The Human Gut Microbiota: a Dynamic Interplay with the Host from Birth to Senescence Settled During Childhood

Total Page:16

File Type:pdf, Size:1020Kb

The Human Gut Microbiota: a Dynamic Interplay with the Host from Birth to Senescence Settled During Childhood Review nature publishing group The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood Lorenza Putignani1, Federica Del Chierico2, Andrea Petrucca2,3, Pamela Vernocchi2,4 and Bruno Dallapiccola5 The microbiota “organ” is the central bioreactor of the gastroin- producing immunological memory (2). Indeed, the intestinal testinal tract, populated by a total of 1014 bacteria and charac- epithelium at the interface between microbiota and lymphoid terized by a genomic content (microbiome), which represents tissue plays a crucial role in the mucosa immune response more than 100 times the human genome. The microbiota (2). The IS ability to coevolve with the microbiota during the plays an important role in child health by acting as a barrier perinatal life allows the host and the microbiota to coexist in a against pathogens and their invasion with a highly dynamic relationship of mutual benefit, which consists in dispensing, in modality, exerting metabolic multistep functions and stimu- a highly coordinated way, specific immune responses toward lating the development of the host immune system, through the biomass of foreign antigens, and in discriminating false well-­organized programming, which influences all of the alarms triggered by benign antigens (2). The failure to obtain growth and aging processes. The advent of “omics” technolo- or maintain this complex homeostasis has a negative impact gies (genomics, proteomics, metabolomics), characterized by on the intestinal and systemic health (2). Once the balance complex technological platforms and advanced analytical and fails, the “disturbance” causes the disease, triggering an abnor- computational procedures, has opened new avenues to the mal inflammatory response as it happens, for example, for the knowledge of the gut microbiota ecosystem, clarifying some inflammatory bowel diseases in newborns (2). Specific determi- aspects on the establishment of microbial communities that nants of variability between host and related environment act constitute it, their modulation and active interaction with directly on the composition and density of the gut microbiota external stimuli as well as food, within the host genetic vari- immediately after birth, resulting in the functional efficiency ability. With a huge interdisciplinary effort and an interface of the newborn intestine (3). The gastrointestinal ecosystem work between basic, translational, and clinical research, micro- constituting the microbiota can be represented as a “microbial biologists, specialists in “-omics” disciplines, and clinicians are organ” (named superorgan) (4), located in the host organism now clarifying the role of the microbiota in the programming (superorganism) and characterized by a dynamic interaction process of several gut-related diseases, from the physiological with food and host cells (Figure 1). symbiosis to the microbial dysbiosis stage, through an inte- The strong relationship between gut microbiota and metab- grated systems biology approach. olism is progressively emerging as a control key in the gut “plant” energetics, defining the role of gut microbiota metabo- ROLE AND FUNCTION OF THE HUMAN MICROBIOTA lome, inflammatory response, and genesis of metabolic altera- Symbiosis and Dysbiosis of Gut Microbiota: A Landmark to Raise tions (5). First, the causal role of gut microbiota in the control Health During Early Life Stages of energy homeostasis was indicated by comparing conven- Human gut microbiota is a complex ecosystem consisting of tional to germ-free (GF) mice fed a high-fat diet (6). While a total of 1014 bacteria. Its genome, which represents more conventional mice gain weight, the GF mice continued to be than 100 times the human genome, can be defined microbi- lean although daily increased food intake (6), suggesting an ome (1). The microbiota commensals play an important role impaired feeding efficiency. Body weight gain was greater in human health by acting as a barrier against pathogens when the GF mice were colonized with the microbiota from and their invasion with a highly dynamic modality, exert- obese rather than from a lean mouse, suggesting that a given ing metabolic functions and stimulating the development of microbiota is dependent on the host genome (7). It was then the immunitary system (IS) (2). The IS consists of innate and shown that obese patients were characterized by an excess of adaptive ISs. The innate IS is the sum of physical and chemi- Firmicutes, when compared with lean controls, and the dys- cal blocks, through reactivity of local nonspecific and specific biosis was inverted under caloric restrictions (8). Interestingly, cells recruited to the site of inflammation. The adaptive IS acts obese mice showed similar intestinal dysbiosis, suggesting a as a specific second line, responding to antigen variability and common mice/humans mechanism (9). Burcelin et al. (10) 1Unit of Parasitology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 2Unit of Metagenomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy; 3Department of ­Diagnostic Science, Sant’Andrea Hospital, Rome, Italy; 4Interdipartimental Centre for Industrial Research-CIRI-AGRIFOOD, Alma Mater Studiorum, University of Bologna, ­Bologna, Italy; 5Scientific Directorate, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy. Correspondence: Lorenza Putignani ([email protected]) Received 19 July 2013; accepted 14 January 2014; advance online publication 21 May 2014. doi:10.1038/pr.2014.49 2 Pediatric RESEArCH Volume 76 | Number 1 | July 2014 Copyright © 2014 International Pediatric Research Foundation, Inc. Human gut microbiota programming Review Superorganism resistance. The TLR-2 deficient mice became resistant to insu- Gut Symbiosis lin and therefore obese, suggesting a correlation with the microbiota in the gut increased fat storage or with the augmented levels of gastroin- testinal lipopolysaccharide (LPS) permeability and absorption. Recent data have started to characterize the human dysbiosis also during liver disease (17), showing a statistically signifi- Bacteria Host cant increase of Proteobacteria in pediatric obesity, compared Metagenome with nonalcoholic steatohepatitis (18). Metabolic diseases are linked with disruption of both innate and adaptive ISs (19). It is now widely accepted that overproduction of some cytokines Microbiome (e.g., tumor necrosis factor-α and interleukin-1) contributes to insulin resistance thereby promoting diabetes (20), through infiltration into adipose tissue, leading to a tissue metabolic Diet inflammation (21), as well as Gram (−) LPS components (22), Environment which then circulate in the blood through LPS-binding pro- teins and lipoproteins accumulated during the feeding period (23). In the proximal gut segments, even under homeostasis, Inflammation Xeno-metabolome where the microbiota is rare, some commensal bacteria can be Individual phenotype in close contact with the epithelial cells. The IS scavenges these bacteria and generates primary T-cell responses, either immu- nogenic or tolerogenic (24). However, this concept, validated Intestinal in healthy subjects and in patients with inflammatory bowel Symbiosis diseases in the gut disease, has to be reconsidered in metabolic diseases, because gut dysbiosis can be induced within a few days or weeks by Dysbiosis in the gut a diet change (25), allowing pathogens to penetrate the body without being destroyed by the innate and specific adaptive ISs, through a nucleotide-binding oligomerization domain 1- Figure 1. Graphical representation of the superorganism, its interactions and LPS-cluster of differentiation 14–dependent translocation with the various variability determinants, and related individual pheno- types. The largest microbiome is located in our gastrointestinal tract, and it mechanism, which, when hampered, improves insulin sensi- is influenced by several external factors, such as diet, inflammation stage, tivity (26). Thereby, the blood might not be a direct route for environment, and xeno-metabolome. Each microbiome constitutes an bacterial translocation, suggesting the possibility of a tissue individual phenotype, able to describe symbiosis-, dysbiosis-, and disease- microbiota, also mediating allergy response (27). To identify related gut conditions. million of bacterial genes involved in the control of metabolism is a demanding task. This deserves sophisticated computational showed that C57BL6 mice, fed a high-fat diet, had metabolic pathways that may drive in the assignment of diversified bacte- phenotypes highly heterogeneous, with different levels of dia- rial roles: (i) resilient bacteria (acting in “early” inflammation), betes and obesity, suggesting a metabolic “epigenetic” adapta- (ii) responsive bacteria (players in “late” inflammation), and tion unrelated to diet or genotype. Additionally, also antibiotic (iii) (e.g., infections, inflammatory bowel diseases status) hence treatment of obese mice was described as an important dysbi- translating “roles” into the framework of “real case sample otic effect affecting Firmicutes/Bacteroidetes vs. Proteobacteria diversity” (28). However, to date, case–control studies include ratio (11). Besides hyperglycemia (12), insulin resistance was only limited numbers of individuals/patients, while genome- associated with gut microbiota changes, even in patients with wide and metabolic-wide studies should be necessary to pro- similar body weight, strongly correlating with obesity and type
Recommended publications
  • Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
    International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota.
    [Show full text]
  • The Gut Microbiota and Inflammation
    International Journal of Environmental Research and Public Health Review The Gut Microbiota and Inflammation: An Overview 1, 2 1, 1, , Zahraa Al Bander *, Marloes Dekker Nitert , Aya Mousa y and Negar Naderpoor * y 1 Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne 3168, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; [email protected] * Correspondence: [email protected] (Z.A.B.); [email protected] (N.N.); Tel.: +61-38-572-2896 (N.N.) These authors contributed equally to this work. y Received: 10 September 2020; Accepted: 15 October 2020; Published: 19 October 2020 Abstract: The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field.
    [Show full text]
  • Gut Health in Veterinary Medicine: a Bibliometric Analysis of the Literature
    animals Article Gut Health in Veterinary Medicine: A Bibliometric Analysis of the Literature Elena Colombino 1,*,† , Daniel Prieto-Botella 2,† and Maria Teresa Capucchio 1 1 Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy; [email protected] 2 Department of Surgery and Pathology, Miguel Hernandez University, 03550 Alicante, Spain; [email protected] * Correspondence: [email protected] † Equally contribution. Simple Summary: Gut health has been a main topic in veterinary medicine research after the ban on the use of antimicrobial growth promoters. Gut health has been defined as absence/prevention/avoidance of gastrointestinal disease so that the animal is able to perform its physiological functions. A biblio- metric analysis is a set of statistical methods used to explore trends in the scientific literature such as number of publications, most prolific countries and main research areas to highlight publication dynamics and gaps of knowledge. In this case, a bibliometric analysis was performed on veterinary gut health using the database Web of Science and the R package Bibliometrix. A total of 1696 docu- ments were retrieved between 2000 and 2020, showing an increase of 22.4% in the number of annual publications. Pigs (34.8%), poultry (chicken, duck, turkey and quail—33.9%) and aquaculture (fishes, crustaceans and frog—15.0%) were the most studied species while a scarce number of publications was found on felines, cows, horses, rodents, goats and sheep. China (24.7%), USA (17.2%) and Canada (5.7%) were the most productive countries. Three main research lines aimed to explore animal nutrition, prevention of inflammatory diseases and microbiota composition were identified.
    [Show full text]
  • Gut Microbiota: Its Role in Diabetes and Obesity
    ARTICLE Gut microbiota: Its role in diabetes and obesity Neil Munro Citation: Munro N (2016) Gut The gut microbiota is a community of microogranisms that live in the gut and intestinal microbiota: Its role in diabetes tract. The microbiota consists of bacteria, archaea and eukarya, as well as viruses, but is and obesity. Diabetes & Primary Care 18: 168–73 predominantly populated by anaerobic bacteria. Relationships between gut microbiota constituents and a wide range of human conditions such as enterocolitis, rheumatoid Article points arthritis, some cancers, type 1 and type 2 diabetes, and obesity have been postulated. 1. The role of the gut microbiota This article covers the essentials of the gut microbiota as well as the evidence for its role in certain disease progressions in diabetes and obesity. has been postulated, particularly its role in diabetes and obesity. he human gut microbiota is “an ecological Identifying microbiota constituents 2. There is much greater community of commensal, symbiotic and Until relatively recently, bacteria could only be genetic diversity between pathogenic micro-organisms that literally identified by direct microscopy and culture. people’s gut microbiota than T share our body space” (Lederberg and McCray, This proved particularly problematic with most between their genomes. 2001). It is made up of between 10 and 100 trillion anaerobic commensal gut flora (Ursell et al, 3. Improved understanding of the mechanisms by which the micro-organisms (with a mass weight of 1.5 kg) 2012). It has only been in recent years that human microbiota contributes and is found in the distal intestine (Allin et al, advances in gene sequencing and analytical to the development of 2015).
    [Show full text]
  • Cultural Macroevolution and the Transmission of Traits
    UC Davis UC Davis Previously Published Works Title Cultural macroevolution and the transmission of traits Permalink https://escholarship.org/uc/item/92n9t9q0 Journal Evolutionary Anthropology, 15(2) ISSN 1060-1538 Authors Borgerhoff Mulder, Monique Nunn, C L Towner, M. C. Publication Date 2006-03-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Borgerhoff Mulder, Nunn and Towner 2005 1/4/2007 Page 1 of 38 CULTURAL MACROEVOLUTION AND THE TRANSMISSION OF TRAITS Monique Borgerhoff Mulder University of California Department of Anthropology Davis, CA 95616 USA email: [email protected] Charles L. Nunn University of California Department of Integrative Biology Berkeley, CA 94720-3140 USA Max Planck Institute for Evolutionary Anthropology Leipzig, Germany email: [email protected] Mary C. Towner University of California Department of Anthropology Davis, CA 95616 USA email: [email protected] Monique Borgerhoff Mulder is at the Department of Anthropology (UC Davis) and also a member of the Center for Population Biology and the Graduate Group in Ecology. Charles Nunn is a scientist at the Max Planck Institute for Evolutionary Anthropology and in the Department of Integrative Biology at UC Berkeley. Mary Towner is a post doctoral fellow in the Department of Anthropology at UC Davis Word Count: 7668 (including 4 boxes) 7 figures 100 refs Revised for Evolutionary Anthropology p. 1 Borgerhoff Mulder, Nunn and Towner 2005 1/4/2007 Page 2 of 38 Cultural traits are distributed across human societies in a patterned way. Study of the mechanisms whereby cultural traits persist and change over time is key to understanding human cultural diversity.
    [Show full text]
  • Parents with Periodontitis Impact the Subgingival Colonization of Their Ofspring Mabelle Freitas Monteiro1, Khaled Altabtbaei2, Purnima S
    www.nature.com/scientificreports OPEN Parents with periodontitis impact the subgingival colonization of their ofspring Mabelle Freitas Monteiro1, Khaled Altabtbaei2, Purnima S. Kumar3,4*, Márcio Zafalon Casati1, Karina Gonzales Silverio Ruiz1, Enilson Antonio Sallum1, Francisco Humberto Nociti‑Junior1 & Renato Corrêa Viana Casarin1,4 Early acquisition of a pathogenic microbiota and the presence of dysbiosis in childhood is associated with susceptibility to and the familial aggregation of periodontitis. This longitudinal interventional case–control study aimed to evaluate the impact of parental periodontal disease on the acquisition of oral pathogens in their ofspring. Subgingival plaque and clinical periodontal metrics were collected from 18 parents with a history of generalized aggressive periodontitis and their children (6–12 years of age), and 18 periodontally healthy parents and their parents at baseline and following professional oral prophylaxis. 16S rRNA amplicon sequencing revealed that parents were the primary source of the child’s microbiome, afecting their microbial acquisition and diversity. Children of periodontitis parents were preferentially colonized by Filifactor alocis, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, Fusobacterium nucleatum and several species belonging to the genus Selenomonas even in the absence of periodontitis, and these species controlled inter‑bacterial interactions. These pathogens also emerged as robust discriminators of the microbial signatures of children of parents with periodontitis. Plaque control did not modulate this pathogenic pattern, attesting to the microbiome’s resistance to change once it has been established. This study highlights the critical role played by parental disease in microbial colonization patterns in their ofspring and the early acquisition of periodontitis‑related species and underscores the need for greater surveillance and preventive measures in families of periodontitis patients.
    [Show full text]
  • British Society of Gastroenterology Guidelines on the Gut: First Published As 10.1136/Gutjnl-2021-324598 on 26 April 2021
    Guidelines British Society of Gastroenterology guidelines on the Gut: first published as 10.1136/gutjnl-2021-324598 on 26 April 2021. Downloaded from management of irritable bowel syndrome Dipesh H Vasant ,1,2 Peter A Paine,2,3 Christopher J Black ,4,5 Lesley A Houghton ,5,6 Hazel A Everitt,7 Maura Corsetti,8 Anurag Agrawal,9 Imran Aziz ,10,11 Adam D Farmer,12,13 Maria P Eugenicos,14 Rona Moss- Morris,15 Yan Yiannakou,16 Alexander C Ford 4,5 ► Additional supplemental ABSTRACT (abdominal pain or discomfort, in association material is published online Irritable bowel syndrome (IBS) remains one of the most with altered bowel habit, for at least 6 months, only. To view, please visit the journal online (http:// dx. doi. org/ common gastrointestinal disorders seen by clinicians in in the absence of alarm symptoms or signs) is 10. 1136/ gutjnl- 2021- 324598). both primary and secondary care. Since publication of the more pragmatic and may be more applicable to last British Society of Gastroenterology (BSG) guideline patients with IBS in primary care than diagnostic For numbered affiliations see end of article. in 2007, substantial advances have been made in criteria derived from patients in secondary care, understanding its complex pathophysiology, resulting in such as the Rome IV criteria (recommendation: Correspondence to its re- classification as a disorder of gut- brain interaction, weak, quality of evidence: low). Professor Alexander C Ford, rather than a functional gastrointestinal disorder. ► All patients presenting with symptoms of IBS Leeds Gastroenterology Moreover, there has been a considerable amount of for the first time in primary care should have Institute, St James’s University new evidence published concerning the diagnosis, a full blood count, C reactive protein or eryth- Hospital, Leeds, UK; alexf12399@ yahoo.
    [Show full text]
  • Association of Fungi and Archaea of the Gut Microbiota with Crohn's
    pathogens Article Association of Fungi and Archaea of the Gut Microbiota with Crohn’s Disease in Pediatric Patients—Pilot Study Agnieszka Krawczyk 1, Dominika Salamon 1,* , Kinga Kowalska-Duplaga 2 , Tomasz Bogiel 3,4 and Tomasz Gosiewski 1,* 1 Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; [email protected] 2 Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; [email protected] 3 Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; [email protected] 4 Clinical Microbiology Laboratory, University Hospital No. 1 in Bydgoszcz, 85-094 Bydgoszcz, Poland * Correspondence: [email protected] (D.S.); [email protected] (T.G.); Tel.: +48-(12)-633-25-67 (D.S.); +48-(12)-633-25-67 (T.G.) Abstract: The composition of bacteria is often altered in Crohn’s disease (CD), but its connection to the disease is not fully understood. Gut archaea and fungi have recently been suggested to play a role as well. In our study, the presence and number of selected species of fungi and archaea in pediatric patients with CD and healthy controls were evaluated. Stool samples were collected from children with active CD (n = 54), non-active CD (n = 37) and control subjects (n = 33). The prevalence and the number of selected microorganisms were assessed by real-time PCR. The prevalence of Candida Citation: Krawczyk, A.; Salamon, D.; tropicalis was significantly increased in active CD compared to non-active CD and the control group Kowalska-Duplaga, K.; Bogiel, T.; (p = 0.011 and p = 0.036, respectively).
    [Show full text]
  • Human Microbiome: Your Body Is an Ecosystem
    Human Microbiome: Your Body Is an Ecosystem This StepRead is based on an article provided by the American Museum of Natural History. What Is an Ecosystem? An ecosystem is a community of living things. The living things in an ecosystem interact with each other and with the non-living things around them. One example of an ecosystem is a forest. Every forest has a mix of living things, like plants and animals, and non-living things, like air, sunlight, rocks, and water. The mix of living and non-living things in each forest is unique. It is different from the mix of living and non-living things in any other ecosystem. You Are an Ecosystem The human body is also an ecosystem. There are trillions tiny organisms living in and on it. These organisms are known as microbes and include bacteria, viruses, and fungi. There are more of them living on just your skin right now than there are people on Earth. And there are a thousand times more than that in your gut! All the microbes in and on the human body form communities. The human body is an ecosystem. It is home to trillions of microbes. These communities are part of the ecosystem of the human Photo Credit: Gaby D’Alessandro/AMNH body. Together, all of these communities are known as the human microbiome. No two human microbiomes are the same. Because of this, you are a unique ecosystem. There is no other ecosystem like your body. Humans & Microbes Microbes have been around for more than 3.5 billion years.
    [Show full text]
  • 775 Sixth International Conference on Webometrics, Informetrics And
    Sixth International Conference on Webometrics, Informetrics and Scientometrics & Eleventh COLLNET Meeting, October 19 – 22, 2010, University of Mysore, ALGORITHMIC GENERATION OF SPECIALTY PROFILES FOR MEDICAL JOURNALS Pudovkin A.I Institute of Marine Biology, Vladivostok 690041, Russia; e-mail: [email protected] E. Garfield ThomsonReuters Scientific, 1500 Spring Garden Street, Philadelphia, PA 19130-4067, e-mail: [email protected] Abstract A procedure for generating a topical profile of a medical journal is proposed. The procedure consists in calculating of the relatedness index Rgeom of a target journal with all 50 JCR medical categories and identification of top-related ones. The set of highly related categories (3 or 5) may be regarded as the specialty profile of the target journal. We illustrate the method by considering the content of 7 medical journals, 6 specialized ones and a leading multi-scope journal: Annals of Surgery, Circulation, Clinical Infectious diseases, European Heart Journal, Gut, Shock, and New England Journal of Medicine. The data for our analyses are taken from the 2006 and 2009 JCR Science Edition ―Related Journals‖ listings for each medical category. It is shown that the resulting specialty profiles are quite stable in time and well correspond to JCR‘s assignment of journals to subject categories. JCR‘s category assignment is a heuristic procedure performed by an expert, while our procedure is comletely algorithmic. KeyWords: journal topical specification; medical journals; JCR; Journal Relatedness Indexes Introduction The problem of classification, that is, specialty characterization of journals is an old and difficult one (Katz and Hicks, 1995; Boyack et al., 2005; Klavans and Boyack, 2006; Leydesdorff, 2006; Zhang et al., 2010a, b).
    [Show full text]
  • Targeting the Microbiota-Gut-Brain Axis
    Author’s Accepted Manuscript Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice“Prebiotics for Stress-Related Disorders” Aurelijus Burokas, Silvia Arboleya, Rachel D. Moloney, Veronica L. Peterson, Kiera Murphy, Gerard Clarke, Catherine Stanton, Timothy G. www.elsevier.com/locate/journal Dinan, John F. Cryan PII: S0006-3223(17)30042-2 DOI: http://dx.doi.org/10.1016/j.biopsych.2016.12.031 Reference: BPS13098 To appear in: Biological Psychiatry Cite this article as: Aurelijus Burokas, Silvia Arboleya, Rachel D. Moloney, Veronica L. Peterson, Kiera Murphy, Gerard Clarke, Catherine Stanton, Timothy G. Dinan and John F. Cryan, Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice“Prebiotics for Stress-Related Disorders”, Biological Psychiatry, http://dx.doi.org/10.1016/j.biopsych.2016.12.031 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice Aurelijus Burokas1, Silvia Arboleya1,2*, Rachel D. Moloney1*, Veronica L.
    [Show full text]
  • Porphyromonas Gingivalis Infection on Gut Dysbiosis and Arthritis Exacerbation in 1 Mouse Model
    Preprint: Please note that this article has not completed peer review. Effect of Porphyromonas gingivalis infection on gut dysbiosis and arthritis exacerbation in 1 mouse model CURRENT STATUS: UNDER REVISION Yuta Hamamoto Hiroshima University Kazuhisa Ouhara Hiroshima University [email protected] Author ORCiD: https://orcid.org/0000-0001-6796-884X Syuichi Munenaga HIroshima University Mikio Shoji Nagasaki University Tatsuhiko Ozawa University of Toyama Jyunzo Hisatsune National Institute of Infectious Diseases Isamu Kado Hiroshima University Mikihito Kajiya Hiroshima University Shinji Matsuda Hiroshima University Toshihisa Kawai Nova Southeastern University Noriyoshi Mizuno Hiroshima University 1 Tsuyoshi Fujita Hiroshima University Shintaro Hirata Hiroshima University Kotaro Tanimoto Hiroshima University Koji Nakayama Nagasaki University Hiroyuki Kishi University of Toyama Eiji Sugiyama Hiroshima University Hidemi Kurihara Hiroshima University DOI: 10.21203/rs.2.20521/v1 SUBJECT AREAS Rheumatology KEYWORDS Porphyromonas gingivalis, Rheumatoid Arthritis, Periodontitis, Citrullinated protein, Dysbiosis 2 Abstract Background : Porphyromonas gingivalis (Pg) infection causes periodontal disease and is one of the causative bacteria of rheumatoid arthritis (RA) exacerbation. Gut microbiota dysbiosis has shown strong associations with systemic diseases, including RA, diabetes mellitus, and inflammatory bowel disease, and inoculation of periodontopathogenic bacteria (i.e. Pg) can alter gut microbiota composition. Therefore, this study investigated dysbiosis-mediated arthritis exacerbation by Pg oral inoculation in an experimental arthritis model mouse. Methods : Pg inoculation in the oral cavity twice a week for 6 weeks was performed to induce periodontitis in SKG mice. Concomitantly, a single intraperitoneal (i.p.) injection of laminarin (LA) was administered to induce experimental arthritis (Pg-LA mouse). Citrullinated protein (CP) and IL-6 levels in periodontal, intestinal, and joint tissues, and serum were measured by ELISA.
    [Show full text]