MILESTONES Credit: Tetra Images / Alamy Stock Photo Tetra Credit

Total Page:16

File Type:pdf, Size:1020Kb

MILESTONES Credit: Tetra Images / Alamy Stock Photo Tetra Credit MILESTONES Credit: Tetra Images / Alamy Stock Photo Tetra Credit: FOREWORD Koch, Escherich, Kendall and a few others, laid the foundations of how we understand host–microrganism interactions. Pasteur developed the A field is born germ theory of disease, but also thought that non-pathogenic micro- “I then most always saw, with of bacteria (although he called them organisms might have an important great wonder, that in the said animalcules at the time) present in role in normal human physiology; matter there were many very little his own mouth and that of others, Metchnikoff believed that microbiota living animalcules, very prettily and subsequently also compared composition and its interactions a-moving.” his own oral and faecal microbiota, with the host was essential for health; — Antonie van Leeuwenhoek. determining that there are differences and Escherich was convinced that between body sites as well as between understanding the endogenous flora Despite being considered by many as health and disease. Some of the first was essential for understanding a relatively modern field of research, direct observations of bacteria were the physiology of digestion and the the first descriptions of human- of human-associated microbiota. pathology and therapy of intestinal associated microbiota date back to Fast-forward a couple of cen- disease. Sound familiar? The themes the 1670s–1680s, when Antonie van turies and, in 1853, Joseph Leidy we explore in these ‘Milestones in Leeuwenhoek started using his newly published a book entitled A Flora human microbiota research’ largely developed, handcrafted microscopes. and Fauna within Living Animals, brought to bear the hypotheses and In a letter written to the Royal Society which some consider to be the early work of these microbiology of London in 1683, he described origin of microbiota research. Then, giants, on the shoulders of which the and illustrated five different kinds the work of Pasteur, Metchnikoff, field stands today. NATURE MILESTONES | HUMAN MICROBIOTA RESEARCH JUNE 2019 | S3 MILESTONES In 1890, Koch published his numbers of existing cells and how 25 milestones, we want to highlight the field [...] famous postulates, four criteria many could grow in the lab, what particular areas of research — both designed to establish a causative rela- became known as the ‘great plate established and burgeoning — that took off in tionship between a microorganism count anomaly’. This key observa- have contributed to a better under- earnest once and a disease, and during the first tion motivated the development standing of our microbial selves, as methods half of the twentieth century, micro- of sequencing-based approaches well as methodological advances to culture biology became more focused on the to identify unculturable micro- that have propelled the field for- identification of etiological agents of organisms, which were pioneered by ward. We also want to highlight anaerobic disease. This was also likely due to Woese, Pace, Fox and others to study important but lesser known aspects organisms were the fact that most bacterial pathogens environmental microorganisms and of the field, such as the fact that our discovered in can grow in the presence of oxygen, subsequently adapted to the analysis microbiota is not just composed of whereas most members of the gut of human-associated communities, bacteria; that human-associated, the 1940s and microbiota cannot and thus could providing an unprecedented view health-promoting microbial com- 1950s, when not be studied at the time. Alfred into their composition. A key step munities exist on all bodily surfaces, members of Nissle, a German physician, isolated in popularising microbiota research, not only our gut; and, importantly, the microbiota the Escherichia coli Nissle 1917 strain which got it into the mainstream that to have a complete picture — which remains a commonly used news and made it a household con- of the functional capacity of our were grown probiotic — in 1917. During World cept, was the finding by the Gordon microbiota and its roles in human and studied in War I, when the first gut eukaryotic group, in 2006, that reconstituting health, we need to look beyond the the laboratory microorganisms and bacteriophages mice with the microbial communities gut of white, Western populations. were also described, Nissle noticed associated with a human disease state We thank the many researchers that one soldier did not succumb to could transplant the phenotype to from all corners of the field who dysentery and thought he might have the animals. This opened the door have advised on the different aspects a protective microorganism in his to research trying to establish causal of this project, as well as those who gut. He isolated the strain and later relationships between altered micro- have participated in the podcasts. showed that it antagonized other bial communities and disease, which It is, of course, impossible to cover pathogens, establishing the concept has become a cornerstone of the field. everything in a field as broad and of colonization resistance, whereby Although the first use of faecal diverse as this one, but we hope to human-associated microorganisms microbiota transplantation (FMT) in have captured the major steps for- prevent the establishment of patho- Western medicine was published in ward. In our attempt to summarise gens in the same niche. 1958 by Ben Eiseman and colleagues, almost 350 years of research, we will Despite these early insights, the who successfully treated four people have unavoidably missed impor- field only took off in earnest once suffering from pseudomembranous tant contributions and sincerely methods to culture anaerobic organ- colitis (before Clostridioides difficile apologize for any unintended over- isms were discovered in the 1940s was the known cause), FMT was sights. Although we have focussed and 1950s, when members of the already used in ancient Chinese these milestones on the study of microbiota were grown and studied medicine. Fourth-century Chinese human-associated microbiota, other in the laboratory. This is where we medical literature mentions its use, vibrant research communities are have chosen to start our timeline of by Ge Hong among others, to treat trying to understand plant- and milestones, as increasing numbers food poisoning and severe diarrhoea. animal-associated, as well as envi- of researchers became interested in In the sixteenth century, Li Shizhen ronmental, microbial communities. understanding the composition and used oral administration of a ‘soup’ We hope that this journey through function of the microbial communi- containing fresh, dry or fermented history will be inspirational and ties that live on our different surfaces stool to treat abdominal diseases. we look forward to the exciting and how they change throughout In seventeenth century Europe, the developments that are sure to come, our lives. The realization that much Italian Fabrizio and the German ultimately aiming to harness our of the normal physiology of conven- Paullini documented the use of FMT, understanding of microbial commu- tional laboratory mice was missing and the American microbiologist nities to improve not only human in germ-free mice, and could be Stan Falkow candidly recalled his health, but that of plants, animals reconstituted through colonization role in preparing first-generation and ecosystems. with bacteria obtained from faeces, poop pills to reconstitute the gut Nonia Pariente, Nature Microbiology enabled the first in vivo experiments. communities of surgical patients a Comparisons of germ-free and year before Eiseman and colleagues FURTHER READING Savage, D. C. Microbial colonised animals in the 1960s led to published their work. biota of the human intestine: a tribute to some pioneering scientists. Curr. Issues Intest. Microbiol. observations that predicted much of We recognize that an enormous 2, 1–15 (2001) | Finegold, S. M. A century of what has since been discovered using body of work precedes each anaerobes: a look backward and a call to arms. Clin. Infect. Dis. 16, 453–457 (1993) | Falk, P. G., methodologies that enable more milestone that we have selected to Hooper, L. V., Midtvedt, T. & Gordon, J. I. Creating and in-depth analyses. Despite advances highlight progress in this field. This maintaining the gastrointestinal ecosystem: what in culturing microorganisms, it soon foreword aims to pay homage to we know and need to know from gnotobiology. Microbiol. Mol. Biol. Rev. 62, 1157–1170 (1998) | became apparent that there were some of these microbiota pioneers. Leidy, J. A Flora and Fauna Within Living Animals gross discrepancies between the With this project, divided into (Smithsonian Institution, 1853). S4 | JUNE 2019 www.nature.com/collections/microbiota-milestone.
Recommended publications
  • Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
    International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota.
    [Show full text]
  • The Gut Microbiota and Inflammation
    International Journal of Environmental Research and Public Health Review The Gut Microbiota and Inflammation: An Overview 1, 2 1, 1, , Zahraa Al Bander *, Marloes Dekker Nitert , Aya Mousa y and Negar Naderpoor * y 1 Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne 3168, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; [email protected] * Correspondence: [email protected] (Z.A.B.); [email protected] (N.N.); Tel.: +61-38-572-2896 (N.N.) These authors contributed equally to this work. y Received: 10 September 2020; Accepted: 15 October 2020; Published: 19 October 2020 Abstract: The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field.
    [Show full text]
  • Gut Microbiota: Its Role in Diabetes and Obesity
    ARTICLE Gut microbiota: Its role in diabetes and obesity Neil Munro Citation: Munro N (2016) Gut The gut microbiota is a community of microogranisms that live in the gut and intestinal microbiota: Its role in diabetes tract. The microbiota consists of bacteria, archaea and eukarya, as well as viruses, but is and obesity. Diabetes & Primary Care 18: 168–73 predominantly populated by anaerobic bacteria. Relationships between gut microbiota constituents and a wide range of human conditions such as enterocolitis, rheumatoid Article points arthritis, some cancers, type 1 and type 2 diabetes, and obesity have been postulated. 1. The role of the gut microbiota This article covers the essentials of the gut microbiota as well as the evidence for its role in certain disease progressions in diabetes and obesity. has been postulated, particularly its role in diabetes and obesity. he human gut microbiota is “an ecological Identifying microbiota constituents 2. There is much greater community of commensal, symbiotic and Until relatively recently, bacteria could only be genetic diversity between pathogenic micro-organisms that literally identified by direct microscopy and culture. people’s gut microbiota than T share our body space” (Lederberg and McCray, This proved particularly problematic with most between their genomes. 2001). It is made up of between 10 and 100 trillion anaerobic commensal gut flora (Ursell et al, 3. Improved understanding of the mechanisms by which the micro-organisms (with a mass weight of 1.5 kg) 2012). It has only been in recent years that human microbiota contributes and is found in the distal intestine (Allin et al, advances in gene sequencing and analytical to the development of 2015).
    [Show full text]
  • Association of Fungi and Archaea of the Gut Microbiota with Crohn's
    pathogens Article Association of Fungi and Archaea of the Gut Microbiota with Crohn’s Disease in Pediatric Patients—Pilot Study Agnieszka Krawczyk 1, Dominika Salamon 1,* , Kinga Kowalska-Duplaga 2 , Tomasz Bogiel 3,4 and Tomasz Gosiewski 1,* 1 Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; [email protected] 2 Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; [email protected] 3 Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; [email protected] 4 Clinical Microbiology Laboratory, University Hospital No. 1 in Bydgoszcz, 85-094 Bydgoszcz, Poland * Correspondence: [email protected] (D.S.); [email protected] (T.G.); Tel.: +48-(12)-633-25-67 (D.S.); +48-(12)-633-25-67 (T.G.) Abstract: The composition of bacteria is often altered in Crohn’s disease (CD), but its connection to the disease is not fully understood. Gut archaea and fungi have recently been suggested to play a role as well. In our study, the presence and number of selected species of fungi and archaea in pediatric patients with CD and healthy controls were evaluated. Stool samples were collected from children with active CD (n = 54), non-active CD (n = 37) and control subjects (n = 33). The prevalence and the number of selected microorganisms were assessed by real-time PCR. The prevalence of Candida Citation: Krawczyk, A.; Salamon, D.; tropicalis was significantly increased in active CD compared to non-active CD and the control group Kowalska-Duplaga, K.; Bogiel, T.; (p = 0.011 and p = 0.036, respectively).
    [Show full text]
  • Root Microbiota Assembly and Adaptive Differentiation Among European
    bioRxiv preprint doi: https://doi.org/10.1101/640623; this version posted May 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Root microbiota assembly and adaptive differentiation among European 2 Arabidopsis populations 3 4 Thorsten Thiergart1,7, Paloma Durán1,7, Thomas Ellis2, Ruben Garrido-Oter1,3, Eric Kemen4, Fabrice 5 Roux5, Carlos Alonso-Blanco6, Jon Ågren2,*, Paul Schulze-Lefert1,3,*, Stéphane Hacquard1,*. 6 7 1Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany 8 2Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE‐752 36 9 Uppsala, Sweden 10 3Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 11 50829 Cologne, Germany 12 4Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, 72076 Tübingen, 13 Germany 14 5LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France 15 6Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo 16 Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain 17 7These authors contributed equally: Thorsten Thiergart, Paloma Durán 18 *e-mail: [email protected], [email protected], [email protected] 19 20 Summary 21 Factors that drive continental-scale variation in root microbiota and plant adaptation are poorly 22 understood. We monitored root-associated microbial communities in Arabidopsis thaliana and co- 23 occurring grasses at 17 European sites across three years.
    [Show full text]
  • Microbiota and Obesogens: Environmental Regulators of Fat Storage
    Microbiota and obesogens: environmental regulators of fat storage John F. Rawls, Ph.D. Department of Molecular Genetics & Microbiology Center for Genomics of Microbial Systems Duke University School of Medicine Seminar outline 1. Introduction to the microbiota 2. Microbiota as environmental factors in obesity 3. Obesogens as environmental factors in obesity Seeing and understanding the unseen Antonie van Leewenhoek 1620’s: Described differences between microbes associated with teeth & feces during health & disease. Louis Pasteur 1850’s: Helps establish the “germ theory” of disease. 1885: Predicts that germ-free animals can not survive without “common microorganisms”. Culture-independent analysis of bacterial communities using 16S rRNA gene sequencing 16S rRNA 16S SSU rRNA 16S rRNA gene V1 V2 V3 V4 V5 V6 V7 V8 V9 Culture-independent analysis of bacterial communities using 16S rRNA gene sequencing plantbiology.siu.edu Phylogenetic analysis of 16S rRNA genes revealed 3 domains and a vast unappreciated diversity of microbial life You are here Carl Woese Glossary • Microbiota / microflora: the microorganisms of a particular site, habitat, or period of time. • Microbiome: the collective genomes of the microorganisms within a microbiota. • Germ-free / axenic: of a culture that is free from living organisms other than the host species. • Gnotobiotic: of an environment for rearing organisms in which all the microorganisms are either excluded or known. Current techniques for microbiome profiling Microbial community Morgan et al. (2012) Trends in
    [Show full text]
  • THE HUMAN MICROBIOTA: the ROLE of MICROBIAL COMMUNITIES in HEALTH and DISEASE La Microbiota Humana: Comunidades Microbianas En La Salud Y En La Enfermedad
    ACTA BIOLÓGICA COLOMBIANA http://www.revistas.unal.edu.co/index.php/actabiol SEDE BOGOTÁ FACULTAD DE CIENCIAS ARTÍCULODEPARTAMENTO DE DE REVISIÓN BIOLOGÍA INVITADO / INVITED REVIEW THE HUMAN MICROBIOTA: THE ROLE OF MICROBIAL COMMUNITIES IN HEALTH AND DISEASE La microbiota humana: comunidades microbianas en la salud y en la enfermedad Luz Elena BOTERO1,2, Luisa DELGADO-SERRANO3,4, Martha Lucía CEPEDA HERNÁNDEZ3, Patricia DEL PORTILLO OBANDO3, María Mercedes ZAMBRANO EDER3. 1 Facultad de Medicina, Universidad Pontificia Bolivariana. Calle 78B no. 72A-109, Bloque B, Piso 5. Medellín, Colombia. 2 Unidad de Bacteriología y Micobacterias, Corporación para Investigaciones Biológicas, Unidad Pontificia Bolivariana. Carrera 72A no. 78B-141. Medellín, Colombia. 3 Corporación Corpogen. Carrera 5 no. 66A-34. Bogotá D.C., Colombia. 4 Centro de Bioinformática y Biología Computacional- BIOS. Carrera 15B no. 161. Manizales, Colombia. For correspondence. [email protected] Received: 22nd March 2015, Returned for revision: 14th April 2015, Accepted: 10th July 2015. Associate Editor: Nubia Estela Matta Camacho. Citation / Citar este artículo como: Botero LE, Delgado-Serrano L, Cepeda ML, Del Portillo P, Zambrano MM. The human microbiota: the role of microbial communities in health and disease. Acta biol. Colomb. 2016;21(1):5-15. doi: http://dx.doi.org/10.15446/abc.v21n1.49761 ABSTRACT During the last decade, there has been increasing awareness of the massive number of microorganisms, collectively known as the human microbiota, that are associated with humans. This microbiota outnumbers the host cells by approximately a factor of ten and contains a large repertoire of microbial genome-encoded metabolic processes. The diverse human microbiota and its associated metabolic potential can provide the host with novel functions that can influence host health and disease status in ways that still need to be analyzed.
    [Show full text]
  • Aquatic Microbial Ecology 79:1
    Vol. 79: 1–12, 2017 AQUATIC MICROBIAL ECOLOGY Published online March 28 https://doi.org/10.3354/ame01811 Aquat Microb Ecol Contribution to AME Special 6 ‘SAME 14: progress and perspectives in aquatic microbial ecology’ OPENPEN ACCESSCCESS REVIEW Exploring the oceanic microeukaryotic interactome with metaomics approaches Anders K. Krabberød1, Marit F. M. Bjorbækmo1, Kamran Shalchian-Tabrizi1, Ramiro Logares2,1,* 1University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, 0316 Oslo, Norway 2Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain ABSTRACT: Biological communities are systems composed of many interacting parts (species, populations or single cells) that in combination constitute the functional basis of the biosphere. Animal and plant ecologists have advanced substantially our understanding of ecological inter- actions. In contrast, our knowledge of ecological interaction in microbes is still rudimentary. This represents a major knowledge gap, as microbes are key players in almost all ecosystems, particu- larly in the oceans. Several studies still pool together widely different marine microbes into broad functional categories (e.g. grazers) and therefore overlook fine-grained species/population-spe- cific interactions. Increasing our understanding of ecological interactions is particularly needed for oceanic microeukaryotes, which include a large diversity of poorly understood symbiotic rela- tionships that range from mutualistic to parasitic. The reason for the current state of affairs is that determining ecological interactions between microbes has proven to be highly challenging. How- ever, recent technological developments in genomics and transcriptomics (metaomics for short), coupled with microfluidics and high-performance computing are making it increasingly feasible to determine ecological interactions at the microscale.
    [Show full text]
  • The Human Gut Microbiota: a Dynamic Interplay with the Host from Birth to Senescence Settled During Childhood
    Review nature publishing group The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood Lorenza Putignani1, Federica Del Chierico2, Andrea Petrucca2,3, Pamela Vernocchi2,4 and Bruno Dallapiccola5 The microbiota “organ” is the central bioreactor of the gastroin- producing immunological memory (2). Indeed, the intestinal testinal tract, populated by a total of 1014 bacteria and charac- epithelium at the interface between microbiota and lymphoid terized by a genomic content (microbiome), which represents tissue plays a crucial role in the mucosa immune response more than 100 times the human genome. The microbiota (2). The IS ability to coevolve with the microbiota during the plays an important role in child health by acting as a barrier perinatal life allows the host and the microbiota to coexist in a against pathogens and their invasion with a highly dynamic relationship of mutual benefit, which consists in dispensing, in modality, exerting metabolic multistep functions and stimu- a highly coordinated way, specific immune responses toward lating the development of the host immune system, through the biomass of foreign antigens, and in discriminating false well-­organized programming, which influences all of the alarms triggered by benign antigens (2). The failure to obtain growth and aging processes. The advent of “omics” technolo- or maintain this complex homeostasis has a negative impact gies (genomics, proteomics, metabolomics), characterized by on the intestinal and systemic health (2). Once the balance complex technological platforms and advanced analytical and fails, the “disturbance” causes the disease, triggering an abnor- computational procedures, has opened new avenues to the mal inflammatory response as it happens, for example, for the knowledge of the gut microbiota ecosystem, clarifying some inflammatory bowel diseases in newborns (2).
    [Show full text]
  • Optimize the Plant Microbiota to Increase Plant Growth and Health
    July 2019 POSITION PAPER Optimize the plant microbiota to increase plant growth and health Barret M. (INRA, IRHS), Dufour P. (RAGT), Durand-Tardif M. (GIS BV), Mariadassou M. (INRA, MaIAGE), Mougel C. (INRA, IGEPP), Perez P. (Limagrain), Roumagnac P. (Cirad, BGPI), Sanguin H. (Cirad, BGPI), Steinberg C. (INRA, Agroécologie), Szambien M. (GIS BV) The “Groupement d’Intérêt Scientifique Biotechnologies Vertes” (GIS BV) organized on November 13th, 2018 in Paris, a scientific workshop on “Metagenomics for agro-ecosystems management and plant breeding”. Thirty-four scientists, including eight from the private sector attended the workshop. General discussion was organized around the presentations related to plant, seeds and soil microbiota, and data treatment to reconstruct interaction networks. This article gathers the current French research strengths, relative to the international context and highlights the research priorities between the public and the private sectors, using plant genetics and plant-microbiota interactions for the benefit of future agricultures. plant productivity. Hence, over recent years a Socio-economic context, scientific number of research groups explored the impact of challenges and opportunities environmental factors and host genetic variation on the composition and dynamics of plant microbiota [12–19]. Overall, these studies Plants live in association with a wide diverse and acknowledged an important influence of the complex assembly of viruses and microorganisms environment on plant microbiota composition and including
    [Show full text]
  • Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems
    fmars-08-698853 August 11, 2021 Time: 11:16 # 1 REVIEW published: 16 August 2021 doi: 10.3389/fmars.2021.698853 Corals and Sponges Under the Light of the Holobiont Concept: How Microbiomes Underpin Our Understanding of Marine Ecosystems Chloé Stévenne*†, Maud Micha*†, Jean-Christophe Plumier and Stéphane Roberty InBioS – Animal Physiology and Ecophysiology, Department of Biology, Ecology & Evolution, University of Liège, Liège, Belgium In the past 20 years, a new concept has slowly emerged and expanded to various domains of marine biology research: the holobiont. A holobiont describes the consortium formed by a eukaryotic host and its associated microorganisms including Edited by: bacteria, archaea, protists, microalgae, fungi, and viruses. From coral reefs to the Viola Liebich, deep-sea, symbiotic relationships and host–microbiome interactions are omnipresent Bremen Society for Natural Sciences, and central to the health of marine ecosystems. Studying marine organisms under Germany the light of the holobiont is a new paradigm that impacts many aspects of marine Reviewed by: Carlotta Nonnis Marzano, sciences. This approach is an innovative way of understanding the complex functioning University of Bari Aldo Moro, Italy of marine organisms, their evolution, their ecological roles within their ecosystems, and Maria Pia Miglietta, Texas A&M University at Galveston, their adaptation to face environmental changes. This review offers a broad insight into United States key concepts of holobiont studies and into the current knowledge of marine model *Correspondence: holobionts. Firstly, the history of the holobiont concept and the expansion of its use Chloé Stévenne from evolutionary sciences to other fields of marine biology will be discussed.
    [Show full text]
  • Differences in Gut Microbiota Composition in Finishing Landrace Pigs with Low and High Feed Conversion Ratios
    Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-018-1057-1 ORIGINAL PAPER Differences in gut microbiota composition in finishing Landrace pigs with low and high feed conversion ratios Zhen Tan . Yuan Wang . Ting Yang . Hong Ao . Shaokang Chen . Kai Xing . Fengxia Zhang . Xitong Zhao . Jianfeng Liu . Chuduan Wang Received: 19 April 2017 / Accepted: 22 February 2018 Ó The Author(s) 2018. This article is an open access publication Abstract The goal of this study was to evaluate the different organs: Campylobacter, Prevotella and microbial communities in the gut and feces from Sphaerochaeta were different in the duodenum female finishing Landrace pigs with high and low feed (P \ 0.05); Sanguibacter, Kingella and Anaero- conversion ratio (FCR) by 16S rRNA gene amplicon plasma in jejunum; Anaeroplasma, Arthrobacter, sequencing. Many potential biomarkers can distin- Kingella, Megasphaera and SMB53 in the ileum; guish between high and low FCR groups in the Butyricicoccus, Campylobacter, Mitsuokella, and Co- duodenum, ileum, cecum, colon, and rectum, accord- probacillus in the cecum; Lactococcus and Peptococ- ing to linear discriminant analysis effect sizes. The cus in the colon; Staphylococcus in the rectum; and relative abundance of microbes were tested by Mann– Rothia in feces. The prevalence of microbial genera in Whitney test between the high and low FCR groups in certain locations could potentially be used as biomark- ers to distinguish between high and low FCR. Func- tional prediction clustering analysis suggested that Zhen Tan and Yuan Wang have contributed equally to this bacteria in the hindgut mainly participated in carbo- work. hydrate metabolism and amino acid metabolism, and Electronic supplementary material The online version of different in the relative abundance of metabolic this article (https://doi.org/10.1007/s10482-018-1057-1) con- pathways, as predicted from the microbial taxa tains supplementary material, which is available to authorized present, were identified by comparing the high and users.
    [Show full text]