Continuum Mechanics Using Mathematica® Fundamentals, Methods, and Applications

Total Page:16

File Type:pdf, Size:1020Kb

Continuum Mechanics Using Mathematica® Fundamentals, Methods, and Applications Modeling and Simulation in Science, Engineering and Technology Antonio Romano Addolorata Marasco Continuum Mechanics using Mathematica® Fundamentals, Methods, and Applications Second Edition Modeling and Simulation in Science, Engineering and Technology Series Editor Nicola Bellomo Politecnico di Torino Tor ino, Italy Editorial Advisory Board K.J. Bathe P. Koumoutsakos Department of Mechanical Engineering Computational Science & Engineering Massachusetts Institute of Technology Laboratory Cambridge, MA, USA ETH Zürich Zürich, Switzerland M. Chaplain Division of Mathematics H.G. Othmer University of Dundee Department of Mathematics Dundee, Scotland, UK University of Minnesota Minneapolis, MN, USA P. Degond Department of Mathematics, K.R. Rajagopal Imperial College London, Department of Mechanical Engineering London, United Kingdom Texas A&M University College Station, TX, USA A. Deutsch Center for Information Services T.E. Tezduyar and High-Performance Computing Department of Mechanical Engineering & Technische Universität Dresden Materials Science Dresden, Germany Rice University Houston, TX, USA M.A. Herrero Departamento de Matematica Aplicada A. Tosin Universidad Complutense de Madrid Istituto per le Applicazioni del Calcolo Madrid, Spain “M. Picone” Consiglio Nazionale delle Ricerche Roma, Italy More information about this series at http://www.springer.com/series/4960 Antonio Romano • Addolorata Marasco Continuum Mechanics using MathematicaR Fundamentals, Methods, and Applications Second Edition Antonio Romano Addolorata Marasco Department of Mathematics Department of Mathematics and Applications “R. Caccioppoli” and Applications “R. Caccioppoli” University of Naples Federico II University of Naples Federico II Naples, Italy Naples, Italy Additional material to this book can be downloaded from http://extras.springer.com ISSN 2164-3679 ISSN 2164-3725 (electronic) ISBN 978-1-4939-1603-0 ISBN 978-1-4939-1604-7 (eBook) DOI 10.1007/978-1-4939-1604-7 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2014948090 Mathematics Subject Classification: 74-00, 74-01, 74AXX, 74BXX, 74EXX, 74GXX, 74JXX © Springer Science+Business Media New York 2006, 2014 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.birkhauser-science.com) Preface The motion of any body depends both on its characteristics and on the forces acting on it. Although taking into account all possible properties makes the equations too complex to solve, sometimes it is possible to consider only the properties that have the greatest influence on the motion. Models of ideals bodies, which contain only the most relevant properties, can be studied using the tools of mathematical physics. Adding more properties into a model makes it more realistic, but it also makes the motion problem harder to solve. In order to highlight the above statements, let us first suppose that a system S of N unconstrained bodies Ci , i D 1;:::;N, is sufficiently described by the model of N material points whenever the bodies have negligible dimensions with respect to the dimensions of the region containing the trajectories. This means that all the physical properties of Ci that influence the motion are expressed by a positive number, the mass mi , whereas the position of Ci with respect to a frame I is given by the position vector ri .t/ versus time. To determine the functions ri .t/, one has to integrate the following system of Newtonian equations: mi rRi D Fi Á fi .r1;:::;rN ; rP1;:::;rPN ;t/; i D 1;:::;N, where the forces Fi , due both to the external world and to the other points of S, are assigned functions fi of the positions and velocities of all the points of S, as well as of time. Under suitable regularity assumptions about the functions fi , the previous (vector) system of second-order ordinary differential equations in the unknowns ri .t/ has one and only one solution satisfying the given initial conditions 0 0 ri .t0/ D ri ; rPi .t0/ D rPi ;iD 1;:::;N: A second model that more closely matches physical reality is represented by asystemS of constrained rigid bodies Ci , i D 1;:::;N. In this scheme, the v vi Preface extension of Ci and the presence of constraints are taken into account. The position of Ci is represented by the three-dimensional region occupied by Ci in the frame I . Owing to the supposed rigidity of both bodies Ci and constraints, the configurations of S are described by n Ä 6N parameters q1;:::;qn, which are called Lagrangian coordinates. Moreover, the mass mi of Ci is no longer sufficient for describing the physical properties of Ci since we have to know both its density and geometry. To determine the motion of S, that is, the functions q1.t/; : : : ; qn.t/, the Lagrangian expressions of the kinetic energy T.q;q/P and active forces Qh.q; q/P are necessary. Then a possible motion of S is a solution of the Lagrange equations d @T @T D Qh.q; q/;P h D 1;:::;n; dt @qPh @qh satisfying the given initial conditions 0 0 qh.t0/ D qh; qPh.t0/ DPqh;hD 1;:::;n; which once again fix the initial configuration and the velocity field of S. We face a completely different situation when, to improve the description, we adopt the model of continuum mechanics. In fact, in this model the bodies are deformable and, at the same time, the matter is supposed to be continuously distributed over the volume they occupy, so that their molecular structure is completely erased. In this book we will show that the substitution of rigidity with the deformability leads us to determine three scalar functions of three spatial variables and time, in order to find the motion of S. Consequently, the fundamental evolution laws become partial differential equations. This consequence of deformability is the root of the mathematical difficulties of continuum mechanics. This model must include other characteristics which allow us to describe the different macroscopic material behaviors. In fact, bodies undergo different deformations under the influence of the same applied loads. The mathematical description of different materials is the object of the constitutive equations. These equations, although they have to describe a wide variety of real bodies, must in any case satisfy some general principles. These principles are called constitutive axioms and they reflect general rules of behavior. These rules, although they imply severe restrictions on the form of the constitutive equations, permit us to describe different materials. The constitutive equations can be divided into classes describing the behavior of material categories: elastic bodies, fluids, etc. The choice of a particular constitutive relation cannot be done a priori but instead relies on experiments, due to the fact that the macroscopic behavior of a body is strictly related to its molecular structure. Since the continuum model erases this structure, the constitutive equation of a particular material has to be determined by experimental procedures. However, the introduction of deformability into the model does not permit us to describe all the phenomena accompanying the motion. In fact, the viscosity of S as well as the friction between S and any external bodies produce heating, which in turn causes heat exchanges among parts of S or between S and Preface vii its surroundings. Mechanics is not able to describe these phenomena, and we must resort to the thermomechanics of continuous systems. This theory combines the laws of mechanics and thermodynamics, provided that they are suitably generalized to a deformable continuum at a nonuniform temperature. The situation is much more complex when the continuum carries charges and currents. In such a case, we must take into account Maxwell’s equations, which describe the electromagnetic fields accompanying the motion, together with the thermomechanic equations.
Recommended publications
  • An Approximate Nodal Is Developed to Calculate the Change of •Laatio Constants Induced by Point Defect* in Hep Metals
    1 - INTBOPUCTIOB the elastic conatants.aa well aa othernmechanieal pro partita of* IC/79/lW irradiated materiale (are vary sensitive to tne oonoantration of i- INTERNAL REPORT (Limited distribution) rradiation produced point defeota.One of the firat eatimatee of thla effect waa done by Dienea [l"J who aiaply averaged over the whole la- International Atomic Energy Agency ttice the locally changed interatoalo bonds due to the pxesense of" and the defect.With tola nodal ha predioted an inoreaee of the alaatle United Nations Educational Scientific and Cultural Organization constant* of about 10* par atonic f of interatitlala in Ou and a da. oreaee of l]t par at. % of vacanolea. INTERNATIONAL CENTRE FOE THEORETICAL PHYSICS Later on,experlaental etudiea by Konlg at al.[2]and wanal lilgar* very large decrease a of about 5O}( per at.)t of Vrenlcal dafaota.fha theory waa than iaproved in order to relate the change of a la* tic con a tan t a to the defect lnduoed change of force oonatanta and tno equivalent aethoda were devalopedi the energy-»athod of ludwig [4] CHANGE OF ELASTIC CONSTANTS and the t-aatrix method of Slllot et al.C ?]. INDUCED BY FOIMT DEFECTS IN hep CRYSTALS * Iheoretioal eetlnates for oublo oryetala have been oarrie* out by Ludwig[4] for the caae of vacancleafby Piatorlueld for intarati- Carlos Tome •• tiala and by Sederloaa et al.t?] for duabell interotitiala. International Centre for Theoretical Physics, Trieste, Italy. Re thaoretloal work baa been done ao far for hexagonal cryatmlaj and the experimental neaeurentanta (available only for Kg) ax* eona- ABSTRACT what crude t8,9i,ayan though in the last few.
    [Show full text]
  • Gravitation in the Surface Tension Model of Spacetime
    IARD 2018 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012010 doi:10.1088/1742-6596/1239/1/012010 Gravitation in the surface tension model of spacetime H A Perko1 1Office 14, 140 E. 4th Street, Loveland, CO, USA 80537 E-mail: [email protected] Abstract. A mechanical model of spacetime was introduced at a prior conference for describing perturbations of stress, strain, and displacement within a spacetime exhibiting surface tension. In the prior work, equations governing spacetime dynamics described by the model show some similarities to fundamental equations of quantum mechanics. Similarities were identified between the model and equations of Klein-Gordon, Schrödinger, Heisenberg, and Weyl. The introduction did not explain how gravitation arises within the model. In this talk, the model will be summarized, corrected, and extended for comparison with general relativity. An anisotropic elastic tensor is proposed as a constitutive relation between stress energy and curvature instead of the traditional Einstein constant. Such a relation permits spatial geometric terms in the mechanical model to resemble quantum mechanics while temporal terms and the overall structure of tensor equations remain consistent with general relativity. This work is in its infancy; next steps are to show how the anisotropic tensor affects cosmological predictions and to further explore if geometry and quantum mechanics can be related in more than just appearance. 1. Introduction The focus of this research is to find a mechanism by which spacetime might curl, warp, or re-configure at small scales to provide a geometrical explanation for quantum mechanics while remaining consistent with gravity and general relativity.
    [Show full text]
  • Arxiv:1704.01012V1 [Cond-Mat.Mtrl-Sci] 1 Apr 2017 Is the Second Most Important Material After Silicon
    Symmetry and Piezoelectricity: Evaluation of α-Quartz coefficients C. Tannous Laboratoire des Sciences et Techniques de l'Information, de la Communication et de la Connaissance, UMR-6285 CNRS, Brest Cedex3, FRANCE Piezoelectric coefficients of α-Quartz are derived from symmetry arguments based on Neumann's Principle with three different methods: Fumi, Landau-Lifshitz and Royer-Dieulesaint. While Fumi method is tedious and Landau-Lifshitz requires additional physical principles to evaluate the piezo- electric coefficients, Royer-Dieulesaint is the most elegant and most efficient of the three techniques. PACS numbers: 77.65.-j, 77.65.Bn, 77.84.-s Keywords: Piezoelectricity, piezoelectric constants, piezoelectric materials I. INTRODUCTION AND MOTIVATION Physics students are exposed to various types of symmetry [1] and conservation laws in Graduate/Undergraduate Mechanics and Electromagnetism with Lorentz transformation and Gauge symmetries, in Graduate/Undergraduate Quantum Mechanics during the study of Atoms and Molecules. In undergraduate courses such as Special Relativity, Lorentz Transformation is used to unify symmetries between Mechanics and Electromagnetism. In Graduate High Energy Physics, the CPT theorem where C denotes charge conjugation (Q ! −Q), P is parity (r ! −r) and T is time reversal (t ! −t) as well as Gauge symmetry (Ai ! Ai + @iχ) provide an important insight into the role of symmetry in the building blocks of matter and unification of fundamental forces and interaction between particles. Graduate/undergraduate Solid State Physics provide a direct illustration of how Crystal Symmetry plays a fun- damental role in the determination of physical constants and transport coefficients as well as conservation and sim- plification of physical laws. The relation between symmetry and dispersion relations through Kramers theorem (T symmetry) is another example of the power of symmetry in Solid State physics.
    [Show full text]
  • A Manifold Learning Approach to Data-Driven Computational Mechanics
    A Manifold Learning Approach to Data-Driven Computational Mechanics Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, Francisco Chinesta To cite this version: Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, et al.. A Manifold Learning Approach to Data-Driven Computational Mechanics. 13e colloque national en calcul des structures, Université Paris-Saclay, May 2017, Giens, Var, France. hal-01926477 HAL Id: hal-01926477 https://hal.archives-ouvertes.fr/hal-01926477 Submitted on 19 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CSMA 2017 13ème Colloque National en Calcul des Structures 15-19 Mai 2017, Presqu’île de Giens (Var) A Manifold Learning Approach to Data-Driven Computational Me- chanics R. Ibañez1, E. Abisset-Chavanne1, J.V. Aguado1, D. Gonzalez2, E. Cueto2, F. Chinesta1 1 ICI Institute, Ecole Centrale Nantes, {Ruben.Ibanez-Pinillo,Emmanuelle.Abisset-Chavanne,Jose.Aguado-Lopez,Francisco.Chinesta}@ec-nantes.fr 2 Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain, {gonzal;ecueto}@unizar.es Résumé — Standard simulation in classical mechanics is based on the use of two very different types of equations.
    [Show full text]
  • Irreducible Matrix Resolution of the Elasticity Tensor for Symmetry Systems
    Irreducible matrix resolution of the elasticity tensor for symmetry systems Yakov Itin Inst. Mathematics, Hebrew Univ. of Jerusalem, Givat Ram, Jerusalem 91904, Israel, and Jerusalem College of Technology, Jerusalem 91160, Israel, email: [email protected] December 11, 2018, file ElastMatrix1.tex Abstract In linear elasticity, a fourth order elasticity (stiffness) tensor of 21 independent com- ponents completely describes deformation properties of a material. Due to Voigt, this tensor is conventionally represented by a 6 × 6 symmetric matrix. This classical matrix representation does not conform with the irreducible decomposition of the elasticity tensor. In this paper, we construct two alternative matrix representations. The 3 × 7 matrix representation is in a correspondence with the permutation transformations of indices and with the general linear transformation of the basis. An additional repre- sentation of the elasticity tensor by three 3 × 3 matrices is suitable for description the irreducible decomposition under the rotation transformations. We present the elasticity tensor of all crystal systems in these compact matrix forms and construct the hierarchy diagrams based on this representation. Key index words: anisotropic elasticity tensor, irreducible decomposition, matrix repre- sentation. Mathematics Subject Classification: 74B05, 15A69, 15A72. Contents arXiv:1812.03367v1 [physics.class-ph] 8 Dec 2018 1 Introduction2 2 Matrix representations3 2.1 Voigt’s representation . .4 2.2 An alternative representation . .4 1 Y. Itin Irreducible matrix resolution of the elasticity tensor 2 3 Irreducible decomposition5 3.1 GL(3)-decomposition . .5 3.2 SO(3; R)-decomposition . .8 3.2.1 Cauchy part . .8 3.2.2 Non-Cauchy part . 10 3.3 Irreducible decomposition .
    [Show full text]
  • APPLIED ELASTICITY, 2Nd Edition Matrix and Tensor Analysis of Elastic Continua
    APPLIED ELASTICITY, 2nd Edition Matrix and Tensor Analysis of Elastic Continua Talking of education, "People have now a-days" (said he) "got a strange opinion that every thing should be taught by lectures. Now, I cannot see that lectures can do so much good as reading the books from which the lectures are taken. I know nothing that can be best taught by lectures, expect where experiments are to be shewn. You may teach chymestry by lectures. — You might teach making of shoes by lectures.' " James Boswell: Lifeof Samuel Johnson, 1766 [1709-1784] ABOUT THE AUTHOR In 1947 John D Renton was admitted to a Reserved Place (entitling him to free tuition) at King Edward's School in Edgbaston, Birmingham which was then a Grammar School. After six years there, followed by two doing National Service in the RAF, he became an undergraduate in Civil Engineering at Birmingham University, and obtained First Class Honours in 1958. He then became a research student of Dr A H Chilver (now Lord Chilver) working on the stability of space frames at Fitzwilliam House, Cambridge. Part of the research involved writing the first computer program for analysing three-dimensional structures, which was used by the consultants Ove Arup in their design project for the roof of the Sydney Opera House. He won a Research Fellowship at St John's College Cambridge in 1961, from where he moved to Oxford University to take up a teaching post at the Department of Engineering Science in 1963. This was followed by a Tutorial Fellowship to St Catherine's College in 1966.
    [Show full text]
  • Cambridge University Press 978-0-521-64250-7 — Group Theory with Applications in Chemical Physics Patrick Jacobs Index More Information
    Cambridge University Press 978-0-521-64250-7 — Group Theory with Applications in Chemical Physics Patrick Jacobs Index More Information Index Abelian group 2 central extension 336, 337, 367 acoustic mode 393 centralizer 14, 19, 434 active representation 23 centre 19 adiabatic potential 173 character 74, 99 adjoint 54 character system 74 of an operator 102 character tables 76–78, 80, 447 adjoint matrix 418 character vector 259 algebra of turns 228 characteristic equation 420, 441 ambivalent class 435 charge overlap 107 angular momentum 184, 189 charge transfer 178 anharmonicity 160 chemical bond 106 constant of 160 class 5, 19 antibonding orbitals 106, 125 class algebra 439 antiferromagnetic crystal 265 class constants 436 antilinear operator 252 class property 440 antipole 223 Clebsch–Gordan series 209, 277, 385 antisymmetrical direct product 100 closed shell 172 À2 antisymmetrizing operator 141 closo Bn Hn 51 antiunitary operator 252, 267, 405 closure 1, 393 associated Legendre functions 194 co-factor 413 associative 2, 220 coincidence 162 axial groups 82 column matrix 415 axial tensor 283 combination bands 160 axial vector 82 commutation relations (CRs) 131, 187 compatibility relations 362 basic domain 331 complementary IR 303 basis 53, 96 complementary minor 413 of a lattice 308 complementary operators 265 basis functions, construction of 97 complex conjugate 218 bcc see body-centred cubic complex conjugation operator 253 benzene 104, 109, 174 complex number 218 Bethe 80, 150, 151 complex plane 219 bilateral binary (BB) 232 complex
    [Show full text]
  • Valley Degeneracy in Biaxially Strained Aluminum Arsenide Quantum Wells
    PHYSICAL REVIEW B 84, 125319 (2011) Valley degeneracy in biaxially strained aluminum arsenide quantum wells S. Prabhu-Gaunkar,1 S. Birner,2 S. Dasgupta,2 C. Knaak,2 and M. Grayson1 1Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA 2Walter Schottky Institut, Technische Universitat¨ Munchen,¨ Garching DE-85748, Germany (Received 13 September 2010; revised manuscript received 19 May 2011; published 16 September 2011) This paper describes a complete analytical formalism for calculating electron subband energy and degeneracy in strained multivalley quantum wells grown along any orientation with explicit results for AlAs quantum wells (QWs). In analogy to the spin index, the valley degree of freedom is justified as a pseudospin index due to the vanishing intervalley exchange integral. A standardized coordinate transformation matrix is defined to transform between the conventional-cubic-cell basis and the QW transport basis whereby effective mass tensors, valley vectors, strain matrices, anisotropic strain ratios, piezoelectric fields, and scattering vectors are all defined in their respective bases. The specific cases of (001)-, (110)-, and (111)-oriented aluminum arsenide (AlAs) QWs are examined, as is the unconventional (411) facet, which is of particular importance in AlAs literature. Calculations of electron confinement and strain for the (001), (110), and (411) facets determine the critical well width for crossover from double- to single-valley degeneracy in each system. The biaxial Poisson ratio is calculated for the high-symmetry lower Miller index (001)-, (110)-, and (111)-oriented QWs. An additional shear-strain component arises in the higher Miller index (411)-oriented QWs and we define and solve for a shear-to-biaxial strain ratio.
    [Show full text]
  • Graphical Representation of the Generalized Hooke's Law Izei®Ei H
    TECHNISCHE MECHANIK, Band 21, Heft 2, (2001), 145-158 Manuskripteingang: 30. Januar 2001 Graphical Representation of the Generalized Hooke’s Law T. Böhlke, C. Brüggemann The anisotropic linear elastic behavior of single crystals can be described equivalently by a 4th-0rder elasticity tensor or two functions E(d) and K These functions represent Young’s modulus and a generalized bulk modulus as functions of the tensile direction d in a tension test. In the present paper three— and two—dimensional graphical representations of Young’s modulus and the generalized bulk modulus are given for single crystals belonging to one of the following symmetry groups: monoclinic, rhombic, trigonal, tetragonal, hemagonal, and cubic symmetry. 1 Introduction The generalized Hooke’s law is the geometrical and physical linear relation between stress and strain of anisotropic elastic solids. It is one of the oldest and best known constitutive relations in continuum mechanics. One dimensional formulations have been discussed first in the 17th century. Over a long time the scientific community agreed to differ about the most general form in linear elasticity. Finally Voigt (1850-1919) answered the open question how many constants have to be determined in the isotropic and anisotropic case. He proved by experiments Green’s (1793-1841) hypothesis that in the isotropic case two and in the general anisotropic hyperelastic case 21 constants have to be determined. Based on Hooke’s law structures are analyzed in all branches of mechanical and civil engineering. In most cases the isotropic version of Hooke’s law is used. But in the last decades more and more anisotropies have been taken into account, which are especially important if the component parts are laminated or made from single crystals.
    [Show full text]
  • Modeling and Characterization of the Elastic Behavior Of
    MODELING AND CHARACTERIZATION OF THE ELASTIC BEHAVIOR OF INTERFACES IN NANOSTRUCTURED MATERIALS: FROM AN ATOMISTIC DESCRIPTION TO A CONTINUUM APPROACH A Dissertation Presented to The Academic Faculty by Rémi Dingreville In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Mechanical Engineering Georgia Institute of Technology December 2007 MODELING AND CHARACTERIZATION OF THE ELASTIC BEHAVIOR OF INTERFACES IN NANOSTRUCTURED MATERIALS: FROM AN ATOMISTIC DESCRIPTION TO A CONTINUUM APPROACH Approved by: Dr. Jianmin Qu, Advisor Dr. Mo Li GWW School of Mechanical Engineering School of Materials Science & Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. David L. McDowell Dr. Elisa Riedo GWW School of Mechanical Engineering School of Physics Georgia Institute of Technology Georgia Institute of Technology Dr. Min Zhou GWW School of Mechanical Engineering Georgia Institute of Technology Date Approved: July 24 th , 2007 To my wife Stephani, my family and my friends. ACKNOWLEDGEMENTS This work is the accomplishment of both an individual and collective effort to find a path in the world of “nano ” and the meanders of interface theory. If one had to find the roots of this journey, I would probably cite two particular events. The first one would be the reading of an essay by Gleiter on nanocrystalline materials in Progress in Materials Science during my Masters study in France. I discovered a whole new world made of nanotubes and nanoribbons, a world ruled by abnormal behaviors. It seemed to me there were many interesting things to discover and issues to tackle. The second event occurred a few months earlier during an internship at Georgia Tech in the summer of 2000.
    [Show full text]
  • V “Type” Notation and Voigt Or Mandel Matrices
    T June 6, 2015 9:08 pm A F Tensors R a n n o n D c a B r R e b e c 1 n 2 Vm “type” notation and Voigt or Mandel matrices 3 4 This section defines a special “Vn ” tensor classification notation. Any tensor of type 5 m 6 n n n 7 Vm will be seen to have m components. Furthermore, any tensor of type Vm is also of 8 1 n 9 type VN where N= m . This latter identification helps us to convert indicial formulas 10 11 involving 3u 3 tensor matrices into matrix formulas involving 9u 1 arrays. Similarly, 12 13 indicial formulas involving 3 3 3 third-order tensor matrices may be alternatively cast 14 u u 15 in terms of 3 9 , 9 3 or even 27 1 arrays, depending on what is most convenient for 16 u u u 17 18 actual computations using linear algebra libraries in modern computing environments. 19 20 th st 21 Scalars are often called 0 -order tensors. Vectors are sometimes called 1 -order ten- 22 th n * 23 sors. In general, an n order engineering tensor has 3 components, and we say that 24 n 2 25 these tensors are of type V3 . For example, stress is a second-order tensor, so it has 3 26 27 (nine) components. Stress is symmetric, so these components are not all independent, but 28 29 that doesn’t change the fact that there are still nine components. 30 31 32 When solving a problem for which all tensors have symmetry with respect to some 2D 33 34 35 plane embedded in 3D space, it is conventional to set up the basis so that the third basis 36 37 vector points perpendicular to that plane.
    [Show full text]
  • Module 3 Constitutive Equations
    Module 3 Constitutive Equations Learning Objectives • Understand basic stress-strain response of engineering materials. • Quantify the linear elastic stress-strain response in terms of tensorial quantities and in particular the fourth-order elasticity or stiffness tensor describing Hooke's Law. • Understand the relation between internal material symmetries and macroscopic anisotropy, as well as the implications on the structure of the stiffness tensor. • Quantify the response of anisotropic materials to loadings aligned as well as rotated with respect to the material principal axes with emphasis on orthotropic and transversely- isotropic materials. • Understand the nature of temperature effects as a source of thermal expansion strains. • Quantify the linear elastic stress and strain tensors from experimental strain-gauge measurements. • Quantify the linear elastic stress and strain tensors resulting from special material loading conditions. 3.1 Linear elasticity and Hooke's Law Readings: Reddy 3.4.1 3.4.2 BC 2.6 Consider the stress strain curve σ = f() of a linear elastic material subjected to uni-axial stress loading conditions (Figure 3.1). 45 46 MODULE 3. CONSTITUTIVE EQUATIONS σ ˆ 1 2 ψ = 2 Eǫ E 1 ǫ Figure 3.1: Stress-strain curve for a linear elastic material subject to uni-axial stress σ (Note that this is not uni-axial strain due to Poisson effect) In this expression, E is Young's modulus. Strain Energy Density For a given value of the strain , the strain energy density (per unit volume) = ^(), is defined as the area under the curve. In this case, 1 () = E2 2 We note, that according to this definition, @ ^ σ = = E @ In general, for (possibly non-linear) elastic materials: @ ^ σij = σij() = (3.1) @ij Generalized Hooke's Law Defines the most general linear relation among all the components of the stress and strain tensor σij = Cijklkl (3.2) In this expression: Cijkl are the components of the fourth-order stiffness tensor of material properties or Elastic moduli.
    [Show full text]