Symmetry Preserving Interpolation Erick Rodriguez Bazan, Evelyne Hubert

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry Preserving Interpolation Erick Rodriguez Bazan, Evelyne Hubert Symmetry Preserving Interpolation Erick Rodriguez Bazan, Evelyne Hubert To cite this version: Erick Rodriguez Bazan, Evelyne Hubert. Symmetry Preserving Interpolation. ISSAC 2019 - International Symposium on Symbolic and Algebraic Computation, Jul 2019, Beijing, China. 10.1145/3326229.3326247. hal-01994016 HAL Id: hal-01994016 https://hal.archives-ouvertes.fr/hal-01994016 Submitted on 25 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Symmetry Preserving Interpolation Erick Rodriguez Bazan Evelyne Hubert Université Côte d’Azur, France Université Côte d’Azur, France Inria Méditerranée, France Inria Méditerranée, France [email protected] [email protected] ABSTRACT general concept. An interpolation space for a set of linear forms is The article addresses multivariate interpolation in the presence of a subspace of the polynomial ring that has a unique interpolant for symmetry. Interpolation is a prime tool in algebraic computation each instantiated interpolation problem. We show that the unique while symmetry is a qualitative feature that can be more relevant interpolants automatically inherit the symmetry of the problem to a mathematical model than the numerical accuracy of the pa- when the interpolation space is invariant (Section 3). rameters. The article shows how to exactly preserve symmetry A canonical interpolation space, the least interpolation space, was in multivariate interpolation while exploiting it to alleviate the introduced in [3–5]. We shall review that it is invariant as soon as computational cost. We revisit minimal degree and least interpo- the space of linear forms is. In floating point arithmetics though, lation with symmetry adapted bases, rather than monomial bases. the computed interpolation space might fail to be exactly invariant. This allows to construct bases of invariant interpolation spaces in Yet, in mathematical modeling, symmetry is often more relevant blocks, capturing the inherent redundancy in the computations. than numerical accuracy. We shall remedy this flaw and further We show that the so constructed symmetry adapted interpolation exploit symmetry to mitigate the cost and numerical sensitivity of bases alleviate the computational cost of any interpolation problem computing a minimal degree or least interpolation space. and automatically preserve any equivariance of this interpolation As other minimal degree interpolation spaces, the least inter- problem might have. polation space can be constructed by Gaussian elimination in a multivariate Vandermonde (or collocation) matrix. The columns of KEYWORDS the Vandermonde matrix are indexed by monomials. We show how any other graded basis of the polynomial ring can be used. In partic- Interpolation, Symmetry, Representation Theory, Group Action ular there is a two fold gain in using a symmetry adapted basis. On one hand, the computed interpolation space will be exactly invari- 1 INTRODUCTION ant independently of the accuracy of the data for the interpolation Preserving and exploiting symmetry in algebraic computations problem. On the other hand, the new Vandermonde matrix is block is a challenge that has been addressed within a few topics and, diagonal so that Gaussian elimination can be performed indepen- mostly, for specific groups of symmetry [2, 7, 8, 10, 11, 13–16, 18, dently on smaller size matrices, with better conditioning. Further 19, 22]. The present article addresses multivariate interpolation in computational savings result from identical blocks being repeated the presence of symmetry. Due to its relevance in approximation according to the degree of the related irreducible representations theory and geometrical modeling, interpolation is a prime topic in of the group. Symmetry adapted bases also plaid a prominent role algebraic computation. Among the several problems in multivariate in [2, 11, 19] where it allowed the block diagonalisation of a multi- interpolation [9, 17], we focus on the construction of a polynomial variate Hankel matrix. interpolation space for a given set of linear forms. Assuming the In Section 2 we define minimal degree and least interpolation space generated by the linear forms is invariant under a group space and review how to compute a basis of it with Gaussian elimi- action, we show how to, not only, preserve exactly the symmetry, nation. In Section 3 we make explicit how symmetry is expressed but also, exploit it so as to reduce the computational cost. and the main ingredient to preserve it. In Section 4 we review symmetry adapted bases and show how the Vandermonde matrix For a set ofr points ξ1;:::; ξr inn-space, andr valuesη1;:::; ηr the basic interpolation problem consists in finding a n-variate poly- becomes block diagonal in these. This is applied to provide an algorithm for the computation of invariant interpolation spaces nomial function p such that p(ξi ) = ηi , for 1 ≤ i ≤ r. The evalu- in Section 5 together with a selection of relevant invariant and ations at the points ξi form a basic example of linear forms. The space they generate is invariant under a group action when the set equivariant interpolation problems. of points is a union of orbits of this group action. A first instance of symmetry is invariance. The above interpolation problem is in- variant if ηi = ηj whenever ξi and ξj belong to the same orbit. It is then natural to expect an invariant polynomial as interpolant. Yet, contrary to the univariate case, there is no unique interpolant of minimal degree and the symmetry of the interpolation problem 2 POLYNOMIAL INTERPOLATION may very well be violated (compare Figure 2 and 1). We review in this section the definitions and constructions of in- In this article we shall consider a general set of linear forms, in- terpolation spaces of minimal degree. By introducing general dual variant under a group action, and seek to compute interpolants that polynomial bases we generalize the construction of least interpola- respect the symmetry of the interpolation problem. We mentioned tion spaces. We shall then be in a position to work with adapted invariance as an instance of symmetry, but equivariance is the more bases to preserve and exploit symmetry. Pδ 2.1 Interpolation space WL . They index a maximal set of linearly independent columns Hereafter, K denotes either C or R. K[x] = K[x ;:::; x ] denotes Pδ 1 n of WL . the ring of polynomials in the variables x1;:::; xn with coefficients in K; K[x]≤δ and K[x]δ the K−vector spaces of polynomials of 2.3 Minimal degree degree at most δ and the space of homogeneous polynomials of It is desirable to build an interpolation space such that the degree degree δ respectively. of the interpolating polynomials be as small as possible. We shall The dual of K[x], the set of K−linear forms on K[x], is denoted by ∗ use the definition of minimal degree solution for an interpolation K[x] . A typical example of a linear form on K[x] is the evaluation problem defined in [4, 5, 20]. e n ξ at a point ξ of K . It is defined by e Definition 2.1. An interpolation space P for Λ is of minimal de- ξ : K[x] ! K p 7! p(ξ ): gree if for any other interpolation space Q for Λ Other examples of linear forms on K[x] are given by compositions dim(Q \ K[x]≤δ ) ≤ dim(P \ K[x]≤δ ); 8δ 2 N: of evaluation and differentiation Λ : K[x] ! K We say that a countable set of homogeneous polynomials P = 7! Pr e ◦ @ ; fp1;p2;:::g is ordered by degree if i ≤ j implies that degpi ≤ degpj . p j=1 ξj qj ( )(p) n α @ @ with ξ 2 K ;q 2 K[x] and @ = α ::: α . Proposition 2.2. Let L be a basis of Λ. Let Pδ , δ > 0, be a j j 1 @x n @x1 n Pδ n homogeneous basis of K[x]≤ ordered by degree, such that W has Let ξ1;:::; ξr be a finite set of points in K . Lagrange interpola- δ L 2 Pδ tion consists in finding, for any η1;::: ηr K, a polynomial p such full row rank. Let j1;:::; jr be the echelon sequence of WL obtained e (p) = η ≤ j ≤ r interpolation problem that ξj j , 1 . More generally an by Gauss elimination with partial pivoting. Then P := hpj1 ;:::;pjr i is a pair (Λ; ϕ) where Λ is a finite dimensional linear subspace of is a minimal degree interpolation space for Λ. K[x]∗ and ϕ : Λ −! K is a K-linear map. An interpolant, i.e., a ; ::: solution to the interpolation problem, is a polynomial p such that Proof. LetQ be another interpolation space for Λ. Letq1 q2 qm be a basis of Q \ K[x]≤d with d ≤ δ. Since Pδ is a homogeneous λ(p) = ϕ(λ) for any λ 2 Λ: (1) basis of K[x]≤δ , any qi can be written as a linear combination of P elements of P \ K[x]≤ . Considering qi = ajipj we get that P δ d j An interpolation space for Λ is a polynomial subspace P of K[x] λ(qi ) = j aji λ(pj ) for any λ 2 Λ. such that Equation (1) has a unique solution in P for any map ϕ. Let fp ;p ;::: p g be the elements of P that form a basis of ji1 ji2 jin Pδ P \ K[x]≤d . Gauss elimination on WL ensures that λ(b) is a linear 2.2 Vandermonde matrix 2 P \K 2 combination of λ(pji );::: λ(pjin ) for any b δ [x]≤d and λ 1 Pn For P = fp1;p2;:::;pm g and L = fλ1; λ2;:::; λr g linearly inde- Λ.
Recommended publications
  • Equivariant and Isovariant Function Spaces
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Equivariant and Isovariant Function Spaces Permalink https://escholarship.org/uc/item/7fk0p69b Author Safii, Soheil Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Equivariant and Isovariant Function Spaces A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics by Soheil Safii March 2015 Dissertation Committee: Professor Reinhard Schultz, Chairperson Professor Julia Bergner Professor Fred Wilhelm Copyright by Soheil Safii 2015 The Dissertation of Soheil Safii is approved: Committee Chairperson University of California, Riverside Acknowledgments I would like to thank Professor Reinhard Schultz for all of the time and effort he put into being a wonderful advisor. Without his expansive knowledge and unending patience, none of our work would be possible. Having the opportunity to work with him has been a privilege. I would like to acknowledge Professor Julia Bergner and Professor Fred Wilhelm for their insight and valuable feedback. I am grateful for the unconditional support of my classmates: Mathew Lunde, Jason Park, and Jacob West. I would also like to thank my students, who inspired me and taught me more than I could have ever hoped to teach them. Most of all, I am appreciative of my friends and family, with whom I have been blessed. iv To my parents. v ABSTRACT OF THE DISSERTATION Equivariant and Isovariant Function Spaces by Soheil Safii Doctor of Philosophy, Graduate Program in Mathematics University of California, Riverside, March 2015 Professor Reinhard Schultz, Chairperson The Browder{Straus Theorem, obtained independently by S.
    [Show full text]
  • Definition 1.1. a Group Is a Quadruple (G, E, ⋆, Ι)
    GROUPS AND GROUP ACTIONS. 1. GROUPS We begin by giving a definition of a group: Definition 1.1. A group is a quadruple (G, e, ?, ι) consisting of a set G, an element e G, a binary operation ?: G G G and a map ι: G G such that ∈ × → → (1) The operation ? is associative: (g ? h) ? k = g ? (h ? k), (2) e ? g = g ? e = g, for all g G. ∈ (3) For every g G we have g ? ι(g) = ι(g) ? g = e. ∈ It is standard to suppress the operation ? and write gh or at most g.h for g ? h. The element e is known as the identity element. For clarity, we may also write eG instead of e to emphasize which group we are considering, but may also write 1 for e where this is more conventional (for the group such as C∗ for example). Finally, 1 ι(g) is usually written as g− . Remark 1.2. Let us note a couple of things about the above definition. Firstly clo- sure is not an axiom for a group whatever anyone has ever told you1. (The reason people get confused about this is related to the notion of subgroups – see Example 1.8 later in this section.) The axioms used here are not “minimal”: the exercises give a different set of axioms which assume only the existence of a map ι without specifying it. We leave it to those who like that kind of thing to check that associa- tivity of triple multiplications implies that for any k N, bracketing a k-tuple of ∈ group elements (g1, g2, .
    [Show full text]
  • AN INTERTWINING RELATION for EQUIVARIANT SEIDEL MAPS 3 Cohomology of the Classifying Space of S1
    AN INTERTWINING RELATION FOR EQUIVARIANT SEIDEL MAPS TODD LIEBENSCHUTZ-JONES Abstract. The Seidel maps are two maps associated to a Hamiltonian circle ac- tion on a convex symplectic manifold, one on Floer cohomology and one on quantum cohomology. We extend their definitions to S1-equivariant Floer cohomology and S1-equivariant quantum cohomology based on a construction of Maulik and Ok- ounkov. The S1-action used to construct S1-equivariant Floer cohomology changes after applying the equivariant Seidel map (a similar phenomenon occurs for S1- equivariant quantum cohomology). We show the equivariant Seidel map on S1- equivariant quantum cohomology does not commute with the S1-equivariant quan- tum product, unlike the standard Seidel map. We prove an intertwining relation which completely describes the failure of this commutativity as a weighted version of the equivariant Seidel map. We will explore how this intertwining relationship may be interpreted using connections in an upcoming paper. We compute the equivariant Seidel map for rotation actions on the complex plane and on complex projective space, and for the action which rotates the fibres of the tautological line bundle over projective space. Through these examples, we demonstrate how equi- variant Seidel maps may be used to compute the S1-equivariant quantum product and S1-equivariant symplectic cohomology. 1. Introduction For us, equivariant will always mean S1-equivariant. The Seidel maps on the quantum and Floer cohomology of a closed symplectic manifold M are two maps associated to a Hamiltonian S1-action σ on M [Sei97]. They are compatible with each other via the PSS isomorphisms, which are maps that identify quantum cohomology and Floer cohomology [Sei97, Theorem 8.2].
    [Show full text]
  • Equivariant Diagrams of Spaces
    Algebraic & Geometric Topology 16 (2016) 1157–1202 msp Equivariant diagrams of spaces EMANUELE DOTTO We generalize two classical homotopy theory results, the Blakers–Massey theorem and Quillen’s Theorem B, to G –equivariant cubical diagrams of spaces, for a discrete group G . We show that the equivariant Freudenthal suspension theorem for per- mutation representations is a direct consequence of the equivariant Blakers–Massey theorem. We also apply this theorem to generalize to G –manifolds a result about cubes of configuration spaces from embedding calculus. Our proof of the equivariant Theorem B involves a generalization of the classical Theorem B to higher-dimensional cubes, as well as a categorical model for finite homotopy limits of classifying spaces of categories. 55P91; 55Q91 Introduction Equivariant diagrams of spaces and their homotopy colimits have broad applications throughout topology. They are used in[12] for decomposing classifying spaces of finite groups, to study posets of p–groups in[19], for splitting Thom spectra in[18], and even in the definition of the cyclic structure on THH of[3]. In previous joint work with K Moi[7], the authors develop an extensive theory of equivariant diagrams in a general model category, and they study the fundamental properties of their homotopy limits and colimits. In the present paper we restrict our attention to G –diagrams in the category of spaces. The special feature of G –diagrams of spaces is the existence of generalized fixed-point functors that preserve and reflect equivalences. We study these functors and we use them to generalize the Blakers–Massey theorem and Quillen’s Theorem B to equivariant cubical diagrams.
    [Show full text]
  • Arxiv:Math/0411502V1 [Math.AT] 22 Nov 2004 Oii.Sm Fte Eentdi 3,Hwvraml Diinlhypoth Additional Mild a Result
    THE ACTION BY NATURAL TRANSFORMATIONS OF A GROUP ON A DIAGRAM OF SPACES RAFAEL VILLARROEL-FLORES Abstract. For C a G-category, we give a condition on a diagram of simplicial sets indexed on C that allows us to define a natural G-action on its homotopy colimit, and in some other simplicial sets and categories defined in terms of the diagram. Well-known theorems on homeomorphisms and homotopy equiv- alences are generalized to an equivariant version. 1. Introduction Let G be a group, and C be any small category. Consider a C-diagram of simplicial sets, where the values of the diagram have a G-action. Then several structures defined in terms of the diagram, like the colimit and the homotopy colimit, have an induced structure of G-object. However, it is often the case that one has a diagram F : C → D where C is a small G-category, D is an arbitrary category and the values of F do not necessarily have a G-action, however the homotopy colimit of F does have it. This situation was considered in [3], and independently, by this author in his Ph. D. thesis [9], where the concept of an action of a group G on a functor F by natural transformations is introduced. Here we define it formally in section 3, after the basic definitions in section 2. We show that there are induced G-actions on colimits, coends, and bar and Grothendieck constructions of functors on which G acts by natural transformations. In section 4 we consider the homotopy colimit, and show some basic identities involving the constructions defined so far.
    [Show full text]
  • Real Interpolation of Sobolev Spaces
    MATH. SCAND. 105 (2009), 235–264 REAL INTERPOLATION OF SOBOLEV SPACES NADINE BADR Abstract We prove that W 1 is a real interpolation space between W 1 and W 1 for p>q and 1 ≤ p < p p1 p2 0 1 p<p2 ≤∞on some classes of manifolds and general metric spaces, where q0 depends on our hypotheses. 1. Introduction 1 ∞ Do the Sobolev spaces Wp form a real interpolation scale for 1 <p< ? The aim of the present work is to provide a positive answer for Sobolev spaces on some metric spaces. Let us state here our main theorems for non-homogeneous Sobolev spaces (resp. homogeneous Sobolev spaces) on Riemannian mani- folds. Theorem 1.1. Let M be a complete non-compact Riemannian manifold satisfying the local doubling property (Dloc) and a local Poincaré inequality ≤ ∞ ≤ ≤ ∞ 1 (Pqloc), for some 1 q< . Then for 1 r q<p< , Wp is a real 1 1 interpolation space between Wr and W∞. To prove Theorem 1.1, we characterize the K-functional of real interpola- tion for non-homogeneous Sobolev spaces: Theorem 1.2. Let M be as in Theorem 1.1. Then ∈ 1 + 1 1. there exists C1 > 0 such that for all f Wr W∞ and t>0 1 1 ∗∗ 1 ∗∗ 1 r 1 1 ≥ r | |r r +|∇ |r r ; K f, t ,Wr ,W∞ C1t f (t) f (t) ≤ ≤ ∞ ∈ 1 2. for r q p< , there is C2 > 0 such that for all f Wp and t>0 1 1 q∗∗ 1 q∗∗ 1 r 1 1 ≤ r | | q +|∇ | q K f, t ,Wr ,W∞ C2t f (t) f (t) .
    [Show full text]
  • Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENTOF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY
    Characterizations of Screened Sobolev Spaces Noah Stevenson and Ian Tice DEPARTMENT OF MATHEMATICAL SCIENCES,CARNEGIE MELLON UNIVERSITY An approach which is promising in the resolution of this issue is to swap the inhomogeneous Sobolev spaces for their homogeneous counterparts, Does the topology on the screened Sobolev spaces Background W_ k;p (Ω). The upshot is that the latter families allow for a larger variety of Research admit a Fourier space characterization? behaviors at infinity. For this approach to have any chance of being fruitful in the Leoni and Tice gave the following partial frequency & Motivation study of boundary value problems, it is essential to identify and understand the Questions n characterization of these spaces: for f 2 S R it holds Partial differential equations (PDEs) are trace spaces associated to the homogeneous Sobolev spaces. Recall that the trace Z 1 2s 2 ^ 2 2 central to the modeling of natural space associated to a Sobolev space on a domain is a space of functions holding Can the screened Sobolev spaces be [f]W~ s;2 minfjξj ; jξj g f (ξ) dξ ; (2) (σ) n understood through interpolation theory? R phenomena. As a result, the study of these the possible boundary values and, for higher order Sobolev spaces, powers of the where 0 < s < 1 and constant screening function σ = 1. equations and their solutions has held a normal derivative. Interpolation theory is a set of tools which This expression suggests that the high-mode part of a prominent place in mathematics for For functions of finite energy in planar strips these trace spaces were first s;2 take certain pairs of topological vector member of W~ behaves like a member of the centuries.
    [Show full text]
  • Interpolation of Compact Operators by the Methods of Calderon and Gustavsson-Peetre
    Proceedings of the Edinburgh Mathematical Society (1995) 38, 261-276 I INTERPOLATION OF COMPACT OPERATORS BY THE METHODS OF CALDERON AND GUSTAVSSON-PEETRE by M. CWIKEL* and N. J. KALTONf (Received 15th July 1993) Let X = (X0,A'i) and \ = {Y0, V,) be Banach couples and suppose T:X-»Y is a linear operator such that T:X0-+ Yo is compact. We consider the question whether the operator T:[X0, A'1]fl->[T0> y,]e is compact and show a positive answer under a variety of conditions. For example it suffices that Xo be a UMD-space or that Xo is reflexive and there is a Banach space so that X0 = [W,Xl~\I for some 0<ot< 1. 1991 Mathematics subject classification: 46M35. 1. Introduction Let X=(X0,Xi) and \ = (Y0,Y1) be Banach couples and let T be a linear opeator such that T:X->Y (meaning, as usual, that T:XQ + X^ YO+ 7, and T:Xj-*Yj boun- dedly for y=0,1). Interpolation theory supplies us with a variety of interpolation functors F for generating interpolation spaces, i.e. functors F which when applied to the couples X and Y yield spaces F(X) and F(Y) having the property that each T as above maps F(X) into F(Y) with bound for some absolute constant C depending only on the functor F. It will be convenient here to use the customary notation ||T||x_v=max(||7'||Xo,||T||;ri). Further general background about interpolation theory and Banach couples can be found e.g.
    [Show full text]
  • Irreducible Finite-Dimensional Representations of Equivariant Map Algebras
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 364, Number 5, May 2012, Pages 2619–2646 S 0002-9947(2011)05420-6 Article electronically published on December 29, 2011 IRREDUCIBLE FINITE-DIMENSIONAL REPRESENTATIONS OF EQUIVARIANT MAP ALGEBRAS ERHARD NEHER, ALISTAIR SAVAGE, AND PRASAD SENESI Abstract. Suppose a finite group acts on a scheme X and a finite-dimensional Lie algebra g. The corresponding equivariant map algebra is the Lie algebra M of equivariant regular maps from X to g. We classify the irreducible finite- dimensional representations of these algebras. In particular, we show that all such representations are tensor products of evaluation representations and one-dimensional representations, and we establish conditions ensuring that they are all evaluation representations. For example, this is always the case if M is perfect. Our results can be applied to multiloop algebras, current algebras, the Onsager algebra, and the tetrahedron algebra. Doing so, we easily recover the known classifications of irreducible finite-dimensional representations of these algebras. Moreover, we obtain previously unknown classifications of irreducible finite-dimensional representations of other types of equivariant map algebras, such as the generalized Onsager algebra. Introduction When studying the category of representations of a (possibly infinite-dimensional) Lie algebra, the irreducible finite-dimensional representations often play an impor- tant role. Let X be a scheme and let g be a finite-dimensional Lie algebra, both defined over an algebraically closed field k of characteristic zero and both equipped with the action of a finite group Γ by automorphisms. The equivariant map algebra M = M(X, g)Γ is the Lie algebra of regular maps X → g which are equivariant with respect to the action of Γ.
    [Show full text]
  • Interpolation and Extrapolation Diplomarbeit Zur Erlangung Des Akademischen Grades Diplom-Mathematiker
    Interpolation and Extrapolation Diplomarbeit zur Erlangung des akademischen Grades Diplom-Mathematiker Friedrich-Schiller-Universität Jena Fakultät für Mathematik und Informatik eingereicht von Peter Arzt geb. am 5.7.1982 in Bernau Betreuer: Prof. Dr. H.-J. Schmeißer Jena, 5.11.2009 Abstract We define Lorentz-Zygmund spaces, generalized Lorentz-Zygmund spaces, slowly varying functions, and Lorentz-Karamata spaces. To get an interpolation charac- terization of Lorentz-Karamata spaces, we examine the K- and the J-method of real interpolation with function parameters in quasi-Banach spaces. In particular, we study the Kalugina class BK and prove the Equivalence Theorem and the Reitera- tion Theorem with function parameters. Finally, we define the ∆ and Σ method of extrapolation and achieve an extrap- olation characterization that allows us, in particular, to characterize generalized Lorentz-Zygmund spaces by Lorentz spaces. Contents Introduction 4 1 Preliminaries 6 1.1 Notations . 6 1.2 Quasi-Banach spaces . 6 1.3 Non-increasing rearrangement and Lorentz spaces . 8 1.4 Slowly varying functions and Lorentz-Karamata spaces . 12 2 Interpolation 17 2.1 Classical Real Interpolation . 17 2.2 The function classes BK and BΨ .................... 23 2.3 Interpolation with function parameters . 30 2.4 Interpolation with slowly varying parameters . 43 2.5 Interpolation with logarithmic parameters . 47 3 Characterization of Extrapolation Spaces 54 3.1 ∆-Extrapolation . 54 3.2 Σ-Extrapolation . 61 3.3 Variations . 70 3.4 Applications to concrete function spaces . 72 Bibliography 77 3 Introduction n For 0 < p, q ≤ ∞, α ∈ R, and Ω ⊆ R with finite Lebesgue measure, the Lorentz- Zygmund space Lp,q(log)α(Ω) is the space of all complex-valued functions f on Ω such that 1 Z ∞ q 1 α ∗ q dt kf|Lp,q(log L)α(Ω)k = t p (1 + |log t|) f (t) < ∞.
    [Show full text]
  • An Equivariant Map F
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 274, Number 2, December 1982 EQUIVARIANT MINIMAL MODELS BY GEORGIA V, TRIANTAFILLOU I ABSTRACT. Let G be a finite group. We give an algebraicization of rational G-homo- topy theory analogous to Sullivan's theory of minimal models in ordinary homotopy theory. 1. Introduction. We consider simplicial complexes X on which a finite group G acts simplicially. We assume that xg = {x EO XI gx = x} is a simplicial complex for each g EO G; this can always be arranged by repeated triangulation. We assume once and for all that all G-spaces in sight are G-simple in the sense that the fixed point spaces XH are simple for all subgroups H of G. We also assume that the rational cohomology of each XH is of finite type. DEFINITION 1.1. A G-map f: X --> Y is a rational G-homotopy equivalence if each fH: XH --> yH induces an isomorphism on rational cohomology. DEFINITION 1.2. Two G-spaces X and Y have the same rational G-homotopy type if there is a chain of rational G-homotopy equivalences connecting them. These definitions are motivated by the following equivariant version of the Whi tehead theorem [1]: THEOREM 1.3 (G. BREDON). An equivariant map f: X --> Y between two G-complexes is an equivariant homotopy equivalence iff (f H )*: 'TT*(X H ) --> 'TT*(yH) is an isomor- phism for each subgroup H <;;; G. By using the same equivariant obstruction theory which leads to this result, we constructed in [5] an equivariant Postnikov decomposition of a G-complex X, i.e., a decomposition of X in a sequence of G-fibrations the fibers F" of which have the property that FnH is an Eilenberg-Mac Lane space of dimension n for each H <;;; G (we can speak of a G-action on the fiber since X has at least one fixed point).
    [Show full text]
  • Lecture Notes on Function Spaces
    Lecture Notes on Function Spaces space invaders Karoline Götze TU Darmstadt, WS 2010/2011 Contents 1 Basic Notions in Interpolation Theory 5 2 The K-Method 15 3 The Trace Method 19 3.1 Weighted Lp spaces . 19 3.2 The spaces V (p, θ, X0,X1) ........................... 20 3.3 Real interpolation by the trace method and equivalence . 21 4 The Reiteration Theorem 26 5 Complex Interpolation 31 5.1 X-valued holomorphic functions . 32 5.2 The spaces [X, Y ]θ and basic properties . 33 5.3 The complex interpolation functor . 36 5.4 The space [X, Y ]θ is of class Jθ and of class Kθ................ 37 6 Examples 41 6.1 Complex interpolation of Lp -spaces . 41 6.2 Real interpolation of Lp-spaces . 43 6.2.1 Lorentz spaces . 43 6.2.2 Lorentz spaces and the K-functional . 45 6.2.3 The Marcinkiewicz Theorem . 48 6.3 Hölder spaces . 49 6.4 Slobodeckii spaces . 51 6.5 Functions on domains . 54 7 Function Spaces from Fourier Analysis 56 8 A Trace Theorem 68 9 More Spaces 76 9.1 Quasi-norms . 76 9.2 Semi-norms and Homogeneous Spaces . 76 9.3 Orlicz Spaces LA ................................ 78 9.4 Hardy Spaces . 80 9.5 The Space BMO ................................ 81 2 Motivation Examples of function spaces: n 1 α p k,p s,p s C(R ; R),C ([−1, 1]),C (Ω; C),L (X, ν),W (Ω),W ,Bp,q, n where Ω domain in R , α ∈ R+, 1 ≤ p, q ≤ ∞, (X, ν) measure space, k ∈ N, s ∈ R+.
    [Show full text]