Sobolev-Type Spaces (Mainly Based on the Lp Norm) on Metric Spaces, and Newto- Nian Spaces in Particular, Have Been Under Intensive Study Since the Mid-"##$S

Total Page:16

File Type:pdf, Size:1020Kb

Sobolev-Type Spaces (Mainly Based on the Lp Norm) on Metric Spaces, and Newto- Nian Spaces in Particular, Have Been Under Intensive Study Since the Mid- - ) . / 0 &/ . ! " # $" ! %&' '( ! ) *+, !"## $ "% ' ( &)*+) ,##(-./*01*2/ ,#3(+140+)01*)+0.*/0- %"52-)/ 6 7 %80$%6!"6#62-)/ i Abstract !is thesis consists of four papers and focuses on function spaces related to !rst- order analysis in abstract metric measure spaces. !e classical (i.e., Sobolev) theory in Euclidean spaces makes use of summability of distributional gradients, whose de!nition depends on the linear structure of Rn. In metric spaces, we can replace the distributional gradients by (weak) upper gradients that control the functions’ behav- ior along (almost) all recti!able curves, which gives rise to the so-called Newtonian spaces. !e summability condition, considered in the thesis, is expressed using a general Banach function lattice quasi-norm and so an extensive framework is built. Sobolev-type spaces (mainly based on the Lp norm) on metric spaces, and Newto- nian spaces in particular, have been under intensive study since the mid-"##$s. In Paper I, the elementary theory of Newtonian spaces based on quasi-Banach function lattices is built up. Standard tools such as moduli of curve families and the Sobolev capacity are developed and applied to study the basic properties of Newto- nian functions. Summability of a (weak) upper gradient of a function is shown to guarantee the function’s absolute continuity on almost all curves. Moreover, New- tonian spaces are proven complete in this general setting. Paper II investigates the set of all weak upper gradients of a Newtonian function. In particular, existence of minimal weak upper gradients is established. Validity of Lebesgue’s di%erentiation theorem for the underlying metric measure space ensures that a family of representation formulae for minimal weak upper gradients can be found. Furthermore, the connection between pointwise and norm convergence of a sequence of Newtonian functions is studied. Smooth functions are frequently used as an approximation of Sobolev func- tions in analysis of partial di%erential equations. In fact, Lipschitz continuity, which is (unlike C!-smoothness) well-de!ned even for functions on metric spaces, of- ten su&ces as a regularity condition. !us, Paper III concentrates on the question when Lipschitz functions provide good approximations of Newtonian functions. As shown in the paper, it su&ces that the function lattice quasi-norm is absolutely continuous and a fractional sharp maximal operator satis!es a weak norm estimate, which it does, e.g., in doubling Poincaré spaces if a non-centered maximal operator of Hardy–Littlewood type is locally weakly bounded. !erefore, such a local weak boundedness on rearrangement-invariant spaces is explored as well. Finer qualitative properties of Newtonian functions and the Sobolev capacity get into focus in Paper IV. Under certain hypotheses, Newtonian functions are proven to be quasi-continuous, which yields that the capacity is an outer capacity. Various su&cient conditions for local boundedness and continuity of Newtonian functions are established. Finally, quasi-continuity is applied to discuss density of locally Lip- schitz functions in Newtonian spaces on open subsets of doubling Poincaré spaces. ii D !"#!$%& #'()*) !+ L,-./ M%&0 iii Popul ärvetenskaplig sammanfattning Avhandlingen best år av fyra artiklar som behandlar s å kallade newtonrum baserade på vissa kvasinormer . L åt oss f örs öka belysa det som d öljs bakom dessa begrepp. Många f öreteelser i naturvetenskap kan beskrivas med hj älp av di%erentialekva- tioner. Till exempel kan temperaturf ördelningen i en kropp uttryckas som en funk- tion beroende p å tid och position och den l öser den s å kallade v ärmeledningsekva- tionen. Vanligtvis kan man visa att det !nns en entydig l ösning, men det är s ällan möjligt att !nna den explicit. Å andra sidan kan man med hj älp av datorer f örs öka ber äkna en approximation av den s ökta l ösningen. Ett problem med detta angrepps- sätt är att man inte i f örv äg vet om det numeriska resultatet n ärmar sig den verkliga lösningen. I allm änhet kan l ösningarna vara ganska ”vilda” funktioner. Emellertid går det o/a att visa 0era trevliga egenskaper hos dem. Dessa egenskaper kan t.ex. vara uppskattningar av hur stora v ärden funktionen antar och hur snabbt v ärdena sv änger. Med hj älp av ett l ämpligt m ätningss ätt kan man avg öra om en approxima- tion till di%erentialekvationens l ösning representerar verkligheten tillr äckligt v äl. Det !nns olika s ätt att m äta storleken av funktioner samt deras variationer (allts å i princip derivator), och denna avhandling behandlar olika s ådana s ätt samt den rika teorin omkring dessa. Teorin f ör m ätning av icke-sl äta funktioner p å våra vanliga ( åsk ådliga) rum stu- derades noggrant under st örre delen av "#$$-talet. Under de senaste "1–2$ åren har man f örs ökt utvidga detta till allm änna s å kallade metriska rum, d är man endast känner till avst åndet mellan tv å godtyckliga punkter. Metriska rum kan vara v äl- digt oregelbundna (t.ex. fraktaler) s å att det i sj älva verket inte beh över !nnas n ågra räta linjer mellan olika punkter, vilket f örhindrar till ämpning av den klassiska teo- rin. Änd å kan man o/a f örbinda punkterna med kurvor. Om man n öjer sig med att mäta funktionen l ängs kurvor, s å förenklas problemet. Finns det tillr äckligt m ånga kurvor, s å kan man änd å dra viktiga slutsatser om beteendet av en funktion med hj älp av m ätningar l ängs alla m öjliga kurvor. Detta är ungef är den princip som st år bakom teorin om newtonrum. Newtonrum har redan studerats f ör vissa typer av storleksbegrepp. Teorin i av- handlingen byggs, mer allm änt än tidigare, baserad p å kvasinormer i banachfunk- tionslattice , vilket ger m ånga generaliseringar och kvalitativa f ör!ningar av hittills kända resultat. Låt oss nu betrakta ett 0ertal fr ågor som man o/a vill f å besvarade och som besvaras i avhandlingen. Antag att man vill unders öka en funktion som beskriver någon fysikalisk storhet och att funktionens variation redan har m ätts (eller sna- rare uppskattats) l ängs alla kurvor. Man kan fr åga sig huruvida det verkligen var nödv ändigt att kolla p å funktionens beteende p å alla kurvor. Det visar sig att man iv D !"#!$%& #'()*) !+ L,-./ M%&0 mycket v äl kunde ha struntat i ett litet antal kurvor (i en v äldigt precis mening) utan att f örlora v äsentliga data. Dessutom inser man att funktionen egentligen är gans- ka sn äll ( absolutkontinuerlig ) l ängs alla kurvor med undantag av ett litet antal (d är ”litet antal” har samma betydelse som ovan). Man kan beh öva ta reda p å om det !nns st ällen (m ängder) d är funktionsv är- dena inte styrs av m ätningar l ängs kurvor och hur stora dessa m ängder egentligen är. I avhandlingen visas att det exakt är de m ängder vars s å kallade sobolevkapacitet är lika med noll. Sobolevkapaciteten kan i princip tolkas som ett volymm ått med en !nare uppl ösning än det vanliga volymm åttet. Str ängt taget inneb är det att m äng- derna d är man saknar kontroll över funktionsv ärden är ännu mindre än n är man anv änder sig av den klassiska sobolevteorin om icke-sl äta funktioner i det vanliga rummet Rn. Trots att man i de 0esta fall endast överuppskattar funktionernas variationer, s å känns det bara naturligt att f örv änta sig att det !nns en b ästa (allts å minsta) upp- skattning. Fr ågan om huruvida den existerar är i sj älva verket mer komplicerad med tanke p å att funktionernas beteende kan vara of örutsebart l ängs ett visst litet antal kurvor. Dessutom beror den egentliga inneb örden av frasen ”litet antal” p å storleks- begreppet som best äms av funktionslatticets kvasinorm . F ör vissa storleksbegrepp var den h är existensfr ågan ett öppet problem inom newtonteori tills den besvarades jakande i en av avhandlingens artiklar. När partiella di%erentialekvationer studeras, s å kr äver m ånga resonemang att sl äta funktioner utg ör bra approximationer till alla funktioner som kommer i fr åga som svaga l ösningar till ekvationen. Om omr ådet har goda geometriska egenskaper, så beror approximerbarheten p å storleken av s å kallade maximalfunktioner . D ärf ör unders öks maximalfunktioner samt deras uppskattningar noggrant i avhandlingen. Följaktligen f år man fram n ågra enkla villkor som r äcker f ör att kunna anv ända sig av sl äta approximationer. D ärtill ges typexempel d är s ådana approximationer inte är m öjliga. Till sist studeras det om uppskattningar av storleken av en funktions variationer längs kurvor leder till att sj älva funktionen är begr änsad eller till och med kontinu- erlig. S å ä r fallet om det storleksbegrepp som anv änds vid uppskattningar (d.v.s. kvasinormen av banachfunktionslatticet ) är tillr äckligt restriktivt i j ämf örelse med dimensionen av volymm åttet. Man inser n ämligen att det d å inte kan !nnas n ågra icke-tomma m ängder som har sobolevkapacitet noll. Det inneb är i sin tur att funk- tionen är kontrollerad överallt av sina variationer som enbart m ätts eller uppskattats längs n ästan alla kurvor. v Acknowledgements It has been "" years since I set out on a journey through the wondrous lands ruled by the mighty Queen of the Sciences; and some journey it has been! Not always did I know where the path I decided to take was about to lead. I have had the chance to experience the marvelous beauty of mathematics, but I have also come across places I personally deem somewhat gloomy.
Recommended publications
  • Sobolev Spaces, Theory and Applications
    Sobolev spaces, theory and applications Piotr Haj lasz1 Introduction These are the notes that I prepared for the participants of the Summer School in Mathematics in Jyv¨askyl¨a,August, 1998. I thank Pekka Koskela for his kind invitation. This is the second summer course that I delivere in Finland. Last August I delivered a similar course entitled Sobolev spaces and calculus of variations in Helsinki. The subject was similar, so it was not posible to avoid overlapping. However, the overlapping is little. I estimate it as 25%. While preparing the notes I used partially the notes that I prepared for the previous course. Moreover Lectures 9 and 10 are based on the text of my joint work with Pekka Koskela [33]. The notes probably will not cover all the material presented during the course and at the some time not all the material written here will be presented during the School. This is however, not so bad: if some of the results presented on lectures will go beyond the notes, then there will be some reasons to listen the course and at the same time if some of the results will be explained in more details in notes, then it might be worth to look at them. The notes were prepared in hurry and so there are many bugs and they are not complete. Some of the sections and theorems are unfinished. At the end of the notes I enclosed some references together with comments. This section was also prepared in hurry and so probably many of the authors who contributed to the subject were not mentioned.
    [Show full text]
  • Introduction to Sobolev Spaces
    Introduction to Sobolev Spaces Lecture Notes MM692 2018-2 Joa Weber UNICAMP December 23, 2018 Contents 1 Introduction1 1.1 Notation and conventions......................2 2 Lp-spaces5 2.1 Borel and Lebesgue measure space on Rn .............5 2.2 Definition...............................8 2.3 Basic properties............................ 11 3 Convolution 13 3.1 Convolution of functions....................... 13 3.2 Convolution of equivalence classes................. 15 3.3 Local Mollification.......................... 16 3.3.1 Locally integrable functions................. 16 3.3.2 Continuous functions..................... 17 3.4 Applications.............................. 18 4 Sobolev spaces 19 4.1 Weak derivatives of locally integrable functions.......... 19 1 4.1.1 The mother of all Sobolev spaces Lloc ........... 19 4.1.2 Examples........................... 20 4.1.3 ACL characterization.................... 21 4.1.4 Weak and partial derivatives................ 22 4.1.5 Approximation characterization............... 23 4.1.6 Bounded weakly differentiable means Lipschitz...... 24 4.1.7 Leibniz or product rule................... 24 4.1.8 Chain rule and change of coordinates............ 25 4.1.9 Equivalence classes of locally integrable functions..... 27 4.2 Definition and basic properties................... 27 4.2.1 The Sobolev spaces W k;p .................. 27 4.2.2 Difference quotient characterization of W 1;p ........ 29 k;p 4.2.3 The compact support Sobolev spaces W0 ........ 30 k;p 4.2.4 The local Sobolev spaces Wloc ............... 30 4.2.5 How the spaces relate.................... 31 4.2.6 Basic properties { products and coordinate change.... 31 i ii CONTENTS 5 Approximation and extension 33 5.1 Approximation............................ 33 5.1.1 Local approximation { any domain............. 33 5.1.2 Global approximation on bounded domains.......
    [Show full text]
  • Using Functional Analysis and Sobolev Spaces to Solve Poisson’S Equation
    USING FUNCTIONAL ANALYSIS AND SOBOLEV SPACES TO SOLVE POISSON'S EQUATION YI WANG Abstract. We study Banach and Hilbert spaces with an eye to- wards defining weak solutions to elliptic PDE. Using Lax-Milgram we prove that weak solutions to Poisson's equation exist under certain conditions. Contents 1. Introduction 1 2. Banach spaces 2 3. Weak topology, weak star topology and reflexivity 6 4. Lower semicontinuity 11 5. Hilbert spaces 13 6. Sobolev spaces 19 References 21 1. Introduction We will discuss the following problem in this paper: let Ω be an open and connected subset in R and f be an L2 function on Ω, is there a solution to Poisson's equation (1) −∆u = f? From elementary partial differential equations class, we know if Ω = R, we can solve Poisson's equation using the fundamental solution to Laplace's equation. However, if we just take Ω to be an open and connected set, the above method is no longer useful. In addition, for arbitrary Ω and f, a C2 solution does not always exist. Therefore, instead of finding a strong solution, i.e., a C2 function which satisfies (1), we integrate (1) against a test function φ (a test function is a Date: September 28, 2016. 1 2 YI WANG smooth function compactly supported in Ω), integrate by parts, and arrive at the equation Z Z 1 (2) rurφ = fφ, 8φ 2 Cc (Ω): Ω Ω So intuitively we want to find a function which satisfies (2) for all test functions and this is the place where Hilbert spaces come into play.
    [Show full text]
  • Function Spaces Mikko Salo
    Function spaces Lecture notes, Fall 2008 Mikko Salo Department of Mathematics and Statistics University of Helsinki Contents Chapter 1. Introduction 1 Chapter 2. Interpolation theory 5 2.1. Classical results 5 2.2. Abstract interpolation 13 2.3. Real interpolation 16 2.4. Interpolation of Lp spaces 20 Chapter 3. Fractional Sobolev spaces, Besov and Triebel spaces 27 3.1. Fourier analysis 28 3.2. Fractional Sobolev spaces 33 3.3. Littlewood-Paley theory 39 3.4. Besov and Triebel spaces 44 3.5. H¨olderand Zygmund spaces 54 3.6. Embedding theorems 60 Bibliography 63 v CHAPTER 1 Introduction In mathematical analysis one deals with functions which are dif- ferentiable (such as continuously differentiable) or integrable (such as square integrable or Lp). It is often natural to combine the smoothness and integrability requirements, which leads one to introduce various spaces of functions. This course will give a brief introduction to certain function spaces which are commonly encountered in analysis. This will include H¨older, Lipschitz, Zygmund, Sobolev, Besov, and Triebel-Lizorkin type spaces. We will try to highlight typical uses of these spaces, and will also give an account of interpolation theory which is an important tool in their study. The first part of the course covered integer order Sobolev spaces in domains in Rn, following Evans [4, Chapter 5]. These lecture notes contain the second part of the course. Here the emphasis is on Sobolev type spaces where the smoothness index may be any real number. This second part of the course is more or less self-contained, in that we will use the first part mainly as motivation.
    [Show full text]
  • Fact Sheet Functional Analysis
    Fact Sheet Functional Analysis Literature: Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner, 1986. Knabner, P., Angermann, L.: Numerik partieller Differentialgleichungen. Springer, 2000. Triebel, H.: H¨ohere Analysis. Harri Deutsch, 1980. Dobrowolski, M.: Angewandte Funktionalanalysis, Springer, 2010. 1. Banach- and Hilbert spaces Let V be a real vector space. Normed space: A norm is a mapping k · k : V ! [0; 1), such that: kuk = 0 , u = 0; (definiteness) kαuk = jαj · kuk; α 2 R; u 2 V; (positive scalability) ku + vk ≤ kuk + kvk; u; v 2 V: (triangle inequality) The pairing (V; k · k) is called a normed space. Seminorm: In contrast to a norm there may be elements u 6= 0 such that kuk = 0. It still holds kuk = 0 if u = 0. Comparison of two norms: Two norms k · k1, k · k2 are called equivalent if there is a constant C such that: −1 C kuk1 ≤ kuk2 ≤ Ckuk1; u 2 V: If only one of these inequalities can be fulfilled, e.g. kuk2 ≤ Ckuk1; u 2 V; the norm k · k1 is called stronger than the norm k · k2. k · k2 is called weaker than k · k1. Topology: In every normed space a canonical topology can be defined. A subset U ⊂ V is called open if for every u 2 U there exists a " > 0 such that B"(u) = fv 2 V : ku − vk < "g ⊂ U: Convergence: A sequence vn converges to v w.r.t. the norm k · k if lim kvn − vk = 0: n!1 1 A sequence vn ⊂ V is called Cauchy sequence, if supfkvn − vmk : n; m ≥ kg ! 0 for k ! 1.
    [Show full text]
  • Optimal Sobolev Embeddings and Function Spaces
    Optimal Sobolev embeddings and Function Spaces Nadia Clavero Director: Javier Soria Tutor: Joan Cerd`a M´asteren Matem´aticaAvanzada y Profesional Especialidad Acad´emicaAvanzada Curso 2010/2011 U UNIVERSITAT DE BARCELONA B Contents 1 Introduction5 2 Preliminaries 11 2.1 The distribution function............................. 11 2.2 Decreasing rearrangements............................ 12 2.3 Rearrangement invariant Banach function spaces................ 16 2.4 Orlicz spaces................................... 18 2.5 Lorentz spaces................................... 22 2.6 Lorentz Zygmund spaces............................. 25 2.7 Interpolation spaces................................ 26 2.8 Weighted Hardy operators............................ 28 3 Sobolev spaces 35 3.1 Introduction.................................... 35 3.2 Definitions and basic properties......................... 35 3.3 Riesz potencials.................................. 38 3.4 Sobolev embedding theorem........................... 40 4 Orlicz spaces and Lorentz spaces 49 4.1 Introduction.................................... 49 4.2 Sobolev embeddings into Orlicz spaces..................... 50 4.3 Sobolev embeddings into Lorentz spaces.................... 52 4.4 Sobolev embeddings into Lorentz Zygmund spaces............... 56 5 Optimal Sobolev embeddings on rearrangement invariant spaces 59 5.1 Introduction.................................... 59 5.2 Reduction Theorem................................ 59 5.3 Optimal range and optimal domain of r.i. norms................ 70 5.4 Examples....................................
    [Show full text]
  • Topological Invariants for Discontinuous Mappings Differential Topology in Sobolev Spaces
    Topological invariants for discontinuous mappings Differential topology in Sobolev spaces Paweł Goldstein [email protected] Kolokwium MIM, 7 listopada 2019 TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 1/21 Two reasons: • natural: folding, breaking, changes of state; • technical: necessary because of the available mathematical tools. Introduction Why do we need • non-differentiable • discontinuous mappings in real-life applications? TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 2/21 Introduction Why do we need • non-differentiable • discontinuous mappings in real-life applications? Two reasons: • natural: folding, breaking, changes of state; • technical: necessary because of the available mathematical tools. TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 2/21 Minima of accumulative, i.e, integral quantities ) we measure distance to minimizer with integral expressions. Introduction Variational principles • Fermat’s principle (Hero of Alexandria, Pierre de Fermat): Light travels through media along paths of shortest time. • Extremal action principle (Euler, Maupertuis): Bodies travel along paths locally minimizing the reduced action (integral of the momentum). Other examples: Dirichlet’s principle for harmonic maps, Einstein-Hilbert action in general relativity etc. TOPOLOGICAL INVARIANTS FOR DISCONTINUOUS MAPPINGS 3/21 Introduction Variational principles • Fermat’s principle (Hero of Alexandria, Pierre de Fermat): Light travels through media along paths of shortest time. • Extremal action principle (Euler, Maupertuis):
    [Show full text]
  • Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENTOF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY
    Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENT OF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY An approach which is promising in the resolution of this issue is to swap the inhomogeneous Sobolev spaces for their homogeneous counterparts, Does the topology on the screened Sobolev spaces Background W_ k;p (Ω). The upshot is that the latter families allow for a larger variety of Research admit a Fourier space characterization? behaviors at infinity. For this approach to have any chance of being fruitful in the Leoni and Tice gave the following partial frequency & Motivation study of boundary value problems, it is essential to identify and understand the Questions n characterization of these spaces: for f 2 S R it holds Partial differential equations (PDEs) are trace spaces associated to the homogeneous Sobolev spaces. Recall that the trace Z 1 2s 2 ^ 2 2 central to the modeling of natural space associated to a Sobolev space on a domain is a space of functions holding Can the screened Sobolev spaces be [f]W~ s;2 minfjξj ; jξj g f (ξ) dξ ; (2) (σ) n understood through interpolation theory? R phenomena. As a result, the study of these the possible boundary values and, for higher order Sobolev spaces, powers of the where 0 < s < 1 and constant screening function σ = 1. equations and their solutions has held a normal derivative. Interpolation theory is a set of tools which This expression suggests that the high-mode part of a prominent place in mathematics for For functions of finite energy in planar strips these trace spaces were first s;2 take certain pairs of topological vector member of W~ behaves like a member of the centuries.
    [Show full text]
  • Sobolev Spaces on an Arbitrary Metric Space
    Potential Analysis 5: 403-41 5, 1996. @ 1996 Kluwer Academic Publishers. Printed in the Netherlands. Sobolev Spaces on an Arbitrary Metric Space PIOTR HAJLASZ* lnstvtut Matematyki, Uniwersyter Warszawski ul. Banucha 2, 02-097 Warszawa, Poland ?-mail: [email protected] (Received: 7 February 1994; accepted: 6 October 1994) Abstract. We define Sobolev space JV',~for 1 < p < (x, on an arbitrary metric space with finite diameter and equipped with finite, positive Bore1 measure. In the Euclidean case it coincides with standard Sobolev space. Several classical imbedding theorems are special cases of general results which hold in the metric case. We apply our results to weighted Sobolev space with Muckenhoupt weight. Mathematics Subject Classifications (1991). Primary: 46E35; Secondary: 28A80 Key words: Generalized Sobolev spaces, imbedding theorems, Muckenhoupt weights, metric space. 1. Introduction It is well known that [li1?"consists of Lipschitz functions and hence we can naturally define LV'~" on an arbitrary metric space. In the case 1 < p 6 m we find a Lipschitz type characterization of W'J'(Theorem 1) which can be used as a definition of T/I~'>Pin the case of metric space as a domain. Since the space 1V13" has an integral nature, we have to equip the metric space with a measure. The imbedding theorems depend on the dimension; so if we want to get imbed- ding theorems in this general, metric context, we have to introduce a condition describing the dimension. This condition is very simple. It suffices to assume that p(B(x,r)) 2 CIrS (see the definition of s-regularity in Section 5).
    [Show full text]
  • Chapter 2 Sobolev Spaces 2.1 Preliminaries
    Chapter 2 Sobolev spaces In this chapter, we give a brief overview on basic results of the theory of Sobolev spaces and their associated trace and dual spaces. 2.1 Preliminaries Let ­ be a bounded domain in Euclidean space lRd. We denote by ­ its closure and refer to ¡ = @­ := ­ n ­ as its boundary. Moreover, we d denote by ­e := lR n ­ the associated exterior domain. We consider functions u : ­ ! lR and denote by j®j ® @ u D u : = ®1 ®2 ®d @x1 @x2 :::@xd T d its partial derivatives of order j®j. Here, ® = (®1; :::; ®d) 2 lN0 is a Pd multiindex of modulus j®j = i=1 ®i. m We de¯ne by C (­); m 2 lN0; the linear space of continuous functions on ­ whose partial derivatives D®u; j®j · m; exist and are continuous. Cm(­) is a Banach space with respect to the norm ® kukCm(­) := max sup jD u(x)j : 0·j®j·m x2­ m;® We refer to C (­); m 2 lN0; 0 < ® < 1; as the linear space of func- tions in Cm(­) whose m-th order partial derivatives are HÄoldercon- d tinuous, i.e., for all ¯ 2 lN0 with j¯j = m there exist constants ¡¯ > 0 such that for all x; y 2 ­ ¯ ¯ ® jD u(x) ¡ D u(y)j · ¡¯ jx ¡ yj : We note that Cm;®(­) is a Banach space with respect to the norm jD¯u(x) ¡ D¯u(y)j m;® m kukC (­) := kukC (­) + max sup ® : j¯j=m x;y2­ jx ¡ yj m m;® Moreover, C0 (­) and C0 (­) are the subspaces of functions with compact support in ­).
    [Show full text]
  • On the Dual of Bv
    ON THE DUAL OF BV MONICA TORRES Abstract. An important problem in geometric measure theory is the characterization of BV ∗, the dual of the space of functions of bounded variation. In this paper we survey recent results that show that the solvability of the equation div F = T is closely connected to the problem of characterizing BV ∗. In particular, the (signed) measures in BV ∗ can be characterized in terms of the solvability of the equation div F = T . 1. Introduction It is an open problem in geometric measure theory to give a full characterization of BV ∗, the dual of the space of functions of bounded variation (see Ambrosio-Fusco-Pallara [3, Remark 3.12]). Meyers and Ziemer characterized in [21] the positive measures in Rn that belong to the dual of BV (Rn), where BV (Rn) is the space of all functions in L1(Rn) whose distributional gradient is a vector-measure in Rn with finite total variation. They showed that the positive measure µ belongs to BV (Rn)∗ if and only if µ satisfies the condition µ(B(x; r)) ≤ Crn−1 for every open ball B(x; r) ⊂ Rn and C = C(n). Besides the classical paper by Meyers and Ziemer, we refer the interested reader to the paper by De Pauw [11], where the author analyzes SBV ∗, the dual of the space of special functions of bounded variation. In Phuc-Torres [22] we showed that there is a connection between the problem of characterizing BV ∗ and the solvability of the equation div F = T . Indeed, we showed that the (signed) measure µ belongs to BV (Rn)∗ if and only if there exists a bounded vector field F 2 L1(Rn; Rn) such that div F = µ.
    [Show full text]
  • A Remark on Sobolev Spaces. the Case 0
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF APPROXIMATION THEORY 13, 218-228 (1975) A Remark on Sobolev Spaces. The Case 0 < p < 1 JAAK PEETRE Department of’ Mathematics, Lw~d Institute of’ Technology, Lund, Sweden DEDICATED TO PROFESSOR'2. ti. LORENTZ ON THE OCCASION OF HIS SIXTY-FIFTH RlRTHDAY 1. INTRODUCTION As is well known, Sobolcv spaces are spaces of functions of II variables with suitably defined generalized partial derivatives belonging to L, , I <p .< co. In this note we shall deal with the extension to the case 0 <p < 1. The impetus for such an extension originally (cf. [6]) came from the problem of determining the class of functions having a given degree of approximation in certain nonlinear situations; as an example we may mention approximation by rational functions, a question that in our opinion does not yet seem to have obtained a completely adequate treatment (cf. e.g.. Lorentz [S, chapter 61 and the references given there}. Since we shall mainly be dealing with pathology, it will be sufficient to take 12 -- 1. There are several possible definitions of a Sobolev space, which are all equivalent if 1 <p .< cx). Here we shall mainly be dealing with the following one. DEFINITION I. 1. The Sobolev space W,j’Z, 0 < p < 1, uz an integer >O, over the interval 1 = [a, b] is the (abstract) completion of P, the space of infinitely differentiable functions over 1, in the quasinorm: In general ;I g jlLn ---=(f: i g(x)]” dx)l!“, and f’ := &/rl~,...,J(~~‘) = dirifi~/x’ri.
    [Show full text]