anglais (trois lettres) Anguille d'Europe ELE Anguilla anguilla European eel Aloses n.c.a. SHZ Alosa spp. Shads n.e.i. Alose rasoir ILI Ilisha africana West African ilisha Poissons plats n.c.a. FLX Pleuronectiformes Flatfishes n.e.i. Faux turbots LEF Bothidae Lefteye flounders Sole commune SOL Solea solea Common sole Céteau CET Dicologlossa cuneata Wedge (= Senegal) sole Soles n.c.a. SOX Soleidae Soles n.e.i. Cynoglossidés n.c.a. TOX Cynoglossidae Tonguefishes n.e.i. Cardine franche MEG Lepidorhombus whiffiagonis Megrim Cardines n.c.a. LEZ Lepidorhombus spp. Megrims n.e.i. Phycis de fond GFB Phycis blennoides Greater forkbeard Tacaud BIB Trisopterus luscus Pouting (= Bib) Merlan bleu WHB Micromesistius poutassou Blue whiting (= Poutassou) Merlu européen HKE Merluccius merluccius European hake Merlu du Sénégal HKM Merluccius senegalensis Senegalese hake Merlus n.c.a.
    [Show full text]
  • Nursery Grounds of the Commercially Important Shrimp Farfantepenaeus Brasiliensis (Latreille, 1817) (Decapoda, Penaeoidea): Comp
    Nursery grounds of the commercially important shrimp Farfantepenaeus brasiliensis (Latreille, 1817) (Decapoda, Penaeoidea): comparison of the population structure between two periods ALINE NONATO DE SOUSA1*, VERONICA PEREIRA BERNARDES1, KÁTIA APARECIDA NUNES HIROKI1,2, ARIÁDINE CRISTINE DE ALMEIDA1,3, GUSTAVO MONTEIRO TEIXEIRA1,4 & ADILSON FRANSOZO1 ¹ Núcleo de Estudos em Biologia, Ecologia e Cultivo de Crustáceos (NEBECC), Instituto de Biociências de Botucatu, Departamento de Zoologia, Universidade Estadual Paulista “Júlio de Mesquita Filho”. Rua Professor Doutor Antonio Celso Wagner Zanin, s/n, Distrito de Rubião Junior, Botucatu, São Paulo, Brasil. ² Universidade Federal do Triângulo Mineiro (UFTM),Campus Uberaba. Avenida Getúlio Guarita, 150, Uberaba, Minas Gerais, Brasil. ³ Universidade Federal de Uberlândia (UFU), Campus Umuarama. Avenida Pará, 1720, Uberlândia, Minas Gerais, Brasil. 4 Universidade Estadual de Londrina (UEL), Campus Universitário. Rodovia Celso Garcia Cid, Km 380, s/n Londrina, Paraná, Brasil. * Corresponding author: [email protected] Abstract. This study compared the population structure of Farfantepenaeus brasiliensis in two distinct periods in Fortaleza Bay, southeastern Brazil. Individuals were monthly sampled in November 1988–October 1989 (period 1) and in November 2008–October 2009 (period 2). In period 1, 80 juveniles were found (36 males and 44 females), whereas in period 2 were found 226 juveniles (62 males and 164 females). The individuals from period 2 were smaller (males: 17.0 ± 3.0 mm; females: 16.4 ± 3.3 mm) than those from period 1 (males: 22.1 ± 6.4 mm; females: 21.7 ± 6.3 mm). This reduction in body size throughout the study period might have been a consequence of an improper conservation management in the area up to 2008.
    [Show full text]
  • 1. Camarones ABV-2019-02 ARTÍCULO MAQUETA Revisada
    Acta Biol. Venez., Vol. 39(1):1-47 ARTÍCULO Enero-Junio, 2019 CAMARONES LITORALES (CRUSTACEA: PENAEOIDEA Y CARIDEA) DE LA ISLA DE COCHE, ESTADO NUEVA ESPARTA, VENEZUELA Jonathan Vera-Caripe¹,²* y Carlos Lira¹,³ ¹Grupo de Investigación en Carcinología, Universidad de Oriente, Núcleo Nueva Esparta, Isla de Margarita, Venezuela. Apdo. 6304. ²Centro Museo de Biología de la Universidad Central de Venezuela (MBUCV), Laboratorio de Invertebrados, Facultad de Ciencias, Caracas 1041, Distrito Capital, Venezuela.³Laboratorio de Carcinología de la Universidad de Oriente, Núcleo Nueva Esparta, Venezuela.*[email protected] RESUMEN Entre los meses de agosto de 2006 y abril de 2007, fueron realizados muestreos en cinco localidades alrededor de la Isla de Coche para la recolecta de camarones, mediante buceo en apnea, a una profundidad que varió desde 0,5 hasta los 7 metros. Los organismos fueron capturados directamente con ayuda de salabardos e indirectamente mediante su extracción de diferentes sustratos: rocas, restos de octocorales y hexacorales muertos, esponjas, algas y conchas de moluscos. Los camarones recolectados fueron trasladados al laboratorio de Carcinología de la Universidad de Oriente, Núcleo Nueva Esparta, para su procesamiento y análisis. Fue recolectado un total de 190 ejemplares, correspondientes a 25 especies, ubicadas en 13 géneros y ocho familias. El sustrato con mayor cantidad de organismos asociados fue las esponjas, seguido por las rocas y las agregaciones del bivalvo Arca zebra. El sustrato con mayor diversidad relativa fue las rocas con 12 especies, seguido por las esponjas (10 especies), coral muerto (9) y las agregaciones de Arca zebra (8). Las especies con mayor abundancia relativa fueron: Synalpheus apioceros (17,3 %), S.aff.brevicarpus 1(12,1%),S.
    [Show full text]
  • Shrimps, Lobsters, and Crabs of the Atlantic Coast of the Eastern United States, Maine to Florida
    SHRIMPS, LOBSTERS, AND CRABS OF THE ATLANTIC COAST OF THE EASTERN UNITED STATES, MAINE TO FLORIDA AUSTIN B.WILLIAMS SMITHSONIAN INSTITUTION PRESS Washington, D.C. 1984 © 1984 Smithsonian Institution. All rights reserved. Printed in the United States Library of Congress Cataloging in Publication Data Williams, Austin B. Shrimps, lobsters, and crabs of the Atlantic coast of the Eastern United States, Maine to Florida. Rev. ed. of: Marine decapod crustaceans of the Carolinas. 1965. Bibliography: p. Includes index. Supt. of Docs, no.: SI 18:2:SL8 1. Decapoda (Crustacea)—Atlantic Coast (U.S.) 2. Crustacea—Atlantic Coast (U.S.) I. Title. QL444.M33W54 1984 595.3'840974 83-600095 ISBN 0-87474-960-3 Editor: Donald C. Fisher Contents Introduction 1 History 1 Classification 2 Zoogeographic Considerations 3 Species Accounts 5 Materials Studied 8 Measurements 8 Glossary 8 Systematic and Ecological Discussion 12 Order Decapoda , 12 Key to Suborders, Infraorders, Sections, Superfamilies and Families 13 Suborder Dendrobranchiata 17 Infraorder Penaeidea 17 Superfamily Penaeoidea 17 Family Solenoceridae 17 Genus Mesopenaeiis 18 Solenocera 19 Family Penaeidae 22 Genus Penaeus 22 Metapenaeopsis 36 Parapenaeus 37 Trachypenaeus 38 Xiphopenaeus 41 Family Sicyoniidae 42 Genus Sicyonia 43 Superfamily Sergestoidea 50 Family Sergestidae 50 Genus Acetes 50 Family Luciferidae 52 Genus Lucifer 52 Suborder Pleocyemata 54 Infraorder Stenopodidea 54 Family Stenopodidae 54 Genus Stenopus 54 Infraorder Caridea 57 Superfamily Pasiphaeoidea 57 Family Pasiphaeidae 57 Genus
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • Deep-Sea Shrimps Aristaeomorpha Foliacea and Pleoticus Robustus
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 8. # Marine Biological Association of the United Kingdom, 2011 doi:10.1017/S0025315411001202 Deep-sea shrimps Aristaeomorpha foliacea and Pleoticus robustus (Crustacea: Penaeoidea) in the Colombian Caribbean Sea as a new potential fishing resource jorge paramo1,2 and ulrich saint-paul1 1Universita¨t Bremen, Leibniz-Zentrum fu¨r Marine Tropeno¨kologie (ZMT), Fahrenheitstrasse 6, 28359 Bremen, Germany, 2Universidad del Magdalena, Grupo de Investigacio´n Ciencia y Tecnologı´a Pesquera Tropical (CITEPT), Cra. 32 No. 22-08 Avenida del Ferrocarril, Santa Marta, Colombia In the Colombian Caribbean Sea a shallow water commercial shrimp fishery has been developed, targeting mainly Farfantepenaeus notialis. Yet, similarly to so many fisheries around the world, the exploitation of this shrimp is not regulated, and a significant depletion has resulted. This study investigates new fishing areas, exploring the poorly understood deep-sea habitats in the Colombian Caribbean Sea, to determine the potential for a viable deep shrimp fishery, studying their abun- dance and spatial distribution. We found high abundances for giant red shrimp (Aristaeomorpha foliacea) and royal red shrimp (Pleoticus robustus), both important commercially. The higher biomass of these two deep-sea shrimp species were found mainly in the northern zone of the Colombian Caribbean Sea, where the local oceanography is modulated by the sea- sonal upwelling with high productivity. The size-structure following depth strata showed that A. foliacea increase in size with the depth and the contrary for P. robustus. The majority of adult individuals in these two deep-sea shrimp species reflect the non-fished populations in the study area.
    [Show full text]
  • Invertebrate ID Guide
    11/13/13 1 This book is a compilation of identification resources for invertebrates found in stomach samples. By no means is it a complete list of all possible prey types. It is simply what has been found in past ChesMMAP and NEAMAP diet studies. A copy of this document is stored in both the ChesMMAP and NEAMAP lab network drives in a folder called ID Guides, along with other useful identification keys, articles, documents, and photos. If you want to see a larger version of any of the images in this document you can simply open the file and zoom in on the picture, or you can open the original file for the photo by navigating to the appropriate subfolder within the Fisheries Gut Lab folder. Other useful links for identification: Isopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-33/htm/doc.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-48/htm/doc.html Polychaetes http://web.vims.edu/bio/benthic/polychaete.html http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-34/htm/doc.html Cephalopods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-44/htm/doc.html Amphipods http://www.19thcenturyscience.org/HMSC/HMSC-Reports/Zool-67/htm/doc.html Molluscs http://www.oceanica.cofc.edu/shellguide/ http://www.jaxshells.org/slife4.htm Bivalves http://www.jaxshells.org/atlanticb.htm Gastropods http://www.jaxshells.org/atlantic.htm Crustaceans http://www.jaxshells.org/slifex26.htm Echinoderms http://www.jaxshells.org/eich26.htm 2 PROTOZOA (FORAMINIFERA) ................................................................................................................................ 4 PORIFERA (SPONGES) ............................................................................................................................................... 4 CNIDARIA (JELLYFISHES, HYDROIDS, SEA ANEMONES) ............................................................................... 4 CTENOPHORA (COMB JELLIES)............................................................................................................................
    [Show full text]
  • Web-ICE Aquatic Database Documentation
    OP-GED/BPRB/MB/2016-03-001 February 24, 2016 ICE Aquatic Toxicity Database Version 3.3 Documentation Prepared by: Sandy Raimondo, Crystal R. Lilavois, Morgan M. Willming and Mace G. Barron U.S. Environmental Protection Agency Office of Research and Development National Health and Environmental Effects Research Laboratory Gulf Ecology Division Gulf Breeze, Fl 32561 1 OP-GED/BPRB/MB/2016-03-001 February 24, 2016 Table of Contents 1 Introduction ............................................................................................................................ 3 2 Data Sources ........................................................................................................................... 3 2.1 ECOTOX ............................................................................................................................ 4 2.2 Ambient Water Quality Criteria (AWQC) ......................................................................... 4 2.3 Office of Pesticide Program (OPP) Ecotoxicity Database ................................................. 4 2.4 OPPT Premanufacture Notification (PMN) ...................................................................... 5 2.5 High Production Volume (HPV) ........................................................................................ 5 2.6 Mayer and Ellersieck 1986 ............................................................................................... 5 2.7 ORD ..................................................................................................................................
    [Show full text]
  • Feeding of Farfantepenaeus Paulensis (Pérez-Farfante, 1967) (Crustacea: Penaeidae) Inside and Outside Experimental Pen-Culture in Southern Brazil
    Feeding of Farfantepenaeus paulensis (Pérez-Farfante, 1967) (Crustacea: Penaeidae) inside and outside experimental pen-culture in southern Brazil 1,2 1 3 PABLO JORGENSEN , CARLOS E. BEMVENUTI & CLARA M. HEREU 1Laboratório de Ecologia de Invertebrados Bentônicos, Departamento de Oceanografia, Fundação Universidade Federal do Rio Grande (FURG), Av. Itália Km 8, 96201-900 Rio Grande, RS, Brasil; 2Present address: El Colegio de la Frontera Sur, Apdo. Postal 424, Chetumal, Quintana Roo 77900. México; 3El Colegio de la Frontera Sur, Apdo. Postal 424, Chetumal, Quintana Roo 77900. México. E-mail: [email protected] Abstract. We assessed the value of benthic macroinvertebrates to the diet of Farfantepenaeus paulensis juveniles in experimental pen-cages after three independent rearing periods of 20, 40 and 60 days each. For each time period we initially stocked 3 pen-cages with 60 shrimps m-2 supplemented with ration (treatment RS), and 3 pen-cages with 60 shrimps m-2 without ration (WR). The diet of captive shrimps was compared with the diet of free shrimps (C). Shrimps fed preferentially on benthic preys. Captive shrimps extended their activity to daylight hours and consumed a significant amount of vegetation, likely in response to a severe decrease of macroinvertebrate density passed 20 and 40 days. After 60 days, the diet of the few survivors of F. paulensis in pen-cages without ration (WR) approached the diet of shrimps in the natural environment (C). These similarities were explained by the recovery of macroinvertebrates populations to relaxation from high predation pressure during the last 20 days of the experiment in WR pens.
    [Show full text]