03 - Introduction Me338 - Syllabus to Vectors and Tensors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Approximate Nodal Is Developed to Calculate the Change of •Laatio Constants Induced by Point Defect* in Hep Metals
1 - INTBOPUCTIOB the elastic conatants.aa well aa othernmechanieal pro partita of* IC/79/lW irradiated materiale (are vary sensitive to tne oonoantration of i- INTERNAL REPORT (Limited distribution) rradiation produced point defeota.One of the firat eatimatee of thla effect waa done by Dienea [l"J who aiaply averaged over the whole la- International Atomic Energy Agency ttice the locally changed interatoalo bonds due to the pxesense of" and the defect.With tola nodal ha predioted an inoreaee of the alaatle United Nations Educational Scientific and Cultural Organization constant* of about 10* par atonic f of interatitlala in Ou and a da. oreaee of l]t par at. % of vacanolea. INTERNATIONAL CENTRE FOE THEORETICAL PHYSICS Later on,experlaental etudiea by Konlg at al.[2]and wanal lilgar* very large decrease a of about 5O}( per at.)t of Vrenlcal dafaota.fha theory waa than iaproved in order to relate the change of a la* tic con a tan t a to the defect lnduoed change of force oonatanta and tno equivalent aethoda were devalopedi the energy-»athod of ludwig [4] CHANGE OF ELASTIC CONSTANTS and the t-aatrix method of Slllot et al.C ?]. INDUCED BY FOIMT DEFECTS IN hep CRYSTALS * Iheoretioal eetlnates for oublo oryetala have been oarrie* out by Ludwig[4] for the caae of vacancleafby Piatorlueld for intarati- Carlos Tome •• tiala and by Sederloaa et al.t?] for duabell interotitiala. International Centre for Theoretical Physics, Trieste, Italy. Re thaoretloal work baa been done ao far for hexagonal cryatmlaj and the experimental neaeurentanta (available only for Kg) ax* eona- ABSTRACT what crude t8,9i,ayan though in the last few. -
Estimations of the Trace of Powers of Positive Self-Adjoint Operators by Extrapolation of the Moments∗
Electronic Transactions on Numerical Analysis. ETNA Volume 39, pp. 144-155, 2012. Kent State University Copyright 2012, Kent State University. http://etna.math.kent.edu ISSN 1068-9613. ESTIMATIONS OF THE TRACE OF POWERS OF POSITIVE SELF-ADJOINT OPERATORS BY EXTRAPOLATION OF THE MOMENTS∗ CLAUDE BREZINSKI†, PARASKEVI FIKA‡, AND MARILENA MITROULI‡ Abstract. Let A be a positive self-adjoint linear operator on a real separable Hilbert space H. Our aim is to build estimates of the trace of Aq, for q ∈ R. These estimates are obtained by extrapolation of the moments of A. Applications of the matrix case are discussed, and numerical results are given. Key words. Trace, positive self-adjoint linear operator, symmetric matrix, matrix powers, matrix moments, extrapolation. AMS subject classifications. 65F15, 65F30, 65B05, 65C05, 65J10, 15A18, 15A45. 1. Introduction. Let A be a positive self-adjoint linear operator from H to H, where H is a real separable Hilbert space with inner product denoted by (·, ·). Our aim is to build estimates of the trace of Aq, for q ∈ R. These estimates are obtained by extrapolation of the integer moments (z, Anz) of A, for n ∈ N. A similar procedure was first introduced in [3] for estimating the Euclidean norm of the error when solving a system of linear equations, which corresponds to q = −2. The case q = −1, which leads to estimates of the trace of the inverse of a matrix, was studied in [4]; on this problem, see [10]. Let us mention that, when only positive powers of A are used, the Hilbert space H could be infinite dimensional, while, for negative powers of A, it is always assumed to be a finite dimensional one, and, obviously, A is also assumed to be invertible. -
Gravitation in the Surface Tension Model of Spacetime
IARD 2018 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1239 (2019) 012010 doi:10.1088/1742-6596/1239/1/012010 Gravitation in the surface tension model of spacetime H A Perko1 1Office 14, 140 E. 4th Street, Loveland, CO, USA 80537 E-mail: [email protected] Abstract. A mechanical model of spacetime was introduced at a prior conference for describing perturbations of stress, strain, and displacement within a spacetime exhibiting surface tension. In the prior work, equations governing spacetime dynamics described by the model show some similarities to fundamental equations of quantum mechanics. Similarities were identified between the model and equations of Klein-Gordon, Schrödinger, Heisenberg, and Weyl. The introduction did not explain how gravitation arises within the model. In this talk, the model will be summarized, corrected, and extended for comparison with general relativity. An anisotropic elastic tensor is proposed as a constitutive relation between stress energy and curvature instead of the traditional Einstein constant. Such a relation permits spatial geometric terms in the mechanical model to resemble quantum mechanics while temporal terms and the overall structure of tensor equations remain consistent with general relativity. This work is in its infancy; next steps are to show how the anisotropic tensor affects cosmological predictions and to further explore if geometry and quantum mechanics can be related in more than just appearance. 1. Introduction The focus of this research is to find a mechanism by which spacetime might curl, warp, or re-configure at small scales to provide a geometrical explanation for quantum mechanics while remaining consistent with gravity and general relativity. -
Generic Properties of Symmetric Tensors
2006 – 1/48 – P.Comon Generic properties of Symmetric Tensors Pierre COMON I3S - CNRS other contributors: Bernard MOURRAIN INRIA institute Lek-Heng LIM, Stanford University I3S 2006 – 2/48 – P.Comon Tensors & Arrays Definitions Table T = {Tij..k} Order d of T def= # of its ways = # of its indices def Dimension n` = range of the `th index T is Square when all dimensions n` = n are equal T is Symmetric when it is square and when its entries do not change by any permutation of indices I3S 2006 – 3/48 – P.Comon Tensors & Arrays Properties Outer (tensor) product C = A ◦ B: Cij..` ab..c = Aij..` Bab..c Example 1 outer product between 2 vectors: u ◦ v = u vT Multilinearity. An order-3 tensor T is transformed by the multi-linear map {A, B, C} into a tensor T 0: 0 X Tijk = AiaBjbCkcTabc abc Similarly: at any order d. I3S 2006 – 4/48 – P.Comon Tensors & Arrays Example Example 2 Take 1 v = −1 Then 1 −1 −1 1 v◦3 = −1 1 1 −1 This is a “rank-1” symmetric tensor I3S 2006 – 5/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... CanD/PARAFAC: = + ... + . ... ... ... ... ... ... ... ... I3S 2006 – 6/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... CanD/PARAFAC: = + ... + . ... ... ... ... ... ... ... ... PARAFAC cannot be used when: • Lack of diversity I3S 2006 – 7/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... CanD/PARAFAC: = + ... + . ... ... ... ... ... ... ... ... PARAFAC cannot be used when: • Lack of diversity • Proportional slices I3S 2006 – 8/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA . -
1.2 Topological Tensor Calculus
PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space. -
Parallel Spinors and Connections with Skew-Symmetric Torsion in String Theory*
ASIAN J. MATH. © 2002 International Press Vol. 6, No. 2, pp. 303-336, June 2002 005 PARALLEL SPINORS AND CONNECTIONS WITH SKEW-SYMMETRIC TORSION IN STRING THEORY* THOMAS FRIEDRICHt AND STEFAN IVANOV* Abstract. We describe all almost contact metric, almost hermitian and G2-structures admitting a connection with totally skew-symmetric torsion tensor, and prove that there exists at most one such connection. We investigate its torsion form, its Ricci tensor, the Dirac operator and the V- parallel spinors. In particular, we obtain partial solutions of the type // string equations in dimension n = 5, 6 and 7. 1. Introduction. Linear connections preserving a Riemannian metric with totally skew-symmetric torsion recently became a subject of interest in theoretical and mathematical physics. For example, the target space of supersymmetric sigma models with Wess-Zumino term carries a geometry of a metric connection with skew-symmetric torsion [23, 34, 35] (see also [42] and references therein). In supergravity theories, the geometry of the moduli space of a class of black holes is carried out by a metric connection with skew-symmetric torsion [27]. The geometry of NS-5 brane solutions of type II supergravity theories is generated by a metric connection with skew-symmetric torsion [44, 45, 43]. The existence of parallel spinors with respect to a metric connection with skew-symmetric torsion on a Riemannian spin manifold is of importance in string theory, since they are associated with some string solitons (BPS solitons) [43]. Supergravity solutions that preserve some of the supersymmetry of the underlying theory have found many applications in the exploration of perturbative and non-perturbative properties of string theory. -
Matrices and Tensors
APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM.. -
5 the Dirac Equation and Spinors
5 The Dirac Equation and Spinors In this section we develop the appropriate wavefunctions for fundamental fermions and bosons. 5.1 Notation Review The three dimension differential operator is : ∂ ∂ ∂ = , , (5.1) ∂x ∂y ∂z We can generalise this to four dimensions ∂µ: 1 ∂ ∂ ∂ ∂ ∂ = , , , (5.2) µ c ∂t ∂x ∂y ∂z 5.2 The Schr¨odinger Equation First consider a classical non-relativistic particle of mass m in a potential U. The energy-momentum relationship is: p2 E = + U (5.3) 2m we can substitute the differential operators: ∂ Eˆ i pˆ i (5.4) → ∂t →− to obtain the non-relativistic Schr¨odinger Equation (with = 1): ∂ψ 1 i = 2 + U ψ (5.5) ∂t −2m For U = 0, the free particle solutions are: iEt ψ(x, t) e− ψ(x) (5.6) ∝ and the probability density ρ and current j are given by: 2 i ρ = ψ(x) j = ψ∗ ψ ψ ψ∗ (5.7) | | −2m − with conservation of probability giving the continuity equation: ∂ρ + j =0, (5.8) ∂t · Or in Covariant notation: µ µ ∂µj = 0 with j =(ρ,j) (5.9) The Schr¨odinger equation is 1st order in ∂/∂t but second order in ∂/∂x. However, as we are going to be dealing with relativistic particles, space and time should be treated equally. 25 5.3 The Klein-Gordon Equation For a relativistic particle the energy-momentum relationship is: p p = p pµ = E2 p 2 = m2 (5.10) · µ − | | Substituting the equation (5.4), leads to the relativistic Klein-Gordon equation: ∂2 + 2 ψ = m2ψ (5.11) −∂t2 The free particle solutions are plane waves: ip x i(Et p x) ψ e− · = e− − · (5.12) ∝ The Klein-Gordon equation successfully describes spin 0 particles in relativistic quan- tum field theory. -
Arxiv:1704.01012V1 [Cond-Mat.Mtrl-Sci] 1 Apr 2017 Is the Second Most Important Material After Silicon
Symmetry and Piezoelectricity: Evaluation of α-Quartz coefficients C. Tannous Laboratoire des Sciences et Techniques de l'Information, de la Communication et de la Connaissance, UMR-6285 CNRS, Brest Cedex3, FRANCE Piezoelectric coefficients of α-Quartz are derived from symmetry arguments based on Neumann's Principle with three different methods: Fumi, Landau-Lifshitz and Royer-Dieulesaint. While Fumi method is tedious and Landau-Lifshitz requires additional physical principles to evaluate the piezo- electric coefficients, Royer-Dieulesaint is the most elegant and most efficient of the three techniques. PACS numbers: 77.65.-j, 77.65.Bn, 77.84.-s Keywords: Piezoelectricity, piezoelectric constants, piezoelectric materials I. INTRODUCTION AND MOTIVATION Physics students are exposed to various types of symmetry [1] and conservation laws in Graduate/Undergraduate Mechanics and Electromagnetism with Lorentz transformation and Gauge symmetries, in Graduate/Undergraduate Quantum Mechanics during the study of Atoms and Molecules. In undergraduate courses such as Special Relativity, Lorentz Transformation is used to unify symmetries between Mechanics and Electromagnetism. In Graduate High Energy Physics, the CPT theorem where C denotes charge conjugation (Q ! −Q), P is parity (r ! −r) and T is time reversal (t ! −t) as well as Gauge symmetry (Ai ! Ai + @iχ) provide an important insight into the role of symmetry in the building blocks of matter and unification of fundamental forces and interaction between particles. Graduate/undergraduate Solid State Physics provide a direct illustration of how Crystal Symmetry plays a fun- damental role in the determination of physical constants and transport coefficients as well as conservation and sim- plification of physical laws. The relation between symmetry and dispersion relations through Kramers theorem (T symmetry) is another example of the power of symmetry in Solid State physics. -
A Some Basic Rules of Tensor Calculus
A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e. -
A Manifold Learning Approach to Data-Driven Computational Mechanics
A Manifold Learning Approach to Data-Driven Computational Mechanics Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, Francisco Chinesta To cite this version: Ruben Ibanez, Emmanuelle Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elías Cueto, et al.. A Manifold Learning Approach to Data-Driven Computational Mechanics. 13e colloque national en calcul des structures, Université Paris-Saclay, May 2017, Giens, Var, France. hal-01926477 HAL Id: hal-01926477 https://hal.archives-ouvertes.fr/hal-01926477 Submitted on 19 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CSMA 2017 13ème Colloque National en Calcul des Structures 15-19 Mai 2017, Presqu’île de Giens (Var) A Manifold Learning Approach to Data-Driven Computational Me- chanics R. Ibañez1, E. Abisset-Chavanne1, J.V. Aguado1, D. Gonzalez2, E. Cueto2, F. Chinesta1 1 ICI Institute, Ecole Centrale Nantes, {Ruben.Ibanez-Pinillo,Emmanuelle.Abisset-Chavanne,Jose.Aguado-Lopez,Francisco.Chinesta}@ec-nantes.fr 2 Aragon Institute of Engineering Research, Universidad de Zaragoza, Spain, {gonzal;ecueto}@unizar.es Résumé — Standard simulation in classical mechanics is based on the use of two very different types of equations. -
General Relativity Fall 2019 Lecture 13: Geodesic Deviation; Einstein field Equations
General Relativity Fall 2019 Lecture 13: Geodesic deviation; Einstein field equations Yacine Ali-Ha¨ımoud October 11th, 2019 GEODESIC DEVIATION The principle of equivalence states that one cannot distinguish a uniform gravitational field from being in an accelerated frame. However, tidal fields, i.e. gradients of gravitational fields, are indeed measurable. Here we will show that the Riemann tensor encodes tidal fields. Consider a fiducial free-falling observer, thus moving along a geodesic G. We set up Fermi normal coordinates in µ the vicinity of this geodesic, i.e. coordinates in which gµν = ηµν jG and ΓνσjG = 0. Events along the geodesic have coordinates (x0; xi) = (t; 0), where we denote by t the proper time of the fiducial observer. Now consider another free-falling observer, close enough from the fiducial observer that we can describe its position with the Fermi normal coordinates. We denote by τ the proper time of that second observer. In the Fermi normal coordinates, the spatial components of the geodesic equation for the second observer can be written as d2xi d dxi d2xi dxi d2t dxi dxµ dxν = (dt/dτ)−1 (dt/dτ)−1 = (dt/dτ)−2 − (dt/dτ)−3 = − Γi − Γ0 : (1) dt2 dτ dτ dτ 2 dτ dτ 2 µν µν dt dt dt The Christoffel symbols have to be evaluated along the geodesic of the second observer. If the second observer is close µ µ λ λ µ enough to the fiducial geodesic, we may Taylor-expand Γνσ around G, where they vanish: Γνσ(x ) ≈ x @λΓνσjG + 2 µ 0 µ O(x ).