Fidelity of DNA Synthesis by the Thermococcus Litoralis DNA Polymerase—An Extremely Heat Stable Enzyme with Proofreading Activity

Total Page:16

File Type:pdf, Size:1020Kb

Fidelity of DNA Synthesis by the Thermococcus Litoralis DNA Polymerase—An Extremely Heat Stable Enzyme with Proofreading Activity © 1991 Oxford University Press Nucleic Acids Research, Vol. 19, No. 18 4967-4973 Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity P.Mattila, J.Korpela, T.Tenkanen and K.Pitkanen Finnzymes Oy, Riihitontuntie 14 B, PO Box 148, SF 02200 Espoo, Finland Received June 6, 1991; Revised and Accepted August 22, 1991 ABSTRACT We demonstrate that the DNA polymerase isolated from Our interest was to examine the fidelity of thermostable DNA Downloaded from Thermococcus litoralis (Vent™ DNA polymerase) is polymerases isolated from other sources than the Thermus species the first thermostable DNA polymerase reported having (Thermits aquaticus, Thermus thermophilus, Thermusflavis). That a 3' —5' proofreading exonuclease activity. This is why we decided to study the fidelity of DNA synthesis by the facilitates a highly accurate DNA synthesis In vitro by Vent™ DNA polymerase isolated from Thermococcus litoralis, an extremely thermophilic marine archaebacterium (6). This the polymerase. Mutatlonal frequencies observed in the http://nar.oxfordjournals.org/ base substitution fidelity assays were in the range of organism originates from a submarine thermal vent and can grow 30x10~6. These values were 5-10 times lower at temperatures up to 98 °C. The purified polymerase from this compared to other thermostable DNA polymerases archaebacterium reflects thus high level of thermostability, with lacking the proofreading activity. All classes of DNA a half life of two hours at 100°C. polymerase errors (transitions, transversions, In this study we used three different forms of DNA polymerases frameshift mutations) were assayed using the forward originating from Thermococcus litoralis: a) a native DNA mutational assay (1). The mutation frequencies of polymerase purified directly from Thermococcus litoralis cells Thermococcus litoralis DNA polymerase varied (Vent™N); b) a recombinant form of Vent™ DNA polymerase between 15-35x10-* being 2-4 times lower than equal to native enzyme (Vent™^; and c) a recombinant form by guest on September 27, 2016 the respective values obtained using enzymes without of Vent™ DNA polymerase lacking the 3' —5' exonuclease proofreading activity. We also noticed that the fidelity activity (Vent™,^^). Vent™ polymerases were purified to of the DNA polymerase from Thermococcus litoralis near homogeneity by standard ion exchange chromatography (7). responds to changes in dNTP concentration, units of Cloning and expression of recombinant forms of Vent DNA enzyme used per one reaction and the concentration polymerase was carried out as described (8). As reference of MgSO4 relative to the total concentration of dNTPs enzymes we used Replinase™ (isolated from Thermus flavis) present in the reaction. The high fidelity DNA synthesis and T7 DNA polymerase enzymes. In vitro by Thermococcus litoralis DNA polymerase DNA synthesized by thermostable polymerases at high provides good possibilities for maintaining the genetic temperatures with concomitant higher rates of synthesis and information of original target DNA sequences intact in decreased stability of the DNA helix makes data on the fidelity the DNA amplification applications. of this synthesis essential. If higher fidelity of DNA synthesis can be achieved by a thermostable DNA polymerase than those obtained by Taq DNA polymerase, the use of PCR for a variety of analyses in molecular biology can become even more attractive INTRODUCTION than it is now. The increased number of applications utilizing polymerase chain reaction (PCR) (2,3) has generated increasing demands for MATERIALS AND METHODS thermostable DNA polymerases. Depending on the anticipated use of synthesized DNA, the fidelity of DNA synthesis by the Materials polymerases can be of significant importance. Specifically, The following reagents were kindly supplied by New England cloning and sequencing of cloned DNA utilizing amplified DNA Biolabs: Vent™N DNA Polymerase (254S, Lot 2), Vent™R and generated by PCR requires information about the mutation rates Vent™RE*o- DNA polymerases, T7 DNA polymerase (256S, created by the thermostable enzymes themselves. The fidelity form n, unmodified), Acetylated BSA, necessary restriction of Taq DNA polymerase has already been widely studied (4,5). enzymes for the construction of the DNA substrates needed in These studies indicate that Taq DNA polymerase lacks the 3' —5' the assays for fidelities (Ava n, Kpn I, Pvu I, Pvu II), buffers exonuclease activity and creates both single base substitution for the enzymes previously mentioned. M13mp2A89, errors and transitions, transversions, frameshifts, and/or deletion M13mp2A103, M13mp2G103 and M13mpwt phages and E. coli mutations during in vitro DNA synthesis (4). strains CSH50 and NR9099 and 3'-end labeled oligonucleotide 4968 Nucleic Acids Research, Vol. 19, No. 18 substrate were kind gifts from Dr. Thomas A. Kunkel at NIEHS position 103 are used to construct a gapped heteroduplex (NC, USA). Replinase™ Got WFP1070) was purchased from molecule. This molecule contains a 3'-terminal cytosine residue Du Pont (with buffer); X-gal, IPTG, RNase and Proteinase K in the primer (i.e., minus) strand opposite an adenine residue were purchased from 5' Prime—3' Prime; SeaPlaque GTG and in the template (i.e., plus) strand. Expression of the cytosine- SeaKem LE agaroses were purchased from FMC BioProducts; containing sequence results in a medium-blue plaque phenotype, dNTPs and Sephacryl S-1000 were purchased from Phamacia, whereas expression of the adenine-containing sequence results dGMP (D-9500),Tris (T-1503) and PEG 8000 (P-5413) were in faint-blue plaque phenotype. If the mispaired cytosine is purchased from Sigma; E.coli MC1061 was purchased from the removed prior to extension by the polymerase, subsequent correct culture collection of the Helsinki University, Faculty of incorporation of thymidine opposite the template adenine will Agriculture and Forestry, Department of Microbiology; CaCl2, yield a homoduplex molecule having exclusively a faint-blue MgCl2, MgSO4, NaCl, KH2PO4, Na2HPO4, NH^Cl, Leucine plaque phenotype. However, polymerization to fill the gap and Thiamine-HCl were purchased from Merck; Agar, Yeast without excision of the cytosine will produce a doublestranded Extract and Glucose were purchased from Difco; Tryptone was heteroduplex which, upon transfection, will yield medium-blue purchased from Bio Kar, EDTA and SDS were purchased from plaques ( = 50-60%) and faint-blue plaques (= 40-50%) (4,9). Enprotech and phenol was purchased from Carlo Erba. The proportion of medium- and faint-blue plaques obtained upon BTX ECM 600 electroporation device was used for all the transfection of the reaction products is a function of the extent electroporations. Beckman LS7800 liquid scintillation counter was of terminal mismatch excision. used for terminal mismatch excision assay analysis. Methods 3'—5' exonuclease assay II: Terminal Mismatch Excision by GelDownloaded from Electrophoresis. In the assay the ability of the 3' — 5' exonuclease Preparation of the gapped M13mp2 DNA substrates. M13mp2 activity of a DNA polymerase is used to excise a 3'-terminal base gapped substrates were constructed as earlier described (1,9,10) from a mismatched end of a synthetic oligonucleotide (9). A with minor modifications. The replicative form DNA was purified 20-base oligonucleotide labeled with 32P at the 5'-end was using S-1000 column chromatography the linear flow rate being hybridized to a 27-base template oligonucleotide to create an 14 cm/h (11). To prepare single stranded DNA the phage particles incorrect A • G mispair at the 3'-OH end. Exonuclease assay washttp://nar.oxfordjournals.org/ were first PEG precipitated (1) after which the phage particles performed in 50 /tl reaction containing 50 mM Tris (pH 8.0 at were Proteinase K treated (50 mg/ml Proteinase K with 0.5% 25°C),10 mM MgCl2, 300 ng of 5'-end-labeled DNA (30,000 SDS, 1.5 h at 37°C) and applied to the S-1000 column. Finally cpm//ig) and 0,25 units of Vent™ DNA polymerase. The the pooled fractions were ethanol precipitated. reaction mixture was prewarmed at 37 °C for 3 min before the addition of the enzyme to allow primer annealing. Incubations Transfection of competent cells and plating. A 60 ml aliquot of were for 2, 5, 10, 30 and 60 min at 37°C, respectively, and 5 /tl frozen E.coli MC1061 cells prepared according to the BTX ECM aliquots were taken at the indicated times. (Incubation was carried C 600 operating manual were thawed. 1—1.5 /tl of the reaction out at 37 C in order to avoid the melting of primer from the by guest on September 27, 2016 mixture (1:10 diluted, exept for the reversion assay where template). The reactions were stopped by the addition of EDTA undiluted reaction mixture was used) was added and the mixture to achieve a final concentration of 15 mM. Excision by the DNA was transferred to an ice cold BTX electroporation cuvette P/N polymerase was monitored by gel electrophoresis of 3 /tl aliquots 620 (2 mm gap). A single pulse was delivered at 2.5 kV and in a 20% denaturing polyacrylamide gel at the said time intervals. 129 fl . The resultant pulse lengths varied around 6 ms and the The gel was then dried and used to expose Kodak XAR film. 9 transfection efficiencies varied between 1—6xlO The radioactivity in each band was quantitated by cutting the transfectants//tg DNA. Immediately after the pulse 2 ml of SOC bands from the gel and counting the radioactivity in a liquid (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 10 mM scintillation counter. MgCl2, 20 mM glucose) was added. After thorough mixing the cells were plated with E.coli CSH50 cells (12). Scoring of a-complementation mutants was performed as Reversion Assay for Base Substitution Fidelity. Base substitution described (1,12,13). The DNA polymerase reactions were errors occurring during in vitro DNA synthesis can be monitored prewarmed to 72 °C (for Vent™ DNA polymerases and in the A89 opal codon reversion assay, which .detects eight of Replinase™) or 37 °C (for T7 DNA polymerase) for five nine possible single-base substitution errors at this codon (1,4, minutes prior to the addition of the DNA polymerases.
Recommended publications
  • Deep Conservation of Histone Variants in Thermococcales Archaea
    bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.455978; this version posted September 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deep conservation of histone variants in Thermococcales archaea 2 3 Kathryn M Stevens1,2, Antoine Hocher1,2, Tobias Warnecke1,2* 4 5 1Medical Research Council London Institute of Medical Sciences, London, United Kingdom 6 2Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, 7 United Kingdom 8 9 *corresponding author: [email protected] 10 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.455978; this version posted September 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 3 Histones are ubiquitous in eukaryotes where they assemble into nucleosomes, binding and 4 wrapping DNA to form chromatin. One process to modify chromatin and regulate DNA 5 accessibility is the replacement of histones in the nucleosome with paralogous variants. 6 Histones are also present in archaea but whether and how histone variants contribute to the 7 generation of different physiologically relevant chromatin states in these organisms remains 8 largely unknown. Conservation of paralogs with distinct properties can provide prima facie 9 evidence for defined functional roles.
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]
  • The Euryarchaeotes, a Subdomain of Archaea, Survive on a Single DNA Polymerase: Fact Or Farce?
    Genes Genet. Syst. (1998) 73, p. 323–336 REVIEW The euryarchaeotes, a subdomain of Archaea, survive on a single DNA polymerase: Fact or farce? Yoshizumi Ishino* and Isaac K. O. Cann Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan Archaea is now recognized as the third domain of life. Since their discovery, much effort has been directed towards understanding the molecular biology and biochemistry of Archaea. The objective is to comprehend the complete structure and the depth of the phylogenetic tree of life. DNA replication is one of the most important events in living organisms and DNA polymerase is the key enzyme in the molecular machinery which drives the process. All archaeal DNA polymerases were thought to belong to family B. This was because all of the products of pol genes that had been cloned showed amino acid sequence similarities to those of this family, which includes three eukaryal DNA replicases and Escherichia coli DNA polymerase II. Recently, we found a new heterodimeric DNA polymerase from the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for the subunits of this DNA polymerase are conserved in the euryarchaeotes whose genomes have been completely sequenced. The biochemical characteristics of the novel DNA polymerase family suggest that its members play an important role in DNA replication within euryarchaeal cells. We review here our current knowledge on DNA polymerases in Archaea with emphasis on the novel DNA polymerase discovered in Euryarchaeota. arily distinct from the Bacteria and rather appear to INTRODUCTION share a common ancestor with the Eukarya.
    [Show full text]
  • Crystal Structure of Malk, the Atpase Subunit of the Trehalose/Maltose ABC Transporter of the Archaeon Thermococcus Litoralis
    The EMBO Journal Vol. 19 No. 22 pp. 5951±5961, 2000 Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis Kay Diederichs, Joachim Diez, ®brosis transmembrane conductance regulator (CFTR) Gerhard Greller, Christian MuÈ ller1, involved in the inherited disease cystic ®brosis, sterol Jason Breed2, Christoph Schnell, transporters, eye pigment precursor importers and protein Clemens Vonrhein3, Winfried Boos and exporters. Even though the arrayof substrates seems Wolfram Welte4 endless and the molecular architecture can be rather diverse, the ATPase module is an essential and conserved Fachbereich Biologie, UniversitaÈt Konstanz, M656, D-78457 Konstanz, subunit of all transporters. Its sequence features are the 1 Germany, School of Bioscience, Cardiff University, 10 Museums main basis for the identi®cation of new familymembers Avenue, PO Box 911, Cardiff CF10 3US, 2Astra Zeneca, Mereside, Maccles®eld SK10 4TG and 3Global Phasing Ltd, Sheraton House, (Holland and Blight, 1999). Castle Park, Cambridge CB3 0AX, UK A subfamilyof ABC transporters are binding protein- dependent systems that are ubiquitous in eubacteria and 4Corresponding author e-mail: [email protected] archaea, where theycatalysethe high-af®nityuptake of small polar substrates into the cell. One of the best studied The members of the ABC transporter family trans- examples is the E.coli maltose±maltodextrin system (Boos port a wide variety of molecules into or out of cells and Lucht, 1996; Boos and Shuman, 1998). It consists of a and cellular compartments. Apart from a trans- binding protein (MalE) as its major substrate recognition location pore, each member possesses two similar site, located in the periplasm.
    [Show full text]
  • Complete Genome Sequence of the Hyperthermophilic Archaeon Thermococcus Kodakaraensis KOD1 and Comparison with Pyrococcus Genomes
    Complete Genome Sequence of the Hyperthermophilic Archaeon Thermococcus kodakaraensis KOD1 and Comparison with Pyrococcus Genomes Toshiaki Fukui1,2, Haruyuki Atomi1,2, Tamotsu Kanai1,2, Rie Matsumi1, Shinsuke Fujiwara3, and Tadayuki Imanaka1,2* Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering,1 and Katsura Int’tech Center,2 Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, and Department of Bioscience, Nanobiotechnology Research Center, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337,3 Japan. Supplemental material General features Against the nonredundant (nr) database excluding the protein sequences from Thermococci, 45% of the proteins on the T. kodakaraensis genome are most similar to those of Euryarchaeota (Methanococci, 19%; Archaeoglobi, 11%, Methanopyri, 6%; Methanobacteria, 6%; Thermoplasmata, 2%; Halobacteria, 1%). A further 11% and 1% correspond most to crenarchaeal and nanoarchaeal counterparts, respectively, while 20% and 1% are closest to bacterial and eukaryal proteins. Among the bacteria-related proteins, 179 proteins exhibit the highest homology to proteins of hyperthermophilic bacteria Thermotoga, Aquifex, and Thermoanaerobacter. T. kodakaraensis genome has three clusters of 29 bp-short repeats organized in tandem and regularly spaced with unique intervening sequences of almost constant length (35-48 bp) (long clusters of tandem repeats [LCTRs] or short regularly spaced repeats [SRSRs]) (Mojica et al. 2000; Zivanovic et al. 2002). These repeat clusters are located at 374071-373034 (16 repeats), 470496-469048 (22 repeats), and 833495-835847 (35 repeats) in the genome, and the consensus sequence of the repeats is GT(T/C)GCAATAAGACTCTA(A/G)GAGAATTGAAA. This consensus sequence exhibits high homology to R2 family repeats in Pyrococcus genomes (Zivanovic et al.
    [Show full text]
  • Metabolic Adaptation to Sulfur of Hyperthermophilic Palaeococcus Pacificus DY20341T from Deep-Sea Hydrothermal Sediments
    International Journal of Molecular Sciences Article Metabolic Adaptation to Sulfur of Hyperthermophilic Palaeococcus pacificus DY20341T from Deep-Sea Hydrothermal Sediments Xiang Zeng 1, Xiaobo Zhang 1,2 and Zongze Shao 1,* 1 Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China; [email protected] (X.Z.); [email protected] (X.Z.) 2 School of public health, Xinjiang Medical University, No.393 Xinyi Road, Urumchi 830011, China * Correspondence: [email protected]; Tel.: +86-592-2195321 Received: 4 December 2019; Accepted: 29 December 2019; Published: 6 January 2020 Abstract: The hyperthermo-piezophilic archaeon Palaeococcus pacificus DY20341T, isolated from East Pacific hydrothermal sediments, can utilize elemental sulfur as a terminal acceptor to simulate growth. To gain insight into sulfur metabolism, we performed a genomic and transcriptional analysis of Pa. pacificus DY20341T with/without elemental sulfur as an electron acceptor. In the 2001 protein-coding sequences of the genome, transcriptomic analysis showed that 108 genes increased (by up to 75.1 fold) and 336 genes decreased (by up to 13.9 fold) in the presence of elemental sulfur. Palaeococcus pacificus cultured with elemental sulfur promoted the following: the induction of membrane-bound hydrogenase (MBX), NADH:polysulfide oxidoreductase (NPSOR), NAD(P)H sulfur oxidoreductase (Nsr), sulfide dehydrogenase (SuDH), connected to the sulfur-reducing process, the upregulation of iron and nickel/cobalt transfer, iron–sulfur cluster-carrying proteins (NBP35), and some iron–sulfur cluster-containing proteins (SipA, SAM, CobQ, etc.). The accumulation of metal ions might further impact on regulators, e.g., SurR and TrmB.
    [Show full text]
  • Downloaded (July 2018) and Aligned Using Msaprobs V0.9.7 (16)
    bioRxiv preprint doi: https://doi.org/10.1101/524215; this version posted January 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Positively twisted: The complex evolutionary history of Reverse Gyrase suggests a non- hyperthermophilic Last Universal Common Ancestor Ryan Catchpole1,2 and Patrick Forterre1,2 1Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles (BMGE), Département de Microbiologie F-75015 Paris, France 2Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France 1 bioRxiv preprint doi: https://doi.org/10.1101/524215; this version posted January 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Reverse gyrase (RG) is the only protein found ubiquitously in hyperthermophilic organisms, but absent from mesophiles. As such, its simple presence or absence allows us to deduce information about the optimal growth temperature of long-extinct organisms, even as far as the last universal common ancestor of extant life (LUCA). The growth environment and gene content of the LUCA has long been a source of debate in which RG often features. In an attempt to settle this debate, we carried out an exhaustive search for RG proteins, generating the largest RG dataset to date.
    [Show full text]
  • Purified Thermostable DNA Polymerase Obtainable From
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP 0 455 430 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.6: C12N 15/54, C12N 9/12, of the grant of the patent: C12N 9/22, C12N 15/55, 15.07.1998 Bulletin 1998/29 C12N 1/21 (21) Application number: 91303787.5 //(C12N1/21, C12R1:19) (22) Date of filing: 26.04.1991 (54) Purified thermostable DNA polymerase obtainable from Thermococcus litoralis Gereinigte thermostabile DNS-Polymerase zu erhalten aus Thermococcus litoralis DNA polymerase thermostable purifiee a obtenir de Thermococcus litoralis (84) Designated Contracting States: (74) Representative: Davies, Jonathan Mark et al DE FR GB Reddie & Grose 16 Theobalds Road (30) Priority: 26.04.1990 US 513994 London WC1X8PL (GB) 11.12.1990 US 626057 17.04.1991 US 686340 (56) References cited: • ARCHIVES OF MICROBIOLOGY, vol. 153, no. 2, (43) Date of publication of application: January 1990, pages 205-207, Springer 06.11.1991 Bulletin 1991/45 International, NY, US; A. NEUNER et al.: "Thermococcus litoralis sp. no v.: A new species (73) Proprietor: NEW ENGLAND BIOLABS, INC. of extremely thermophilic marine Beverly Massachusetts 01915 (US) archaebacteria" • THE JOURNAL OF BIOLOGICAL CHEMISTRY, (72) Inventors: vol. 264, no. 11, 15th April 1989, pages • Comb, Donald G. 6427-6437, American Society for Biochemistry Beverly, Massachusetts 01915 (US) and Molecular Biology, Inc., US; F.C. LAWYER et • Perler, Francine al.: "Isolation, characterization, and expression Brookline, Massachusetts 02146 (US) in Escherichia coli of the DNA polymerase gene • Kucera, Rebecca from Thermus aquaticus" Beverly, Massachusetts 01915 (US) • CELL, vol.
    [Show full text]
  • Formate Hydrogenlyase in the Hyperthermophilic Archaeon
    BMC Microbiology BioMed Central Research article Open Access Formate hydrogenlyase in the hyperthermophilic archaeon, Thermococcus litoralis Mária Takács1, András Tóth2, Balázs Bogos3, András Varga1, Gábor Rákhely1,2 and Kornél L Kovács*1,2 Address: 1Department of Biotechnology, University of Szeged, Közép fasor 52. H-6726 Szeged, Hungary, 2Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary and 3Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary Email: Mária Takács - [email protected]; András Tóth - [email protected]; Balázs Bogos - [email protected]; András Varga - [email protected]; Gábor Rákhely - [email protected]; Kornél L Kovács* - [email protected] * Corresponding author Published: 3 June 2008 Received: 1 December 2007 Accepted: 3 June 2008 BMC Microbiology 2008, 8:88 doi:10.1186/1471-2180-8-88 This article is available from: http://www.biomedcentral.com/1471-2180/8/88 © 2008 Takács et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Thermococcus litoralis is a heterotrophic facultative sulfur dependent hyperthermophilic Archaeon, which was isolated from a shallow submarine thermal spring. It has been successfully used in a two-stage fermentation system, where various keratinaceous wastes of animal origin were converted to biohydrogen. In this system T. litoralis performed better than its close relative, P. furiosus. Therefore, new alternative enzymes involved in peptide and hydrogen metabolism were assumed in T.
    [Show full text]
  • Comparative Genomics of Closely Related Thermococcus Isolates, a Genus of Hyperthermophilic Archaea Damien Courtine
    Comparative genomics of closely related Thermococcus isolates, a genus of hyperthermophilic Archaea Damien Courtine To cite this version: Damien Courtine. Comparative genomics of closely related Thermococcus isolates, a genus of hy- perthermophilic Archaea. Genomics [q-bio.GN]. Université de Bretagne occidentale - Brest, 2017. English. NNT : 2017BRES0149. tel-01900466v1 HAL Id: tel-01900466 https://tel.archives-ouvertes.fr/tel-01900466v1 Submitted on 22 Oct 2018 (v1), last revised 22 Oct 2018 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse&préparée&à&l'Université&de&Bretagne&Occidentale& pour obtenir le diplôme de DOCTEUR&délivré&de&façon&partagée&par& présentée par L'Université&de&Bretagne&Occidentale&et&l'Université&de&Bretagne&Loire& ! Damien Courtine Spécialité):)Microbiologie) ) Préparée au Laboratoire de Microbiologie des École!Doctorale!Sciences!de!la!Mer!et!du!Littoral! Environnements Extrêmes (LM2E) UMR6197, UBO – Ifremer – CNRS – Génomique comparative Thèse!soutenue!le!19!Décembre!2017! devant le jury composé de : d'isolats Anna?Louise!REYSENBACH!!
    [Show full text]
  • Purified Thermostable DNA Polymerase Obtainable from Thermococcus Litoralis
    Europaisches Patentamt 19) European Patent Office Dffice europeen des brevets @ Publication number : 0 455 430 A2 EUROPEAN PATENT APPLICATION (21) Application number : 91303787.5 (§) int ci.5: C12N 9/12, C12N 15/54, C12N 9/22, C12N 15/55, (22) Date of filing : 26.04.91 C12N 1/21, //(C12N1/21, C12R1:19) The microorganism(s) has (have) been (72) Inventor: Comb, Donald G. deposited with American Type Culture 109 Water Street Collection under numbers ATCC 40796, 40794, Beverly, Massachusetts 01915 (US) 40795, 40797, 68447, 68487, and 68473. Inventor: Perier, Francine 74A Fuller Street Brookline, Massachusetts 02146 (US) (30) Priority : 26.04.90 US 513994 Inventor : Kucera, Rebecca 11.12.90 US 626057 28, Neptune Street 17.04.91 US 686340 Beverly, Massachusetts 01915 (US) Inventor : Jack, William E. 207 Boxford Road (43) Date of publication of application : Rowley, Massachusetts 01969 (US) 06.11.91 Bulletin 91/45 (74) Representative : Davies, Jonathan Mark et al (§4) Designated Contracting States : Reddie & Grose 16 Theobalds Road DE FR GB London WC1X 8PL (GB) @ Applicant : NEW ENGLAND BIOLABS, INC. 32 Tozer Road Beverly Massachusetts 01915 (US) (§) Purified thermostable DNA polymerase obtainable from Thermococcus litoralis. (i?) There is provided an extremely thermostable enzyme obtainable from Thermococcus litoralis. The thermostable enzyme has a molecular weight of about 90,000 - 95,000 daltons, a half-life of about 60 minutes at 100°C in the absence of stabilizer, and a half-life of about 95 minutes at 100°C in the presence of stabilizer, such as octoxynol (TRITON X-100) or bovine serum albumin. The thermostable enzyme possesses a 3'-5' proofreading exonuclease activity.
    [Show full text]
  • Overview of Thermostable DNA Polymerases for Classical PCR Applications: from Molecular and Biochemical Fundamentals to Commercial Systems
    Appl Microbiol Biotechnol (2013) 97:10243–10254 DOI 10.1007/s00253-013-5290-2 MINI-REVIEW Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems Kay Terpe Received: 22 July 2013 /Revised: 20 September 2013 /Accepted: 22 September 2013 /Published online: 1 November 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract During the genomics era, the use of thermostable before becoming standard. Time and temperature of denaturing DNA polymerases increased greatly. Many were identified and can deactivate the polymerase more or less depending on the described—mainly of the genera Thermus, Thermococcus and used enzyme. Factors like DNA origin, primer and product Pyrococcus. Each polymerase has different features, resulting length as well as guanine–cytosine content should have a direct from origin and genetic modification. However, the rational influence on the choice of polymerase (Wu et al. 1991). Salt, choice of the adequate polymerase depends on the application magnesium and deoxyribonucleotide triphosphate (dNTP) con- itself. This review gives an overview of the most commonly centrations can greatly affect the PCR (Ling et al. 1991; used DNA polymerases used for PCR application: KOD, Pab Owczarzy et al. 2008). Additives like BSA (Al-Soud and (Isis™), Pfu, Pst (Deep Vent™), Pwo, Taq, Tbr, Tca, Tfi, Tfl, Rådström 2001), dimethylsulfoxide (Chester and Marshak Tfu, Tgo, Tli (Vent™), Tma (UITma™), Tne, Tth and others. 1993), formamide (Sarkar et al. 1990), betaine (Henke et al. 1997; Rees et al. 1993), ethylene glycol and 1,2-propanediol Keywords Thermostable DNA polymerase . Polymerase (Zhang et al. 2009), and others (Al-Soud and Rådström 2000; chain reaction (PCR) .
    [Show full text]