Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENTOF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY

Total Page:16

File Type:pdf, Size:1020Kb

Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENTOF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENT OF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY An approach which is promising in the resolution of this issue is to swap the inhomogeneous Sobolev spaces for their homogeneous counterparts, Does the topology on the screened Sobolev spaces Background W_ k;p (Ω). The upshot is that the latter families allow for a larger variety of Research admit a Fourier space characterization? behaviors at infinity. For this approach to have any chance of being fruitful in the Leoni and Tice gave the following partial frequency & Motivation study of boundary value problems, it is essential to identify and understand the Questions n characterization of these spaces: for f 2 S R it holds Partial differential equations (PDEs) are trace spaces associated to the homogeneous Sobolev spaces. Recall that the trace Z 1 2s 2 ^ 2 2 central to the modeling of natural space associated to a Sobolev space on a domain is a space of functions holding Can the screened Sobolev spaces be [f]W~ s;2 minfjξj ; jξj g f (ξ) dξ ; (2) (σ) n understood through interpolation theory? R phenomena. As a result, the study of these the possible boundary values and, for higher order Sobolev spaces, powers of the where 0 < s < 1 and constant screening function σ = 1. equations and their solutions has held a normal derivative. Interpolation theory is a set of tools which This expression suggests that the high-mode part of a prominent place in mathematics for For functions of finite energy in planar strips these trace spaces were first s;2 take certain pairs of topological vector member of W~ behaves like a member of the centuries. Rarely do PDE admit explicit identified by Strichartz in [Str16]. He found that for functions f defined on spaces, called the endpoint spaces, and (1) solutions and more round-about techniques R 2 Sobolev-Slobodeckij space Hs while the low mode part is U = R × (0; 1) satisfying U jrfj < 1 the fractional regularity of the return a space which is ‘in between’ the two. are necessary to gain deeper trace functions is measured according to the seminorm: On bounded domains with Lipschitz allowed to grow and behave like an element of H_ 1. The Depicted above is a portion of the graph of function understanding. This catalyzes the x+1=2 2 1 boundaries, the trace spaces associated to issue with this result is that not every member of the screened Z Z jf (x) − f (y)j 2 of p-finite energy on an infinite strip-like domain. development of novel analytical tools and [f] 1 = dy dx inhomogeneous Sobolev spaces are Sobolev spaces is Schwartz and no such result previously H~ 2 2 The trace of this function is highlighted in red. spaces of functions. R x−1=2 jx − yj members of the scale of Besov spaces. The existed on the density of the Schwartz class. Hence, the where s = 1 − 1=p and σ : n ! (0; 1] is a lower semicontinuous screening Perhaps the most famous functions Strichartz’s results were subsequently expanded upon by Leoni and Tice in [LT19]. R latter family, it turns out, is characterized as above heuristics on high and low mode behavior may or may function, whose definition is dependent on η . The space of locally integrable functions on spaces to emerge from this development They considered infinite strip-like domains of the form ± ‘in between’ a Lebesgue space and an not apply to every function in a screened Sobolev space. 0 n+1 0 0 n+1 are the classical inhomogeneous Sobolev U = fx = (x ; xn+1) 2 R j η−(x ) < xn+1 < η+(x )g ⊂ R ; f for which the seminorm (1) is finite is called the screened Sobolev space with parameters inhomogeneous Sobolev space by the real The starting point for a more robust Fourier characterization n ~ s;p n method of interpolation. Thus, it is natural to k;p where η− < η+ are Lipschitz on R and functions defined on these domains of 0 < s < 1, 1 ≤ p < 1, and σ. It is denoted W R . The moniker ‘screened’ is is to first ask if the screened Sobolev spaces are naturally spaces, W (Ω). These are (σ) expect that a similar characterization holds p-finite energy: e.g. R jrfjp < 1, 1 ≤ p < 1. In this more general included within the space of objects for which it makes sense indispensable when studying PDE in U justified by the fact that this seminorm screens difference quotients and only allows certain for the screened Sobolev spaces. An to take the Fourier transform - the tempered distributions. If case, the fractional regularity of the boundary values is quantified via: bounded domains; however, as soon as one ones to affect the seminorm’s value. affirmative answer to this question with this is true, then the expression could have a suitable Z Z p 1 moves to unbounded domains, these jf (x) − f (y)j p As a result of their groundwork development of these screened spaces, Leoni and Tice classical function spaces as endpoint ~ s;2 [f]W~ s;p = n+sp dy dx ; (1) interpretation for all f 2 W . In the cases p 6= 2 a inhomogeneous Sobolev spaces may fail in (σ) n were able to provide necessary and sufficient conditions for the solvability of certain spaces will give a clear and quantified (1) R B(x,σ(x)) jx − yj providing a suitable functional setting for the quasilinear elliptic boundary value problems in the strip-like domains. The screened Sobolev connection between the screened spaces Littlewood Paley Decomposition of these spaces could reveal problem at hand. spaces have also been useful in recent studies of the Muskat problem [Ngu19,FN20,NP20]. and more well-studied function spaces. the frequency behavior. F (A) and F (B) satisfy the Depending on one’s choice of function spaces, Variant on Peetre’s method: f = ∆−4f + ∆0f + ∆4f Littlewood-Paley characterizations interpolation property. The upshot, for y1 Littlewood-Paley offers suitable replacements for truncated interpolation TOOL #1: our purpose, is that when this TOOL #2: (3) to reveal what orthogonality relations hold. The Lebesgue space Lp n for 0; t−1K (t; x) R construction is explicit it will be clear Peetre’s real method does not quite 1 < p < 1 has the following Interpolation which properties the space F (A) capture the screened Sobolev spaces Littlewood-Paley Littlewood-Paley decomposition frequency space characterization: The aim of interpolation theory can be inherits from the couple [Tri78]. Here is Γ(x) as interpolation spaces. Tice and I The Littlewood-Paley theory concerns 1=2 This decomposition is the first step in P 2 developed the following asymmetric kfkLp j2 j∆jfj : described as follows. A pair of seminormed a showcase two of these constructions the manifestation of the Fourier our search for orthogonality. It allows us Z Lp + spaces X for i 2 f0; 1g are called a relevant to the analysis of screened variant. For σ 2 and s; q as transform’s orthogonality properties on f i R to write a given tempered distribution , The homogeneous Sobolev space compatible interpolation couple if there is Sobolev spaces. before, we defined the trunated spaces other than the familiar L2, like Lp i.e. generalized function, as an infinite ∆−4f k;p n a vector space X such that X ⊆ X . W_ for 1 < p < 1 and i Peetre’s real method of interpolation space via for p 6= 2,Holder¨ spaces, and Sobolev series over the integers of tempered R (σ) n (σ) o k 2 Given another interpolation couple Yi for (X ;X ) = x 2 X + X j [x] < 1 spaces. Deeper understanding of this distributions in which each of the terms N has the characterization: interpolation [Pee68] 0 1 s;q 0 1 s;q 1=2 i 2 f0; 1g belonging to Y, one asks for k P jk 2 Z 1=q orthogonality leads to a refined study of act ‘independently’. The jth term, ∆0f r f 2 j∆jfj : y0 dt Lp j2 seminormed spaces X ⊆ X and Let (X ; [·] ) for i 2 f0; 1g be (K (t; x) ; 0) (σ) −s q ∆ f Z Lp i i [x]s;q = t K (t; x) : smoothness in function spaces. The extent denoted j , is roughly the Y ⊆ Y satisfying the interpolation an interpolation couple. Their algebraic (0,σ) t to which the Littlewood-Paley theory f ∆ f The homogeneous Besov space localization of at spatial frequencies 4 s;p property: whenever T : X!Y is linear sum is equipped with the following The Gagliardo diagram above shows a Because this seminorm only cares characterizes spaces of functions is j B_ n for 1 < p < 1, geometric interpretation of the K function. jξj ≈ 2 . More explicitly, there is a q R and the restriction to Xi is continuous 1-parameter family of seminorms: about the small t behavior, a special remarkable. The above depicts the 1 ≤ q ≤ 1, and 0 < s < 1 has For some x 2 X + X we set special smooth function supported in X ! Y for i 2 f0; 1g it then holds 0 1 role is inherited by the second factor, Littlewood-Paley decomposition i i K (t; x) = inf [x0]0+t [x1]1 . Orthogonality of the Fourier transform on the characterization: x=x0+x1 2 the annulus 1=2 ≤ jξj ≤ 2 with of a band limited function f into that TX ⊆ Y and the restriction to X is Γ(x) = y 2 R j 9x =.
Recommended publications
  • Sobolev Spaces, Theory and Applications
    Sobolev spaces, theory and applications Piotr Haj lasz1 Introduction These are the notes that I prepared for the participants of the Summer School in Mathematics in Jyv¨askyl¨a,August, 1998. I thank Pekka Koskela for his kind invitation. This is the second summer course that I delivere in Finland. Last August I delivered a similar course entitled Sobolev spaces and calculus of variations in Helsinki. The subject was similar, so it was not posible to avoid overlapping. However, the overlapping is little. I estimate it as 25%. While preparing the notes I used partially the notes that I prepared for the previous course. Moreover Lectures 9 and 10 are based on the text of my joint work with Pekka Koskela [33]. The notes probably will not cover all the material presented during the course and at the some time not all the material written here will be presented during the School. This is however, not so bad: if some of the results presented on lectures will go beyond the notes, then there will be some reasons to listen the course and at the same time if some of the results will be explained in more details in notes, then it might be worth to look at them. The notes were prepared in hurry and so there are many bugs and they are not complete. Some of the sections and theorems are unfinished. At the end of the notes I enclosed some references together with comments. This section was also prepared in hurry and so probably many of the authors who contributed to the subject were not mentioned.
    [Show full text]
  • Symmetry Preserving Interpolation Erick Rodriguez Bazan, Evelyne Hubert
    Symmetry Preserving Interpolation Erick Rodriguez Bazan, Evelyne Hubert To cite this version: Erick Rodriguez Bazan, Evelyne Hubert. Symmetry Preserving Interpolation. ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Jul 2019, Beijing, China. 10.1145/3326229.3326247. hal-01994016 HAL Id: hal-01994016 https://hal.archives-ouvertes.fr/hal-01994016 Submitted on 25 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symmetry Preserving Interpolation Erick Rodriguez Bazan Evelyne Hubert Université Côte d’Azur, France Université Côte d’Azur, France Inria Méditerranée, France Inria Méditerranée, France [email protected] [email protected] ABSTRACT general concept. An interpolation space for a set of linear forms is The article addresses multivariate interpolation in the presence of a subspace of the polynomial ring that has a unique interpolant for symmetry. Interpolation is a prime tool in algebraic computation each instantiated interpolation problem. We show that the unique while symmetry is a qualitative feature that can be more relevant interpolants automatically inherit the symmetry of the problem to a mathematical model than the numerical accuracy of the pa- when the interpolation space is invariant (Section 3).
    [Show full text]
  • Introduction to Sobolev Spaces
    Introduction to Sobolev Spaces Lecture Notes MM692 2018-2 Joa Weber UNICAMP December 23, 2018 Contents 1 Introduction1 1.1 Notation and conventions......................2 2 Lp-spaces5 2.1 Borel and Lebesgue measure space on Rn .............5 2.2 Definition...............................8 2.3 Basic properties............................ 11 3 Convolution 13 3.1 Convolution of functions....................... 13 3.2 Convolution of equivalence classes................. 15 3.3 Local Mollification.......................... 16 3.3.1 Locally integrable functions................. 16 3.3.2 Continuous functions..................... 17 3.4 Applications.............................. 18 4 Sobolev spaces 19 4.1 Weak derivatives of locally integrable functions.......... 19 1 4.1.1 The mother of all Sobolev spaces Lloc ........... 19 4.1.2 Examples........................... 20 4.1.3 ACL characterization.................... 21 4.1.4 Weak and partial derivatives................ 22 4.1.5 Approximation characterization............... 23 4.1.6 Bounded weakly differentiable means Lipschitz...... 24 4.1.7 Leibniz or product rule................... 24 4.1.8 Chain rule and change of coordinates............ 25 4.1.9 Equivalence classes of locally integrable functions..... 27 4.2 Definition and basic properties................... 27 4.2.1 The Sobolev spaces W k;p .................. 27 4.2.2 Difference quotient characterization of W 1;p ........ 29 k;p 4.2.3 The compact support Sobolev spaces W0 ........ 30 k;p 4.2.4 The local Sobolev spaces Wloc ............... 30 4.2.5 How the spaces relate.................... 31 4.2.6 Basic properties { products and coordinate change.... 31 i ii CONTENTS 5 Approximation and extension 33 5.1 Approximation............................ 33 5.1.1 Local approximation { any domain............. 33 5.1.2 Global approximation on bounded domains.......
    [Show full text]
  • Using Functional Analysis and Sobolev Spaces to Solve Poisson’S Equation
    USING FUNCTIONAL ANALYSIS AND SOBOLEV SPACES TO SOLVE POISSON'S EQUATION YI WANG Abstract. We study Banach and Hilbert spaces with an eye to- wards defining weak solutions to elliptic PDE. Using Lax-Milgram we prove that weak solutions to Poisson's equation exist under certain conditions. Contents 1. Introduction 1 2. Banach spaces 2 3. Weak topology, weak star topology and reflexivity 6 4. Lower semicontinuity 11 5. Hilbert spaces 13 6. Sobolev spaces 19 References 21 1. Introduction We will discuss the following problem in this paper: let Ω be an open and connected subset in R and f be an L2 function on Ω, is there a solution to Poisson's equation (1) −∆u = f? From elementary partial differential equations class, we know if Ω = R, we can solve Poisson's equation using the fundamental solution to Laplace's equation. However, if we just take Ω to be an open and connected set, the above method is no longer useful. In addition, for arbitrary Ω and f, a C2 solution does not always exist. Therefore, instead of finding a strong solution, i.e., a C2 function which satisfies (1), we integrate (1) against a test function φ (a test function is a Date: September 28, 2016. 1 2 YI WANG smooth function compactly supported in Ω), integrate by parts, and arrive at the equation Z Z 1 (2) rurφ = fφ, 8φ 2 Cc (Ω): Ω Ω So intuitively we want to find a function which satisfies (2) for all test functions and this is the place where Hilbert spaces come into play.
    [Show full text]
  • Function Spaces Mikko Salo
    Function spaces Lecture notes, Fall 2008 Mikko Salo Department of Mathematics and Statistics University of Helsinki Contents Chapter 1. Introduction 1 Chapter 2. Interpolation theory 5 2.1. Classical results 5 2.2. Abstract interpolation 13 2.3. Real interpolation 16 2.4. Interpolation of Lp spaces 20 Chapter 3. Fractional Sobolev spaces, Besov and Triebel spaces 27 3.1. Fourier analysis 28 3.2. Fractional Sobolev spaces 33 3.3. Littlewood-Paley theory 39 3.4. Besov and Triebel spaces 44 3.5. H¨olderand Zygmund spaces 54 3.6. Embedding theorems 60 Bibliography 63 v CHAPTER 1 Introduction In mathematical analysis one deals with functions which are dif- ferentiable (such as continuously differentiable) or integrable (such as square integrable or Lp). It is often natural to combine the smoothness and integrability requirements, which leads one to introduce various spaces of functions. This course will give a brief introduction to certain function spaces which are commonly encountered in analysis. This will include H¨older, Lipschitz, Zygmund, Sobolev, Besov, and Triebel-Lizorkin type spaces. We will try to highlight typical uses of these spaces, and will also give an account of interpolation theory which is an important tool in their study. The first part of the course covered integer order Sobolev spaces in domains in Rn, following Evans [4, Chapter 5]. These lecture notes contain the second part of the course. Here the emphasis is on Sobolev type spaces where the smoothness index may be any real number. This second part of the course is more or less self-contained, in that we will use the first part mainly as motivation.
    [Show full text]
  • Fact Sheet Functional Analysis
    Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 1986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen. Springer, 2000. Triebel, H.: H¨ohere Analysis. Harri Deutsch, 1980. Dobrowolski, M.: Angewandte Funktionalanalysis, Springer, 2010. 1. Banach- and Hilbert spaces Let V be a real vector space. Normed space: A norm is a mapping k · k : V ! [0; 1), such that: kuk = 0 , u = 0; (definiteness) kαuk = jαj · kuk; α 2 R; u 2 V; (positive scalability) ku + vk ≤ kuk + kvk; u; v 2 V: (triangle inequality) The pairing (V; k · k) is called a normed space. Seminorm: In contrast to a norm there may be elements u 6= 0 such that kuk = 0. It still holds kuk = 0 if u = 0. Comparison of two norms: Two norms k · k1, k · k2 are called equivalent if there is a constant C such that: −1 C kuk1 ≤ kuk2 ≤ Ckuk1; u 2 V: If only one of these inequalities can be fulfilled, e.g. kuk2 ≤ Ckuk1; u 2 V; the norm k · k1 is called stronger than the norm k · k2. k · k2 is called weaker than k · k1. Topology: In every normed space a canonical topology can be defined. A subset U ⊂ V is called open if for every u 2 U there exists a " > 0 such that B"(u) = fv 2 V : ku − vk < "g ⊂ U: Convergence: A sequence vn converges to v w.r.t. the norm k · k if lim kvn − vk = 0: n!1 1 A sequence vn ⊂ V is called Cauchy sequence, if supfkvn − vmk : n; m ≥ kg ! 0 for k ! 1.
    [Show full text]
  • Optimal Sobolev Embeddings and Function Spaces
    Optimal Sobolev embeddings and Function Spaces Nadia Clavero Director: Javier Soria Tutor: Joan Cerd`a M´asteren Matem´aticaAvanzada y Profesional Especialidad Acad´emicaAvanzada Curso 2010/2011 U UNIVERSITAT DE BARCELONA B Contents 1 Introduction5 2 Preliminaries 11 2.1 The distribution function............................. 11 2.2 Decreasing rearrangements............................ 12 2.3 Rearrangement invariant Banach function spaces................ 16 2.4 Orlicz spaces................................... 18 2.5 Lorentz spaces................................... 22 2.6 Lorentz Zygmund spaces............................. 25 2.7 Interpolation spaces................................ 26 2.8 Weighted Hardy operators............................ 28 3 Sobolev spaces 35 3.1 Introduction.................................... 35 3.2 Definitions and basic properties......................... 35 3.3 Riesz potencials.................................. 38 3.4 Sobolev embedding theorem........................... 40 4 Orlicz spaces and Lorentz spaces 49 4.1 Introduction.................................... 49 4.2 Sobolev embeddings into Orlicz spaces..................... 50 4.3 Sobolev embeddings into Lorentz spaces.................... 52 4.4 Sobolev embeddings into Lorentz Zygmund spaces............... 56 5 Optimal Sobolev embeddings on rearrangement invariant spaces 59 5.1 Introduction.................................... 59 5.2 Reduction Theorem................................ 59 5.3 Optimal range and optimal domain of r.i. norms................ 70 5.4 Examples....................................
    [Show full text]
  • Sobolev-Type Spaces (Mainly Based on the Lp Norm) on Metric Spaces, and Newto- Nian Spaces in Particular, Have Been Under Intensive Study Since the Mid-"##$S
    - ) . / 0 &/ . ! " # $" ! %&' '( ! ) *+, !"## $ "% ' ( &)*+) ,##(-./*01*2/ ,#3(+140+)01*)+0.*/0- %"52-)/ 6 7 %80$%6!"6#62-)/ i Abstract !is thesis consists of four papers and focuses on function spaces related to !rst- order analysis in abstract metric measure spaces. !e classical (i.e., Sobolev) theory in Euclidean spaces makes use of summability of distributional gradients, whose de!nition depends on the linear structure of Rn. In metric spaces, we can replace the distributional gradients by (weak) upper gradients that control the functions’ behav- ior along (almost) all recti!able curves, which gives rise to the so-called Newtonian spaces. !e summability condition, considered in the thesis, is expressed using a general Banach function lattice quasi-norm and so an extensive framework is built. Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newto- nian spaces in particular, have been under intensive study since the mid-"##$s. In Paper I, the elementary theory of Newtonian spaces based on quasi-Banach function lattices is built up. Standard tools such as moduli of curve families and the Sobolev capacity are developed and applied to study the basic properties of Newto- nian functions. Summability of a (weak) upper gradient of a function is shown to guarantee the function’s absolute continuity on almost all curves. Moreover, New- tonian spaces are proven complete in this general setting. Paper II investigates the set of all weak upper gradients of a Newtonian function. In particular, existence of minimal weak upper gradients is established. Validity of Lebesgue’s di%erentiation theorem for the underlying metric measure space ensures that a family of representation formulae for minimal weak upper gradients can be found.
    [Show full text]
  • Real Interpolation of Sobolev Spaces
    MATH. SCAND. 105 (2009), 235–264 REAL INTERPOLATION OF SOBOLEV SPACES NADINE BADR Abstract We prove that W 1 is a real interpolation space between W 1 and W 1 for p>q and 1 ≤ p < p p1 p2 0 1 p<p2 ≤∞on some classes of manifolds and general metric spaces, where q0 depends on our hypotheses. 1. Introduction 1 ∞ Do the Sobolev spaces Wp form a real interpolation scale for 1 <p< ? The aim of the present work is to provide a positive answer for Sobolev spaces on some metric spaces. Let us state here our main theorems for non-homogeneous Sobolev spaces (resp. homogeneous Sobolev spaces) on Riemannian mani- folds. Theorem 1.1. Let M be a complete non-compact Riemannian manifold satisfying the local doubling property (Dloc) and a local Poincaré inequality ≤ ∞ ≤ ≤ ∞ 1 (Pqloc), for some 1 q< . Then for 1 r q<p< , Wp is a real 1 1 interpolation space between Wr and W∞. To prove Theorem 1.1, we characterize the K-functional of real interpola- tion for non-homogeneous Sobolev spaces: Theorem 1.2. Let M be as in Theorem 1.1. Then ∈ 1 + 1 1. there exists C1 > 0 such that for all f Wr W∞ and t>0 1 1 ∗∗ 1 ∗∗ 1 r 1 1 ≥ r | |r r +|∇ |r r ; K f, t ,Wr ,W∞ C1t f (t) f (t) ≤ ≤ ∞ ∈ 1 2. for r q p< , there is C2 > 0 such that for all f Wp and t>0 1 1 q∗∗ 1 q∗∗ 1 r 1 1 ≤ r | | q +|∇ | q K f, t ,Wr ,W∞ C2t f (t) f (t) .
    [Show full text]
  • Topological Invariants for Discontinuous Mappings Differential Topology in Sobolev Spaces
    Topological invariants for discontinuous mappings Differential topology in Sobolev spaces Paweł Goldstein [email protected] Kolokwium MIM, 7 listopada 2019 TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 1/21 Two reasons: • natural: folding, breaking, changes of state; • technical: necessary because of the available mathematical tools. Introduction Why do we need • non-differentiable • discontinuous mappings in real-life applications? TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 2/21 Introduction Why do we need • non-differentiable • discontinuous mappings in real-life applications? Two reasons: • natural: folding, breaking, changes of state; • technical: necessary because of the available mathematical tools. TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 2/21 Minima of accumulative, i.e, integral quantities ) we measure distance to minimizer with integral expressions. Introduction Variational principles • Fermat’s principle (Hero of Alexandria, Pierre de Fermat): Light travels through media along paths of shortest time. • Extremal action principle (Euler, Maupertuis): Bodies travel along paths locally minimizing the reduced action (integral of the momentum). Other examples: Dirichlet’s principle for harmonic maps, Einstein-Hilbert action in general relativity etc. TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 3/21 Introduction Variational principles • Fermat’s principle (Hero of Alexandria, Pierre de Fermat): Light travels through media along paths of shortest time. • Extremal action principle (Euler, Maupertuis):
    [Show full text]
  • Sobolev Spaces on an Arbitrary Metric Space
    Potential Analysis 5: 403-41 5, 1996. @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space PIOTR HAJLASZ* lnstvtut Matematyki, Uniwersyter Warszawski ul. Banucha 2, 02-097 Warszawa, Poland ?-mail: [email protected] (Received: 7 February 1994; accepted: 6 October 1994) Abstract. We define Sobolev space JV',~for 1 < p < (x, on an arbitrary metric space with finite diameter and equipped with finite, positive Bore1 measure. In the Euclidean case it coincides with standard Sobolev space. Several classical imbedding theorems are special cases of general results which hold in the metric case. We apply our results to weighted Sobolev space with Muckenhoupt weight. Mathematics Subject Classifications (1991). Primary: 46E35; Secondary: 28A80 Key words: Generalized Sobolev spaces, imbedding theorems, Muckenhoupt weights, metric space. 1. Introduction It is well known that [li1?"consists of Lipschitz functions and hence we can naturally define LV'~" on an arbitrary metric space. In the case 1 < p 6 m we find a Lipschitz type characterization of W'J'(Theorem 1) which can be used as a definition of T/I~'>Pin the case of metric space as a domain. Since the space 1V13" has an integral nature, we have to equip the metric space with a measure. The imbedding theorems depend on the dimension; so if we want to get imbed- ding theorems in this general, metric context, we have to introduce a condition describing the dimension. This condition is very simple. It suffices to assume that p(B(x,r)) 2 CIrS (see the definition of s-regularity in Section 5).
    [Show full text]
  • Chapter 2 Sobolev Spaces 2.1 Preliminaries
    Chapter 2 Sobolev spaces In this chapter, we give a brief overview on basic results of the theory of Sobolev spaces and their associated trace and dual spaces. 2.1 Preliminaries Let ­ be a bounded domain in Euclidean space lRd. We denote by ­ its closure and refer to ¡ = @­ := ­ n ­ as its boundary. Moreover, we d denote by ­e := lR n ­ the associated exterior domain. We consider functions u : ­ ! lR and denote by j®j ® @ u D u : = ®1 ®2 ®d @x1 @x2 :::@xd T d its partial derivatives of order j®j. Here, ® = (®1; :::; ®d) 2 lN0 is a Pd multiindex of modulus j®j = i=1 ®i. m We de¯ne by C (­); m 2 lN0; the linear space of continuous functions on ­ whose partial derivatives D®u; j®j · m; exist and are continuous. Cm(­) is a Banach space with respect to the norm ® kukCm(­) := max sup jD u(x)j : 0·j®j·m x2­ m;® We refer to C (­); m 2 lN0; 0 < ® < 1; as the linear space of func- tions in Cm(­) whose m-th order partial derivatives are HÄoldercon- d tinuous, i.e., for all ¯ 2 lN0 with j¯j = m there exist constants ¡¯ > 0 such that for all x; y 2 ­ ¯ ¯ ® jD u(x) ¡ D u(y)j · ¡¯ jx ¡ yj : We note that Cm;®(­) is a Banach space with respect to the norm jD¯u(x) ¡ D¯u(y)j m;® m kukC (­) := kukC (­) + max sup ® : j¯j=m x;y2­ jx ¡ yj m m;® Moreover, C0 (­) and C0 (­) are the subspaces of functions with compact support in ­).
    [Show full text]