Wood Research Study of the Discoloration Behaviour Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tectona Grandis Teak
Tectona grandis Teak Family: Verbenaceae Other Common Names: Kyun (Burma), Teck (French). Teca (Spanish). Distribution: Native to India, Burma, Thailand, Indochina, including Indonesia, particularly Java. Extensively cultivated in plantations within its natural range as well as in tropical areas of Africa and Latin America. The Tree On favorable sites, may reach 130 to 150 ft in height with clear boles to 80 to 90 ft; trunk diameters usually 3 to 5 ft; older trees fluted and buttressed. The Wood General Characteristics: Heartwood dark golden yellow, turning a dark brown with exposure, often very variable in color when freshly machined showing blotches and streaks of various shades; sapwood pale yellowish, sharply demarcated. Grain straight, sometimes wavy; texture coarse, uneven (ring porous); dull with an oily feel; scented when freshly cut. Dust may cause skin irritations. Silica content variable, up to 1.4% is reported. Weight: Basic specific gravity (ovendry weight/green volume) 0.55; air-dry density 40 pcf. Mechanical Properties: (First set of data based on the 2-cm standard; second and third sets on the 2-in. standard; third set plantation-grown in Honduras.) Moisture content Bending strength Modulus of elasticity Maximum crushing strength Psi 1,000 psi Psi Green (/7) 12,200 1,280 6.210 11% 15,400 1.450 8.760 Green (38) 10.770 1.570 5.470 14% 12,300 1.710 6.830 Green (81) 9.940 1.350 4.780 13% 13.310 1,390 6.770 Janka side hardness 1,000 to 1,155 lb for dry material. Forest Products Laboratory toughness 116 in.-lb average for green and dry wood (5/8-in. -
Steam-Bending Instruction Booklet
Steam-Bending Instruction Booklet 05F15.01 Veritas® Steam-Bending Instruction Booklet Bending Solid Wood with Steam and allowed to stretch as the bend progresses; however, the Compressive Force wood face against the form is subject to compression There are three basic requirements for the successful exerted by the end stops. bending of solid wood using steam. 1. The wood must be plasticized. Although wood can be plasticized chemically or even by microwaves when in a green state, the most convenient way to plasticize wood is with steam. Wood cells are held together by a naturally occurring substance in the wood called lignin. Imagine the wood fi bers to be a bundle of rods with the space between them fi lled with lignin. The strength of this lignin bond between the rods can be decreased by subjecting For example, a straight piece of wood 1" thick and 18" the wood to steam. With unpressurized steam at 212° long bent to 90° around a 4" radius will remain 18" Fahrenheit, steaming for one hour per inch of thickness along the outside (immediately next to the strap), but (regardless of the width) will soften the bond enough for will have the inside dimension reduced to almost 16". bending. Substantial oversteaming may cause the wood Nearly two inches have virtually disappeared through to wrinkle on the concave face as the bend progresses. compression along the inside face! 2. Only air-dried wood of an appropriate species Strap should be used. Blank Kiln-dried wood must not be used; the lignin in the wood has been permanently set during the hot, dry 18" kilning process. -
Chapter 2 Wood As a Construction Material
Chapter 2 Wood as a Construction Material David Trujillo 2.1. Introduction: Timber in the Climate Emergency 2.2. Macroscopic Characteristics of Wood 2.3. Microscopic Characteristics of Wood 2.4. Physical Properties of Wood 2.5. Mechanical and Elastic Properties 2.6. Durability of timber 2.7. Variability 2.8. Behaviour in Fire References Chapter 2. Wood as a Construction Material CHAPTER 2. WOOD AS A CONSTRUCTION MATERIAL David Trujillo, School of Energy, Construction and Environment, Coventry University Acknowledgement The author would like to thank Dr Morwenna Spear from Bangor University for sharing her knowledge about microscopic characteristics of timber. 2.1. INTRODUCTION: TIMBER IN THE CLIMATE EMERGENCY According to the Intergovernmental Panel on Climate Change (Masson- Delmotte, 2018), a 1.5 °C increase in annual global temperature since pre- industrial times as a consequence of man-made climate change will place a lot of pressure on numerous natural, human and managed systems as defined. Nevertheless, trying to limit temperatures increases to just 1.5 °C will require a very significant and rapid change to our global economy and our consumption patterns. The IPCC presents four possible pathways for this transition. Some of these pathways rely strongly on Bioenergy with Carbon Capture and Storage (BECCS), which fundamentally consists of using plants to capture carbon, then transforming the biomass into energy but ensuring that the CO2 released is captured and stored permanently on land or in the ocean. When this scenario is coupled with UN projections that there will be 2.3 billion more urban dwellers by 2050 (United Nations, 2018), it is likely that this rapid urbanisation will require a great expansion in housing, buildings 96 Chapter 2. -
Endemic Philippine Teak (Tectona Philippinensis Benth. & Hook
RESEARCH ARTICLES Endemic Philippine teak (Tectona philippinensis Benth. & Hook. f.) and associated flora in the coastal landscapes of Verde Island Passage, Luzon Island, Philippines Anacleto M. Caringal1,2, Inocencio E. Buot, Jr2,3,4,* and Elaine Loreen C. Villanueva3 1Batangas State University–Lobo, Lobo, Batangas, Philippines 2School of Environmental Science and Management, University of the Philippines Los Baños, Laguna, Philippines 3Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines 4Faculty of Management and Development Studies, University of the Philippines Open University, Los Baños, Laguna, Philippines deciduous forests, pines, lower and upper montane forests The Philippine teak forest (PTF) is a formation with the Endangered Tectona philippinensis Benth. & Hook. and sub-alpine) based on the dominant floristic elements f., Lamiaceae – an endemic tree flora in the Batangas have been the focus of ecological classification since Province along the Verde Island Passage, Luzon 1900s (refs 13–16). The Philippine teak forest (PTF), Island, Philippines. In this study, we determine the however, has not yet been included in these national general floristic composition of PTF. Vegetation anal- classifications. ysis across coastal to inland continuum generated the The forest with endemic Tectona philippinensis Benth. data for general floristic richness, growth structure & Hook. f., (APG: Lamiaceae) has long been considered and diversity indices. A total of 128 species under 111 as one of the most important areas of floristic genera in 48 families was recorded with overall plant richness10,17,18. Until the present study, however, PTF diversity of very low to moderate (Shannon–Wiener: remains to be classified among the major forest ecotypes 0.8675–2.681). -
Bioresources.Com
PEER-REVIEWED ARTICLE bioresources.com EVALUATION AND IDENTIFICATION OF WALNUT HEARTWOOD EXTRACTIVES FOR PROTECTION OF POPLAR WOOD Seyyed Khalil Hosseini Hashemi a,* and Ahmad Jahan Latibari a Walnut (Juglans regia L.) heartwood extractives were identified and their potential for protection of poplar wood was evaluated. Test specimens were prepared from poplar wood (Populus nigra L.) to meet BS 838:1961 requirements. Samples were impregnated with heartwood extractive solution (1.5, 2.5, and 3.5% w/w in ethanol-toluene), followed by 5 hours vacuum desiccator technique to reach complete saturation. Impregnated specimens were exposed to white-rot fungus (Trametes versicolor) for 14 weeks according to BS 838:1961 applying the kolle- flask method. The weight loss of samples was determined after exposure to white-rot fungus. The highest weight loss (36.96%) was observed for untreated control samples and the lowest weight loss (30.40%) was measured in samples treated with 1.5% extractives solution. The analyses of the extracts using GC/MS indicated that major constituents are benzoic acid,3,4,5-tri(hydroxyl) and gallic acid (44.57 %). The two toxic components in the heartwood are juglone (5.15 %) and 2,7- dimethylphenantheren (5.81 %). Keywords: Walnut heart wood extractives; Trametes versicolor; Weight loss; Gallic acid; Juglone; 2,7- dimethylphenantheren Contact information; a: Agriculture Research Center, Islamic Azad University, Karaj Branch, P. O. Box 331485-313, Karaj, Iran. * Corresponding author: [email protected] INTRODUCTION One of the promising strategies to slow down the decay and deterioration of wood structure is to rely upon durable wood species. -
APPROVED SAWN TIMBER LIST (As of 13 May 2019) No. Scientific Name Country of Origin 1
APPROVED SAWN TIMBER LIST (As of 13 May 2019) No. Scientific Name Country of Origin 1. Pinus taeda ARGENTINA 2. Callitris glauca AUSTRALIA 3. Corymbia calophylla AUSTRALIA 4. Dysoxylum fraserianum AUSTRALIA 5. Eucalyptus camaldulensis AUSTRALIA 6. Eucalyptus delegatensis AUSTRALIA 7. Eucalyptus diversicolor AUSTRALIA 8. Eucalyptus fastigata AUSTRALIA 9. Eucalyptus fibrosa AUSTRALIA 10. Eucalyptus globulus AUSTRALIA 11. Eucalyptus grandis AUSTRALIA 12. Eucalyptus maculata AUSTRALIA 13. Eucalyptus marginata AUSTRALIA 14. Eucalyptus muellerana AUSTRALIA 15. Eucalyptus obliqua AUSTRALIA 16. Eucalyptus paniculata. AUSTRALIA 17. Eucalyptus pilularis AUSTRALIA 18. Eucalyptus saligna AUSTRALIA 19. Eucalyptus sieberiana AUSTRALIA 20. Eucalyptus viminalis AUSTRALIA 21. Lophostemon confertus AUSTRALIA 22. Pinus elliottii AUSTRALIA 23. Pinus radiata AUSTRALIA 24. Quercus alba AUSTRALIA 25. Shorea pauciflora AUSTRALIA 26. Fagus sylvatica AUSTRIA No. Scientific Name Country of Origin 27. Picea abies AUSTRIA 28. Picea abies BELARUS 29. Pinus sylvestris BELARUS 30. Quercus alba BELGIUM 31. Dipteryx odorata BOLIVIA 32. Apuleia leiocarpa BRAZIL 33. Astronium lecointei BRAZIL 34. Bagassa guianensis BRAZIL 35. Cedrela odorata BRAZIL 36. Cedrelinga catenaeformis BRAZIL 37. Couratari guianensis BRAZIL 38. Dipteryx odorata BRAZIL 39. Eucalyptus grandis BRAZIL 40. Eucalyptus grandis BRAZIL 41. Hymenaea courbaril BRAZIL 42. Hymenolobium modestum BRAZIL 43. Hymenolobium Nitidum BRAZIL Benth 44. Hymenolobium BRAZIL pulcherrimum 45. Manilkara bidentata BRAZIL 46. Myroxylon balsamum BRAZIL 47. Pinus radiata BRAZIL 48. Pinus taeda BRAZIL 49. Quassia simarouba BRAZIL 50. Tectona grandis BRAZIL 51. Fagus sylvatica BULGARIA No. Scientific Name Country of Origin 52. Quercus alba BULGARIA 53. Chlorophora excelsa CAMEROON 54. Cylicodiscus gabunensis CAMEROON 55. Entandrophragma CAMEROON candollei 56. Entandrophragma CAMEROON cylindricum 57. Entandrophragma CAMEROON cylindricum 58. Entandrophragma utile CAMEROON 59. -
Dry Kiln Operator's Manual
United States Department of Agriculture Dry Kiln Forest Service Operator's Forest Products Laboratory Manual Madison, Wisconsin Agriculture Handbook No. 188 Dry Kiln Operator’s Manual Edited by William T. Simpson, Research Forest Products Technologist United States Department of Agriculture Forest Service Forest Products Laboratory 1 Madison, Wisconsin Revised August 1991 Agriculture Handbook 188 1The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This publication reports research involving pesticides. It does not contain recommendations for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can be recommended. CAUTION, Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife-if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides aand pesticide containers. Preface Acknowledgments The purpose of this manual is to describe both the ba- Many people helped in the revision. We visited many sic and practical aspects of kiln drying lumber. The mills to make sure we understood current and develop- manual is intended for several types of audiences. ing kiln-drying technology as practiced in industry, and First and foremost, it is a practical guide for the kiln we thank all the people who allowed us to visit. Pro- operator-a reference manual to turn to when questions fessor John L. Hill of the University of New Hampshire arise. It is also intended for mill managers, so that they provided the background for the section of chapter 6 can see the importance and complexity of lumber dry- on the statistical basis for kiln samples. -
A Guide to Lesser Known Tropical Timber Species July 2013 Annual Repo Rt 2012 1 Wwf/Gftn Guide to Lesser Known Tropical Timber Species
A GUIDE TO LESSER KNOWN TROPICAL TIMBER SPECIES JULY 2013 ANNUAL REPO RT 2012 1 WWF/GFTN GUIDE TO LESSER KNOWN TROPICAL TIMBER SPECIES BACKGROUND: BACKGROUND: The heavy exploitation of a few commercially valuable timber species such as Harvesting and sourcing a wider portfolio of species, including LKTS would help Mahogany (Swietenia spp.), Afrormosia (Pericopsis elata), Ramin (Gonostylus relieve pressure on the traditionally harvested and heavily exploited species. spp.), Meranti (Shorea spp.) and Rosewood (Dalbergia spp.), due in major part The use of LKTS, in combination with both FSC certification, and access to high to the insatiable demand from consumer markets, has meant that many species value export markets, could help make sustainable forest management a more are now threatened with extinction. This has led to many of the tropical forests viable alternative in many of WWF’s priority places. being plundered for these highly prized species. Even in forests where there are good levels of forest management, there is a risk of a shift in species composition Markets are hard to change, as buyers from consumer countries often aren’t in natural forest stands. This over-exploitation can also dissuade many forest willing to switch from purchasing the traditional species which they know do managers from obtaining Forest Stewardship Council (FSC) certification for the job for the products that they are used in, and for which there is already their concessions, as many of these high value species are rarely available in a healthy market. To enable the market for LKTS, there is an urgent need to sufficient quantity to cover all of the associated costs of certification. -
PHYSICAL and MECHANICAL PROPERTIES of HEAT TREATED WOOD from Aspidosperma Populifolium, Dipteryx Odorata and Mimosa Scabrella
ISSN impresa 0717-3644 Maderas. Ciencia y tecnología 18(1): 143 - 156, 2016 ISSN online 0718-221X DOI: 10.4067/S0718-221X2016005000015 PHYSICAL AND MECHANICAL PROPERTIES OF HEAT TREATED WOOD FROM Aspidosperma populifolium, Dipteryx odorata AND Mimosa scabrella Solange de Oliveira Araújo1,♠, Benedito Rocha Vital2, Braulio Oliveira2, Angélica de Cássia Oliveira Carneiro2, Ana Lourenço1, Helena Pereira1 ABSTRACT Heat treatment improves some wood properties namely: equilibrium moisture, dimensional stability and durability and mechanical properties. In this study, the heat treatment was applied to woods of three natural species from Brazil: Aspidosperma populifolium (peroba mica), Dipteryx odorata (cumaru) and Mimosa scabrella (bracatinga). The woods were heated in an oven under vacuum and under nitrogen, at 180, 200, and 220°C for one hour. The untreated and heat-treated woods were characterized in relation to equilibrium moisture content, basic density, shrinkage, Janka hardness, and bending MOR and MOE according to NBR 7190 standards. All the thermal rectified woods showed a reduction in the hygroscopic equilibrium content, especially when the heating was under vacuum from 13-15% in the untreated woods to 1-3% for vacuum treatment at 220 °C. The dimensional stability was improved to only a small extent e.g. volumetric shrinkage tended to decrease with increasing temperature. The mechanical properties were affected differently for the three wood species. Heat-treated cumarushowed increased Janka hardness, MOR and MOE; and peroba mica increased MOR and MOE but not Janka hardness; while bracatinga was less influenced by the heat treatment. Keywords: Aspidosperma populifolium, Dipteryx odorata, equilibrium moisture content, mechanical properties, Mimosa scabrella, nitrogen heat treatment, vacuum heat treatment. -
Chapter 3--Physical Properties and Moisture Relations of Wood
Chapter 3 Physical Properties and Moisture Relations of Wood William Simpson and Anton TenWolde he versatility of wood is demonstrated by a wide Contents variety of products. This variety is a result of a Appearance 3–1 spectrum of desirable physical characteristics or properties among the many species of wood. In many cases, Grain and Texture 3–1 more than one property of wood is important to the end Plainsawn and Quartersawn 3–2 product. For example, to select a wood species for a product, the value of appearance-type properties, such as texture, grain Decorative Features 3–2 pattern, or color, may be evaluated against the influence of Moisture Content 3–5 characteristics such as machinability, dimensional stability, Green Wood and Fiber Saturation Point 3–5 or decay resistance. Equilibrium Moisture Content 3–5 Wood exchanges moisture with air; the amount and direction of the exchange (gain or loss) depend on the relative humid- Sorption Hysteresis 3–7 ity and temperature of the air and the current amount of water Shrinkage 3–7 in the wood. This moisture relationship has an important Transverse and Volumetric 3–7 influence on wood properties and performance. This chapter discusses the physical properties of most interest in the Longitudinal 3–8 design of wood products. Moisture–Shrinkage Relationship 3–8 Some physical properties discussed and tabulated are influ- Weight, Density, and Specific Gravity 3–11 enced by species as well as variables like moisture content; Working Qualities 3–15 other properties tend to be independent of species. The thor- oughness of sampling and the degree of variability influence Decay Resistance 3–15 the confidence with which species-dependent properties are Thermal Properties 3–15 known. -
Characterisation and Fractioning of Tectona Grandis Bark in View of Its
Industrial Crops and Products 50 (2013) 166–175 Contents lists available at ScienceDirect Industrial Crops and Products journa l homepage: www.elsevier.com/locate/indcrop Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material a a a,b a,∗ a Isabel Baptista , Isabel Miranda , Teresa Quilhó , Jorge Gominho , Helena Pereira a Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal b Centro das Florestas e Produtos Florestais, Instituto de Investigac¸ ão Científica Tropical, Tapada da Ajuda, 1349-017 Lisboa, Portugal a r t a b i s c l e i n f o t r a c t Article history: The anatomy and chemical composition of Tectona grandis bark from mature trees in East Timor Received 6 March 2013 are described as well as the characterisation of fractionation by grinding and granulometric Received in revised form 5 June 2013 separation. Accepted 2 July 2013 Teak bark is composed of secondary phloem, periderm and a narrow rhytidome that included various periderms with phloem tissues between them. The layer of phellem cells in each periderm was thin. Keywords: The phloem showed an orderly stratification with tangential bands of fibres in concentric rings that Tectona grandis alternated with thin bands of axial parenchyma and sieve tube elements. Abundant prismatic calcium Teak bark Anatomy oxalate crystals were present. The bark fractured easily into clean particles. The yield of fines was low and 64.4% of the particles were Chemical composition Fractionation over 2 mm. The mean chemical composition of teak bark was: ash 18.5%, total extractives 10.7%, lignin 20.0% and suberin 1.9%. -
Hardwood.Pdf
Sorted by name Sorted by hardness Species Hardness Species Hardness Species Hardness Species Hardness Species Hardness Species Hardness African Ebony 3220 Carribean Rosewood 3170 Patagonian Rosewood 2800 Brazilian Walnut 3684 Pyinkado 1950 Maple 1450 African Hickory 1820 Chinese Hickory 1820 Pearwood 2990 Ebonya Walnut 3684 African Merbau 1925 Brazilian Mahogany 1400 African Kempas 1710 Crassiflora 3220 Pecan 1820 Ipe 3684 Bijuga 1925 Mahogany 1400 African Merbau 1925 Dark Rosewood 2300 Pine 870 African Ebony 3220 Joemoek 1925 Spanish Mahogany 1400 African Paduak 1725 Ebony 3220 Pyinkado 1950 Crassiflora 3220 Kayu Kuku 1925 Oak 1360 African Rosewood 1780 Ebonya Walnut 3684 Red Oak 1290 Ebony 3220 Merbau 1925 White Oak 1360 African Sapele 1510 Elm 800 Rojo Mahogany 2200 Tanzinia Msindi 3220 West Indies Walnut 1925 Ash 1320 Afzelia 1810 Erable 1450 Rosewood 1650 Brazilian Rosewood 3200 Amendoim 1912 Beech 1300 Amendoim 1912 European Teak 1155 Santos Mahogany 2200 Tiete Rosewood 3200 Brazilian Oak 1912 Red Oak 1290 American Cherry 950 Havea 1820 Sao Paulo Striped Wood 2160 Carribean Rosewood 3170 African Hickory 1820 Birch 1260 Applewood 880 Heart Pine 870 Sapele 1510 Huali 3170 Carribean Pecan 1820 Iroko 1260 Argentinian Chestnut 2670 Hevea 1820 Simianping 3170 Simianping 3170 Chinese Hickory 1820 Merisier 1260 Ash 1320 Hickory 1820 Spanish Mahogany 1400 Lapacho 3060 Havea 1820 Yellow Birch 1260 Asian Teak 1155 Hickory/Pecan 1820 Sucupira 2140 Taheebo 3060 Hevea 1820 Bamboo 1180 Asian Walnut 1010 Huali 3170 Tadenia 1570 Pearwood 2990 Hickory