Guaymasensis Spm Nov

Total Page:16

File Type:pdf, Size:1020Kb

Guaymasensis Spm Nov International Journal of Systematic Bacteriology (1 998), 48, 1 181-1 185 Printed in Great Britain Thermococcus guaymasensis Spm nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site Francesco Canganella,' William J. Jones,' Agata Gambacorta3 and Garabed Antranikian4 Author for correspondence: Francesco Canganella. Tel : + 39 076 I 357282. Fax : + 39 076 1 357242. e-mail : canganel(a unitus.it 1 Department of Thermococcus strains TYST and TVisolated from the Guaymas Basin Agrobiology and hydrothermal vent site and previously described were compared by DNA-DNA Agrochemistry, University of Tuscia, via C. de Lellis, hybridization analysis with the closest Thermococcus species in terms of 01 100 Viterbo, Italy physiology and nutritional aspects. On the basis of the new data and taking * Ecosystem Research into consideration the molecular, physiological and morphological traits Division, US Environmental published previously, it is proposed that strains TYT and TYST should be classified Protection Agency, Athens, as new species named Thermococcus aggregans sp. nov. and Thermococcus GA, USA guaymasensis sp. nov., respectively. The type strain of T. aggregans is strain CNR, Institute for the TV(= DSM 10597T)and the type strain of T. guaymasensis is strain TYST Chemistry of Interesting B io logica I Molecules (= DSM 11113T). (ICMIB), Arc0 Felice (Na), Italy I Department of ~ Keywords: Thermococcus, archaea, hydrothermal vents Biotechnology I, Technical University of Hamburg, Germany INTRODUCTION from 85 to 88 "C (75 "C for T. stetteri) and the G+C content ranges approximately between 42 and During the past 3 years, six additional species be- 57 mol %, except for T. litoralis (38 mol %). According longing to the genus Thermococcus have been de- to the most recent investigations on the microbiology scribed. Presently, 10 species represent this taxonomic of hydro thermal vent sites, Thermococcus species group: Tlrcrmococcus celer (Zillig et al., 1983), ' Ther- appear to be present in significant numbers in these mococcus litoralis (Neuner et ul., I990), Tlzermococcus ecosystems (Antoine et al., 1995; Marteinsson et al., stetteri (Miroshnichenko et al., 1989), Thermococcus 1995). profundus (Kobayashi et al., 1994), Thermococcus peptonopliilus (Gonzalez et al., 1993, Thermococcus Two novel deep-sea Thermococcus strains (TYST and chitonophtrgus (Huber et al., 1999, Therrnococcus TYT) previously isolated from the Guaymas Basin alcaliphi1zi.s (Keller et ul., 1999, Thermococcus ,fumi- (Gulf of California) and extensively described (Can- colans (Godfroy et al., 1996), Thermococcus hydro- ganella & Jones, 1994a; Canganella et al., 1997) thermalis (Godfroy et nl., 1997) and ' Thermococcus showed a relatively high similarity of 16s rDNA zilligii, (Ronimus et al., 1997). All species are organo- sequences with other Thermococeus species but ex- trophic, thermophilic anaerobes growing preferen- hibited some different physiological properties (Can- tially on proteinaceous compounds and utilizing carbo- ganella et al., 1997). Compared with the most recently hydrates :is carbon sources rarely. Elemental sulphur described T. hydrothermulis and T. -fumicoluns, our considerably stimulates growth with the concomitant strains are able to grow on starch, there is no absolute formation of H,S. Typical optima temperatures range requirement for elemental sulphur, and they are more sensitive to NaCl concentrations higher than 5.0 % . .. .. .. .. ., . .. .. .. .. .. .. .. .. .. .. .. ., . .. .. .. , , . .. .. .. , .. (w/v). DNA-DNA hybridization experiments were Abbreviation : TOR, temperature of renaturation. necessary to determine the taxonomic standing of The EMBL accession numbers for the partial 165 rDNA sequences of strains these two strains. Based on the results of these analyses, TYT and TYST are YO8384 and Y08385, respectively. both strains were found to represent new species of ~- ~___ 00737 0 1998 IUMS 1181 F. Canganella and others Thermococcus, and their complete taxonomic descrip- The DNA concentration was 45 pg ml-I. Owing to the high tion is reported in this paper. G+C content of Thermococcus DNA (mean value of 50 mol YO),20% (v/v) DMSO was added to 2.5 x SSC to depress the DNA melting point (T,) (Escara & Hutton, METHODS 1980). The resulting buffer was 2 x SSC + 20 Y DMSO. The mean T, was determined from the DNA melting curves and Source of micro-organisms. Strains TYST and TY' were the optimal temperature of renaturation (TOR) was cal- isolated from sediments collected at the Guaymas Basin culated as T,+25. hydrothermal vent site (2000m depth) in the Gulf of California. On the basis of nutritional, physiological and Renaturation rates were calculated by regression analysis molecular features, they were previously described as Ther- between 10 and 30 min after the reaction start using the ~ZOCOCCUSspecies by Canganella & Jones (1994a, b) and computer program TRANSFERBAS (Jahnke, 1992). Canganella et al. (1 997). T. celer, ' T. litoralis', T. stetteri and T. projundus strains RESULTS AND DISCUSSION were obtained from DSMZ, Braunschweig, Germany (see Table 1). T. peptonophilus strain OG-lT(= JCM 9653T)was Morphology of Thermococcus strains TYST and TYT kindly provided by Chiaki Kato (JAMSTEC, Yokosuka, Japan) and T. hydrothernialis and T..fumicolans were a gift The morphological features of isolates TYST and TY"' from Anne Godfroy (IFREMER, Plouzane', France). have been reported previously (Canganella & Jones, 1994a; Canganella et al., 1997). Under light micro- Growth conditions. The two novel Theruzococcus strains as scopy, cells of TYST and TYT usually appear as well as the reference micro-organisms were grown on a irregular cocci with a variable width of 0-5-3.0 pm. mineral medium containing the following constituents per litre of distilled water: 0.33 g KC1; 2.7 g MgCl .2H,O; 3.4 g Strain TYST is similar to other Thermococcales species MgSO,. 7H,O; 0.25 g NH,Cl; 0.14 g CaC1,. 2H,O; 0.14 g in that a dark granule often forms on the outer cell K,HPO,; 0.01 mg Na,SeO,; 0.01 mg NiC1,. 6H,O; 1.0 g surface. Strain TYST usually exists as single cells, NaHCO,; 18-0 g NaCl; 0.001 g resazurin; 0.5 g cys- whereas strain TYT typically forms cell aggregates up teine. HC1. H,O; 0.5 g Na,S. 9H,O. The medium also con- to 50-100 cells under optimal growth conditions. Both tained Bacto-yeast extract (0.2 g 1-') and 10 ml 1-1 each of strains are non-motile. trace metal and vitamin solutions (Balch et al., 1979). Anaerobic techniques used to prepare and dispense the Nutritional requirements medium, the enrichment experiments, isolation procedures, as well as the physiological characterization of the new Strains TYST and TYT grew chemo-organotrophically isolates have been described elsewhere (Canganella & Jones, on complex substrates, e.g. yeast extract, trypticase, 1994a, b). casein, starch, dextrose and maltose. In the presence of Phylogenetic analysis. DNA of harvested cells was extracted elemental sulphur, higher growth yields were observed according to the procedure of Marmur (1961), digested to with proteinaceous compounds, accompanied by H,S nucleosides, and the G+C content was determined after production (Canganella & Jones, 1994a). No growth nucleoside analysis by HPLC as described by Mesbah et al. was detected in medium supplemented with chitin, (1989). organic acids (formate, acetate, propionate, butyrate; Genomic DNA extraction, PCR-mediated amplification of 0.5 "/o,w/v), alcohols (methanol, ethanol, propanol; the 16s rDNA and purification of PCR products was carried 0.5 YO,v/v), or Difco Casamino acids (0.4 YO,w/v) as out as described previously (Barns et al., 1994; Rainey et al., primary carbon sources (Canganella & Jones, 1994a). 1992; Rainey & Stackebrandt, 1993). The 16s rDNA sequence was manually aligned against Phylogenetic analysis and DNA hybridization representative sequences of members of the domain Archaea. The following sequences from the EMBL database were The G+C content of DNA extracted from Thermo- analysed : M21529 (T. celer), 275240 (T. stetteri), D37982 coccus isolates TYT and TYST was 42.0 and (T.peptonophilus), 270252 (' T.litoralis'), 270244 (T. hydro- 46.0 mol %, respectively. thermalis), 270250 (T.funiicolans), 275233 (T. projundus), X99570 (T. chitonophagus) and U20 163 (P.furiosus). Pair- The nearly complete sequences consisting of 130 1 wise evolutionary distances were computed using the cor- bases of the amplified 16s rDNA of isolates TYT and rection factor of Jukes & Cantor (1969). The least-squares TYST were previously determined. The sequences of distance method of De Soete (1983) was used in the both isolates were therefore aligned and compared construction of the phylogenetic dendrogram from distance with all the available 16s rDNA sequences of matrices. Thermo- coccus species, including Pyrococcus furiosus. On the DNA isolation and hybridization. DNA was isolated by basis of these data, the 16s rDNA sequence of strain column chromatography using hydroxyapatite according to TYT showed a similarity of 98.4% with strain TYS', the procedure of Cashion et al. (1977). 96.7% with T. chitinophagus, 97.7% with T. hydro- DNA-DNA hybridization was performed according to the thermalis, 97.0 YOwith T.fumicolans and 93.9 % with methods of De Ley et al. (1970) using a Gilford System 2600 P. furiosus. The 16s rDNA sequence of strain TYST spectrophotometer equipped with a Gilford 2527-R thermo- showed a similarity of 96.6% with T. chitinophagus, programmer
Recommended publications
  • Thermococcus Piezophilus Sp. Nov., a Novel Hyperthermophilic And
    1 Systematic and Applied Microbiology Achimer October 2016, Volume 39, Issue 7, Pages 440-444 http://dx.doi.org/10.1016/j.syapm.2016.08.003 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00348/45949/ © 2016 Elsevier GmbH. All rights reserved. Thermococcus piezophilus sp. nov., a novel hyperthermophilic and piezophilic archaeon with a broad pressure range for growth, isolated from a deepest hydrothermal vent at the Mid-Cayman Rise ✯ Dalmasso Cécile 1, 2, 3, Oger Philippe 4, Selva Gwendoline 1, 2, 3, Courtine Damien 1, 2, 3, L'Haridon Stéphane 1, 2, 3, Garlaschelli Alexandre 1, 2, 3, Roussel Erwan 1, 2, 3, Miyazaki Junichi 5, Reveillaud Julie 1, 2, 3, Jebbar Mohamed 1, 2, 3, Takai Ken 5, Maignien Lois 1, 2, 3, Alain Karine 1, 2, 3, * 1 Université de Bretagne Occidentale (UBO, UEB), Institut Universitaire Européen de la Mer (IUEM) − UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France 2 CNRS, IUEM − UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Place Nicolas Copernic, F-29280 Plouzané, France 3 Ifremer, UMR 6197, Laboratoire de Microbiologie des Environnements Extrêmes (LM2E), Technopôle Pointe du diable, F-29280 Plouzané, France 4 Université de Lyon, INSA Lyon, CNRS UMR 5240, 11 Avenue Jean Capelle, F-69621 Villeurbanne, France 5 Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan * Corresponding author : Karine Alain, email address : [email protected] ✯ Note: The EMBL/GenBank/DDBJ 16S rRNA gene sequence accession number of strain CDGST is LN 878294.
    [Show full text]
  • Functionalized Membrane Domains: an Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger
    Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger To cite this version: Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger. Functionalized Membrane Domains: An Ancestral Feature of Archaea?. Frontiers in Microbiology, Frontiers Media, 2020, 11, pp.526. 10.3389/fmicb.2020.00526. hal-02553764 HAL Id: hal-02553764 https://hal.archives-ouvertes.fr/hal-02553764 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-11-00526 March 30, 2020 Time: 21:44 # 1 ORIGINAL RESEARCH published: 31 March 2020 doi: 10.3389/fmicb.2020.00526 Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte1†, Philippe Schaeffer2†, Vincent Grossi3† and Phil M. Oger1*† 1 Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France, 2 Université de Strasbourg-CNRS, UMR 7177, Laboratoire de Biogéochimie Moléculaire, Strasbourg, France, 3 Université de Lyon, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, UMR 5276, Villeurbanne, France Bacteria and Eukarya organize their plasma membrane spatially into domains of distinct functions. Due to the uniqueness of their lipids, membrane functionalization in Archaea remains a debated area.
    [Show full text]
  • Representatives of a Novel Archaeal Phylum Or a Fast-Evolving
    Open Access Research2005BrochieretVolume al. 6, Issue 5, Article R42 Nanoarchaea: representatives of a novel archaeal phylum or a comment fast-evolving euryarchaeal lineage related to Thermococcales? Celine Brochier*, Simonetta Gribaldo†, Yvan Zivanovic‡, Fabrice Confalonieri‡ and Patrick Forterre†‡ Addresses: *EA EGEE (Evolution, Génomique, Environnement) Université Aix-Marseille I, Centre Saint-Charles, 3 Place Victor Hugo, 13331 Marseille, Cedex 3, France. †Unite Biologie Moléculaire du Gène chez les Extremophiles, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex ‡ 15, France. Institut de Génétique et Microbiologie, UMR CNRS 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Celine Brochier. E-mail: [email protected]. Simonetta Gribaldo. E-mail: [email protected] Published: 14 April 2005 Received: 3 December 2004 Revised: 10 February 2005 Genome Biology 2005, 6:R42 (doi:10.1186/gb-2005-6-5-r42) Accepted: 9 March 2005 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2005/6/5/R42 reports © 2005 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Placement<p>Anteins from analysis 25of Nanoarcheumarchaeal of the positiongenomes equitans of suggests Nanoarcheum in the that archaeal N. equitans phylogeny inis likethe lyarchaeal to be the phylogeny representative using aof large a fast-evolving dataset of concatenatedeuryarchaeal ribosomalineage.</p>l pro- deposited research Abstract Background: Cultivable archaeal species are assigned to two phyla - the Crenarchaeota and the Euryarchaeota - by a number of important genetic differences, and this ancient split is strongly supported by phylogenetic analysis.
    [Show full text]
  • Different Proteins Mediate Step-Wise Chromosome Architectures in 2 Thermoplasma Acidophilum and Pyrobaculum Calidifontis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.982959; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Different Proteins Mediate Step-wise Chromosome Architectures in 2 Thermoplasma acidophilum and Pyrobaculum calidifontis 3 4 5 Hugo Maruyama1†*, Eloise I. Prieto2†, Takayuki Nambu1, Chiho Mashimo1, Kosuke 6 Kashiwagi3, Toshinori Okinaga1, Haruyuki Atomi4, Kunio Takeyasu5 7 8 1 Department of Bacteriology, Osaka Dental University, Hirakata, Japan 9 2 National Institute of Molecular Biology and Biotechnology, University of the Philippines 10 Diliman, Quezon City, Philippines 11 3 Department of Fixed Prosthodontics, Osaka Dental University, Hirakata, Japan 12 4 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, 13 Kyoto University, Kyoto, Japan 14 5 Graduate School of Biostudies, Kyoto University, Kyoto, Japan 15 † These authors have contributed equally to this work 16 17 * Correspondence: 18 Hugo Maruyama 19 [email protected]; [email protected] 20 21 Keywords: archaea, higher-order chromosome structure, nucleoid, chromatin, HTa, histone, 22 transcriptional regulator, horizontal gene transfer 23 Running Title: Step-wise chromosome architecture in Archaea 24 Manuscript length: 6955 words 25 Number of Figures: 7 26 Number of Tables: 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.982959; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • Evidence for Associated Horizontal Gene Transfer in Pyrococcus Furiosus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC J Appl Genet 50(4), 2009, pp. 421–430 Original article CRISPR elements in the Thermococcales: evidence for associated horizontal gene transfer in Pyrococcus furiosus M.C. Portillo, J.M. Gonzalez Institute for Natural Resources and Agrobiology, IRNAS-CSIC, Sevilla, Spain Abstract. The presence and distribution of CRISPR (clustered regularly interspaced short palindrome repeat)el- ements in the archaeal order Thermococcales were analyzed. Four complete genome sequences from the species Pyrococcus abyssi, P. furiosus, P. horikoshii, and Thermococcus kodakaraensis were studied. A fragment of the genome of P. furiosus was flanked by CRISPR elements upstream and by a single element downstream. The composition of the gene sequences contained in this genome fragment (positions 699013 to 855319) showed sig- nificant differences from the other genes in the P. furiosus genome. Differences were observed in the GC content at the third codon positions and the frequency of codon usage between the genes located in the analyzed fragment and the other genes in the P. furiosus genome. These results represent the first evidence suggesting that repeated CRISPR elements can be involved in horizontal gene transfer and genomic differentiation of hyperthermophilic Archaea. Keywords: CRISPR, gene transfer, genome, hyperthermophilic Archaea, Pyrococcus furiosus. Introduction spacers and repetitive elements modified the phage-resistance phenotype of bacteria Genomic regions consisting of tandem repeat (Barrangou et al. 2007). The incorporation of short DNA elements, typically of 21–47 base pairs (bp) fragments of foreign DNA into the genome of in length, separated by nonrepetitive spacer se- prokaryotes at CRISPR loci has been reported quences of approximately similar length, have (Bolotin et al.
    [Show full text]
  • Thermococcus Guaymasensis Spm Nov. and Thermococcus Aggregans Sp
    International Journal of Systematic Bacteriology (1 998), 48, 1 181-1 185 Printed in Great Britain Thermococcus guaymasensis Spm nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site Francesco Canganella,' William J. Jones,' Agata Gambacorta3 and Garabed Antranikian4 Author for correspondence: Francesco Canganella. Tel : + 39 076 I 357282. Fax : + 39 076 1 357242. e-mail : canganel(a unitus.it 1 Department of Thermococcus strains TYST and TVisolated from the Guaymas Basin Agrobiology and hydrothermal vent site and previously described were compared by DNA-DNA Agrochemistry, University of Tuscia, via C. de Lellis, hybridization analysis with the closest Thermococcus species in terms of 01 100 Viterbo, Italy physiology and nutritional aspects. On the basis of the new data and taking * Ecosystem Research into consideration the molecular, physiological and morphological traits Division, US Environmental published previously, it is proposed that strains TYT and TYST should be classified Protection Agency, Athens, as new species named Thermococcus aggregans sp. nov. and Thermococcus GA, USA guaymasensis sp. nov., respectively. The type strain of T. aggregans is strain CNR, Institute for the TV(= DSM 10597T)and the type strain of T. guaymasensis is strain TYST Chemistry of Interesting B io logica I Molecules (= DSM 11113T). (ICMIB), Arc0 Felice (Na), Italy I Department of ~ Keywords: Thermococcus, archaea, hydrothermal vents Biotechnology I, Technical University of Hamburg, Germany INTRODUCTION from 85 to 88 "C (75 "C for T. stetteri) and the G+C content ranges approximately between 42 and During the past 3 years, six additional species be- 57 mol %, except for T.
    [Show full text]
  • Fidelity of DNA Synthesis by the Thermococcus Litoralis DNA Polymerase—An Extremely Heat Stable Enzyme with Proofreading Activity
    © 1991 Oxford University Press Nucleic Acids Research, Vol. 19, No. 18 4967-4973 Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity P.Mattila, J.Korpela, T.Tenkanen and K.Pitkanen Finnzymes Oy, Riihitontuntie 14 B, PO Box 148, SF 02200 Espoo, Finland Received June 6, 1991; Revised and Accepted August 22, 1991 ABSTRACT We demonstrate that the DNA polymerase isolated from Our interest was to examine the fidelity of thermostable DNA Downloaded from Thermococcus litoralis (Vent™ DNA polymerase) is polymerases isolated from other sources than the Thermus species the first thermostable DNA polymerase reported having (Thermits aquaticus, Thermus thermophilus, Thermusflavis). That a 3' —5' proofreading exonuclease activity. This is why we decided to study the fidelity of DNA synthesis by the facilitates a highly accurate DNA synthesis In vitro by Vent™ DNA polymerase isolated from Thermococcus litoralis, an extremely thermophilic marine archaebacterium (6). This the polymerase. Mutatlonal frequencies observed in the http://nar.oxfordjournals.org/ base substitution fidelity assays were in the range of organism originates from a submarine thermal vent and can grow 30x10~6. These values were 5-10 times lower at temperatures up to 98 °C. The purified polymerase from this compared to other thermostable DNA polymerases archaebacterium reflects thus high level of thermostability, with lacking the proofreading activity. All classes of DNA a half life of two hours at 100°C. polymerase errors (transitions, transversions, In this study we used three different forms of DNA polymerases frameshift mutations) were assayed using the forward originating from Thermococcus litoralis: a) a native DNA mutational assay (1).
    [Show full text]
  • Biogeography and Evolution of Thermococcus Isolates from Hydrothermal Vent Systems of the Pacific
    ORIGINAL RESEARCH published: 24 September 2015 doi: 10.3389/fmicb.2015.00968 Biogeography and evolution of Thermococcus isolates from hydrothermal vent systems of the Pacific Mark T. Price, Heather Fullerton and Craig L. Moyer * Department of Biology, Western Washington University, Bellingham, WA, USA Thermococcus is a genus of hyperthermophilic archaea that is ubiquitous in marine hydrothermal environments growing in anaerobic subsurface habitats but able to survive in cold oxygenated seawater. DNA analyses of Thermococcus isolates were applied to determine the relationship between geographic distribution and relatedness focusing primarily on isolates from the Juan de Fuca Ridge and South East Pacific Rise. Amplified fragment length polymorphism (AFLP) analysis and multilocus sequence typing (MLST) were used to resolve genomic differences in 90 isolates of Thermococcus, Edited by: Beth Orcutt, making biogeographic patterns and evolutionary relationships apparent. Isolates were Bigelow Laboratory for Ocean differentiated into regionally endemic populations; however, there was also evidence in Sciences, USA some lineages of cosmopolitan distribution. The biodiversity identified in Thermococcus Reviewed by: isolates and presence of distinct lineages within the same vent site suggests the Julie L. Meyer, University of Florida, USA utilization of varying ecological niches in this genus. In addition to resolving biogeographic Sean Patrick Jungbluth, patterns in Thermococcus, this study has raised new questions about the closely related University
    [Show full text]
  • Deep Conservation of Histone Variants in Thermococcales Archaea
    bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.455978; this version posted September 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Deep conservation of histone variants in Thermococcales archaea 2 3 Kathryn M Stevens1,2, Antoine Hocher1,2, Tobias Warnecke1,2* 4 5 1Medical Research Council London Institute of Medical Sciences, London, United Kingdom 6 2Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, 7 United Kingdom 8 9 *corresponding author: [email protected] 10 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.09.07.455978; this version posted September 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Abstract 2 3 Histones are ubiquitous in eukaryotes where they assemble into nucleosomes, binding and 4 wrapping DNA to form chromatin. One process to modify chromatin and regulate DNA 5 accessibility is the replacement of histones in the nucleosome with paralogous variants. 6 Histones are also present in archaea but whether and how histone variants contribute to the 7 generation of different physiologically relevant chromatin states in these organisms remains 8 largely unknown. Conservation of paralogs with distinct properties can provide prima facie 9 evidence for defined functional roles.
    [Show full text]
  • Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes
    GBE Different Ways of Doing the Same: Variations in the Two Last Steps of the Purine Biosynthetic Pathway in Prokaryotes Dennifier Costa Brandao~ Cruz1, Lenon Lima Santana1, Alexandre Siqueira Guedes2, Jorge Teodoro de Souza3,*, and Phellippe Arthur Santos Marbach1,* 1CCAAB, Biological Sciences, Recoˆ ncavo da Bahia Federal University, Cruz das Almas, Bahia, Brazil 2Agronomy School, Federal University of Goias, Goiania,^ Goias, Brazil 3 Department of Phytopathology, Federal University of Lavras, Minas Gerais, Brazil Downloaded from https://academic.oup.com/gbe/article/11/4/1235/5345563 by guest on 27 September 2021 *Corresponding authors: E-mails: [email protected]fla.br; [email protected]. Accepted: February 16, 2019 Abstract The last two steps of the purine biosynthetic pathway may be catalyzed by different enzymes in prokaryotes. The genes that encode these enzymes include homologs of purH, purP, purO and those encoding the AICARFT and IMPCH domains of PurH, here named purV and purJ, respectively. In Bacteria, these reactions are mainly catalyzed by the domains AICARFT and IMPCH of PurH. In Archaea, these reactions may be carried out by PurH and also by PurP and PurO, both considered signatures of this domain and analogous to the AICARFT and IMPCH domains of PurH, respectively. These genes were searched for in 1,403 completely sequenced prokaryotic genomes publicly available. Our analyses revealed taxonomic patterns for the distribution of these genes and anticorrelations in their occurrence. The analyses of bacterial genomes revealed the existence of genes coding for PurV, PurJ, and PurO, which may no longer be considered signatures of the domain Archaea. Although highly divergent, the PurOs of Archaea and Bacteria show a high level of conservation in the amino acids of the active sites of the protein, allowing us to infer that these enzymes are analogs.
    [Show full text]
  • Methanocaldococcus Jannaschii Mja Methanococci Methanococcales
    Table S2 List of the archaeal species used for evaluation of physiological and metabolic potential by MAPLE system Species Species ID Class Order [Euryarchaeota: 53 species] Methanocaldococcus jannaschii mja Methanococci Methanococcales Methanotorris igneus mig Methanococci Methanococcales Methanococcus vannielii mvn Methanococci Methanococcales Methanothermococcus okinawensis mok Methanococci Methanococcales Methanosarcina barkeri mba Methanomicrobia Methanosarcinales Methanococcoides burtonii mbu Methanomicrobia Methanosarcinales Methanohalophilus mahii mmh Methanomicrobia Methanosarcinales Methanohalobium evestigatum mev Methanomicrobia Methanosarcinales Methanosalsum zhilinae mzh Methanomicrobia Methanosarcinales Methanolobus psychrophilus mpy Methanomicrobia Methanosarcinales Methanomethylovorans hollandica mhz Methanomicrobia Methanosarcinales Methanosaeta concilii mcj Methanomicrobia Methanosarcinales Methanospirillum hungatei mhu Methanomicrobia Methanomicrobiales Methanocorpusculum labreanum mla Methanomicrobia Methanomicrobiales Methanoculleus bourgensis mbg Methanomicrobia Methanomicrobiales Methanoplanus petrolearius mpi Methanomicrobia Methanomicrobiales Methanoregula boonei mbn Methanomicrobia Methanomicrobiales Candidatus Methanosphaerula palustris mpl Methanomicrobia Methanomicrobiales Methanocella paludicola mpd Methanomicrobia Methanocellales Methanomassiliicoccus sp. Mx1-Issoire mer Methanomicrobia Unclassified Methanothermobacter thermautotrophicus mth Methanobacteria Methanobacteriales Methanosphaera stadtmanae mst
    [Show full text]