Association of Fungi and Archaea of the Gut Microbiota with Crohn's

Total Page:16

File Type:pdf, Size:1020Kb

Association of Fungi and Archaea of the Gut Microbiota with Crohn's pathogens Article Association of Fungi and Archaea of the Gut Microbiota with Crohn’s Disease in Pediatric Patients—Pilot Study Agnieszka Krawczyk 1, Dominika Salamon 1,* , Kinga Kowalska-Duplaga 2 , Tomasz Bogiel 3,4 and Tomasz Gosiewski 1,* 1 Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Poland; [email protected] 2 Department of Pediatrics, Gastroenterology and Nutrition, Faculty of Medicine, Jagiellonian University Medical College, 30-663 Krakow, Poland; [email protected] 3 Microbiology Department, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 85-094 Bydgoszcz, Poland; [email protected] 4 Clinical Microbiology Laboratory, University Hospital No. 1 in Bydgoszcz, 85-094 Bydgoszcz, Poland * Correspondence: [email protected] (D.S.); [email protected] (T.G.); Tel.: +48-(12)-633-25-67 (D.S.); +48-(12)-633-25-67 (T.G.) Abstract: The composition of bacteria is often altered in Crohn’s disease (CD), but its connection to the disease is not fully understood. Gut archaea and fungi have recently been suggested to play a role as well. In our study, the presence and number of selected species of fungi and archaea in pediatric patients with CD and healthy controls were evaluated. Stool samples were collected from children with active CD (n = 54), non-active CD (n = 37) and control subjects (n = 33). The prevalence and the number of selected microorganisms were assessed by real-time PCR. The prevalence of Candida Citation: Krawczyk, A.; Salamon, D.; tropicalis was significantly increased in active CD compared to non-active CD and the control group Kowalska-Duplaga, K.; Bogiel, T.; (p = 0.011 and p = 0.036, respectively). The number of Malassezia spp. cells was significantly lower in Gosiewski, T. Association of Fungi patients with active CD compared to the control group, but in non-active CD, a significant increase and Archaea of the Gut Microbiota was observed (p = 0.005 and p = 0.020, respectively). There were no statistically significant differences with Crohn’s Disease in Pediatric in the colonization by archaea. The obtained results indicate possible correlations with the course Patients—Pilot Study. Pathogens 2021, of the CD; however, further studies of the entire archeobiome and the mycobiome are necessary in 10, 1119. https://doi.org/10.3390/ order to receive a complete picture. pathogens10091119 Academic Editor: Ana Elena Pérez Keywords: fungi; archaea; gut microbiota; Crohn’s disease; gut dysbiosis Cobas Received: 4 August 2021 Accepted: 29 August 2021 1. Introduction Published: 1 September 2021 Crohn’s disease (CD) is included in the group of diseases known as inflammatory bowel diseases (IBD). It is believed that the incidence and severity of the course of the Publisher’s Note: MDPI stays neutral disease are conditioned by a combination of genetic, immunological, environmental and with regard to jurisdictional claims in microbiological factors (Figure1)[ 1–3]. The latter remain a constant interest of many published maps and institutional affil- research teams, due to the still unclear role of microorganisms in the pathogenesis of the iations. disease. The fact that microorganisms participate in causing CD is suggested by numerous studies and clinical observations, among others: exacerbation of the disease as a result of infection and food poisoning [4]; failure to induce enteritis in germ-free animals; alleviation Copyright: © 2021 by the authors. or amelioration of symptoms following the application of antibiotics, probiotics or colon Licensee MDPI, Basel, Switzerland. cleansing treatments [5,6], as well as achieving remission in patients who underwent a This article is an open access article transplant of gut microbiota from healthy people [7]. The majority of the studies to date distributed under the terms and have concerned the analysis of the bacteriobiome in IBD [8–14]. However, owing to the conditions of the Creative Commons recent development of molecular methods, more and more attention is also paid to other Attribution (CC BY) license (https:// microorganisms comprising the normal gut microbiota, i.e. fungi, viruses or archaea. creativecommons.org/licenses/by/ 4.0/). Pathogens 2021, 10, 1119. https://doi.org/10.3390/pathogens10091119 https://www.mdpi.com/journal/pathogens Pathogens 2021, 10, x FOR PEER REVIEW 2 of 11 Pathogens 2021, 10, 1119 2 of 11 other microorganisms comprising the normal gut microbiota, i.e. fungi, viruses or ar- chaea. Figure 1.FigureRisk factors 1. Risk for factors CD —Crohn’s for CD — Disease;Crohn’s NOD2—nucleotide-binding Disease; NOD2—nucleotide oligomerization-binding oligomerization domain containing do- 2; CARD15—caspasemain containing recruitment 2; CARD15 domain family,—caspase member recruitment 15; TLR—toll-like domain receptors;family, member OCTN—organic 15; TLR cation—toll transporter;-like re- ATG16L1—autophagy-relatedceptors; OCTN—organic protein 16cation like 1;transporter; LRRK2—leucine-rich ATG16L1 repeat—autophagy kinase 2; IRGM—immunity-related protein related16 like GTPase 1; M; STAT3—signalLRRK2— transducerleucine-rich and repeat activator kinase of transcription 2; IRGM— 3;immunity CLEC7A—C-Type related GTPase Lectin Domain M; STAT3 Containing—signal 7A, trans- IFN-γ— interferonducer gamma, and TNF- activatorα—tumor of necrosistranscription factor alpha;3; CLEC7A Th1—Type—C- 1Type helper Lectin T-cells; Domain Th17—T-helper Containing 17 cell, 7A, Il- IFN interleukin.-γ— interferon gamma, TNF-α—tumor necrosis factor alpha; Th1—Type 1 helper T-cells; Th17—T- helper 17 cell, Il- interleukin.Fungi are organisms that belong to the domain Eukaryota. Despite the fact that they are a smaller population in the human microbiota than bacteria, their interactions with Fungi are immuneorganisms cells that or the belong production to the of domain metabolites Eukaryota are relevant. Despite to human the healthfact that and they disease [15]. are a smaller populationThe studies in to datethe human indicate microbiota that the course than of bacteria, CD may betheir associated interactions with thewith impact of mycobiome on GALT (gut-associated lymphoid tissue). The presence of antibodies against immune cells or the production of metabolites are relevant to human health and disease Saccharomyces cerevisiae (ASCA—anti-Saccharomyces cerevisiae antibodies) recognizing cell [15]. The studieswall to mannansdate indicate of yeast that is the a clinical course biomarker of CD may of patients be associated with CD with [16,17 the]. impact of mycobiome on GALTWith regard (gut- toassociated their general lymphoid structure, tissue). archaea The resemble presence bacteria, of antibodies while genetically, against Saccharomycesthey are cerevisiae more closely (ASCA related—anti to eukaryotes.-Saccharomyces They cerevisiae belong to theantibodies) domain Archaea recog-, among nizing cell wallwhich mannans three of basic yeast groups is a clinical can be distinguished,biomarker of whichpatients are with halophilic, CD [16,17]. methanogenic and With regardthermophilic to their general archaea. structure, Methanogens archaea are the resemble group that bacteria, most frequently while colonizesgenetically, the human they are more closelygastrointestinal related tract. to eukaryotes. The importance They of belong the archaea to the presence domain in the Archaea human, gastrointestinalamong which three basictract groups is not fully can understood.be distinguished, Until now, which strong are emphasis halophilic, has beenmethanogenic placed on studyingand the role of bacteria in the course of CD, while the role of those microorganisms is so far less thermophilic archaea. Methanogens are the group that most frequently colonizes the hu- taken into account by researchers. man gastrointestinalTherefore, tract. The the importance objective of thisof the study archaea was an presence assessment in ofthe the hum prevalencean gastro- of the most intestinal tract commonis not fully representatives understood. of ArchaeaUntil now,and yeaststrong fungi emphasis in children has and been teenagers placed withon CD at studying the roledifferent of bacteria stages ofin thethe disease. course Moreover,of CD, while the number the role of of these those microorganisms microorganisms in individual is so far less takengroups into was account determined. by researchers. Therefore, the objective of this study was an assessment of the prevalence of the most 2. Results common representatives of Archaea and yeast fungi in children and teenagers with CD at 2.1. Characteristics of the Subjects different stages of the disease. Moreover, the number of these microorganisms in individ- ual groups was determined.There were 124 children included in the study: 54 patients with active CD, 37 pa- tients in remission and 33 healthy individuals for the control group. The age of each group of patients was similar: average 13.15 (±2.86) years for patients with active CD vs. 2. Results 12.86 (±3.95) years for patients with non-active CD vs. 11.39 (±3.99) for healthy children 2.1. Characteristics of the Subjects There were 124 children included in the study: 54 patients with active CD, 37 patients in remission and 33 healthy individuals for the control group. The age of each group of Pathogens 2021, 10, x FOR PEER REVIEW 3 of 11 patients was similar: average 13.15 (±2.86) years for patients with active CD vs. 12.86 (±3.95) years for patients with non-active CD vs. 11.39 (±3.99) for healthy children from Pathogens 2021, 10, 1119 the control group. The group of patients with active CD consisted of 21 girls (39%). In3 ofthe 11 group of patients with non-active CD, there were 17 girls (46%). The control group in- cluded 19 girls (58%). The average Pediatric Crohn’s Disease Activity Index (PCDAI) value in the group of patients with active CD amounted to 33.23 pts (±13.30) while in the from the control group. The group of patients with active CD consisted of 21 girls (39%). group of patients in remission, 3.7 pts (±3.65). In the group of patients with non-active CD, there were 17 girls (46%).
Recommended publications
  • Gut Microbiota Beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD
    International Journal of Molecular Sciences Review Gut Microbiota beyond Bacteria—Mycobiome, Virome, Archaeome, and Eukaryotic Parasites in IBD Mario Matijaši´c 1,* , Tomislav Meštrovi´c 2, Hana Cipˇci´cPaljetakˇ 1, Mihaela Peri´c 1, Anja Bareši´c 3 and Donatella Verbanac 4 1 Center for Translational and Clinical Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; [email protected] (H.C.P.);ˇ [email protected] (M.P.) 2 University Centre Varaždin, University North, 42000 Varaždin, Croatia; [email protected] 3 Division of Electronics, Ruđer Boškovi´cInstitute, 10000 Zagreb, Croatia; [email protected] 4 Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; [email protected] * Correspondence: [email protected]; Tel.: +385-01-4590-070 Received: 30 January 2020; Accepted: 7 April 2020; Published: 11 April 2020 Abstract: The human microbiota is a diverse microbial ecosystem associated with many beneficial physiological functions as well as numerous disease etiologies. Dominated by bacteria, the microbiota also includes commensal populations of fungi, viruses, archaea, and protists. Unlike bacterial microbiota, which was extensively studied in the past two decades, these non-bacterial microorganisms, their functional roles, and their interaction with one another or with host immune system have not been as widely explored. This review covers the recent findings on the non-bacterial communities of the human gastrointestinal microbiota and their involvement in health and disease, with particular focus on the pathophysiology of inflammatory bowel disease. Keywords: gut microbiota; inflammatory bowel disease (IBD); mycobiome; virome; archaeome; eukaryotic parasites 1. Introduction Trillions of microbes colonize the human body, forming the microbial community collectively referred to as the human microbiota.
    [Show full text]
  • The Gut Microbiota and Inflammation
    International Journal of Environmental Research and Public Health Review The Gut Microbiota and Inflammation: An Overview 1, 2 1, 1, , Zahraa Al Bander *, Marloes Dekker Nitert , Aya Mousa y and Negar Naderpoor * y 1 Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne 3168, Australia; [email protected] 2 School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; [email protected] * Correspondence: [email protected] (Z.A.B.); [email protected] (N.N.); Tel.: +61-38-572-2896 (N.N.) These authors contributed equally to this work. y Received: 10 September 2020; Accepted: 15 October 2020; Published: 19 October 2020 Abstract: The gut microbiota encompasses a diverse community of bacteria that carry out various functions influencing the overall health of the host. These comprise nutrient metabolism, immune system regulation and natural defence against infection. The presence of certain bacteria is associated with inflammatory molecules that may bring about inflammation in various body tissues. Inflammation underlies many chronic multisystem conditions including obesity, atherosclerosis, type 2 diabetes mellitus and inflammatory bowel disease. Inflammation may be triggered by structural components of the bacteria which can result in a cascade of inflammatory pathways involving interleukins and other cytokines. Similarly, by-products of metabolic processes in bacteria, including some short-chain fatty acids, can play a role in inhibiting inflammatory processes. In this review, we aimed to provide an overview of the relationship between the gut microbiota and inflammatory molecules and to highlight relevant knowledge gaps in this field.
    [Show full text]
  • Gut Microbiota: Its Role in Diabetes and Obesity
    ARTICLE Gut microbiota: Its role in diabetes and obesity Neil Munro Citation: Munro N (2016) Gut The gut microbiota is a community of microogranisms that live in the gut and intestinal microbiota: Its role in diabetes tract. The microbiota consists of bacteria, archaea and eukarya, as well as viruses, but is and obesity. Diabetes & Primary Care 18: 168–73 predominantly populated by anaerobic bacteria. Relationships between gut microbiota constituents and a wide range of human conditions such as enterocolitis, rheumatoid Article points arthritis, some cancers, type 1 and type 2 diabetes, and obesity have been postulated. 1. The role of the gut microbiota This article covers the essentials of the gut microbiota as well as the evidence for its role in certain disease progressions in diabetes and obesity. has been postulated, particularly its role in diabetes and obesity. he human gut microbiota is “an ecological Identifying microbiota constituents 2. There is much greater community of commensal, symbiotic and Until relatively recently, bacteria could only be genetic diversity between pathogenic micro-organisms that literally identified by direct microscopy and culture. people’s gut microbiota than T share our body space” (Lederberg and McCray, This proved particularly problematic with most between their genomes. 2001). It is made up of between 10 and 100 trillion anaerobic commensal gut flora (Ursell et al, 3. Improved understanding of the mechanisms by which the micro-organisms (with a mass weight of 1.5 kg) 2012). It has only been in recent years that human microbiota contributes and is found in the distal intestine (Allin et al, advances in gene sequencing and analytical to the development of 2015).
    [Show full text]
  • Root Microbiota Assembly and Adaptive Differentiation Among European
    bioRxiv preprint doi: https://doi.org/10.1101/640623; this version posted May 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Root microbiota assembly and adaptive differentiation among European 2 Arabidopsis populations 3 4 Thorsten Thiergart1,7, Paloma Durán1,7, Thomas Ellis2, Ruben Garrido-Oter1,3, Eric Kemen4, Fabrice 5 Roux5, Carlos Alonso-Blanco6, Jon Ågren2,*, Paul Schulze-Lefert1,3,*, Stéphane Hacquard1,*. 6 7 1Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany 8 2Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, SE‐752 36 9 Uppsala, Sweden 10 3Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, 11 50829 Cologne, Germany 12 4Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, 72076 Tübingen, 13 Germany 14 5LIPM, INRA, CNRS, Université de Toulouse, 31326 Castanet-Tolosan, France 15 6Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo 16 Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain 17 7These authors contributed equally: Thorsten Thiergart, Paloma Durán 18 *e-mail: [email protected], [email protected], [email protected] 19 20 Summary 21 Factors that drive continental-scale variation in root microbiota and plant adaptation are poorly 22 understood. We monitored root-associated microbial communities in Arabidopsis thaliana and co- 23 occurring grasses at 17 European sites across three years.
    [Show full text]
  • Porphyromonas Gingivalis Infection on Gut Dysbiosis and Arthritis Exacerbation in 1 Mouse Model
    Preprint: Please note that this article has not completed peer review. Effect of Porphyromonas gingivalis infection on gut dysbiosis and arthritis exacerbation in 1 mouse model CURRENT STATUS: UNDER REVISION Yuta Hamamoto Hiroshima University Kazuhisa Ouhara Hiroshima University [email protected] Author ORCiD: https://orcid.org/0000-0001-6796-884X Syuichi Munenaga HIroshima University Mikio Shoji Nagasaki University Tatsuhiko Ozawa University of Toyama Jyunzo Hisatsune National Institute of Infectious Diseases Isamu Kado Hiroshima University Mikihito Kajiya Hiroshima University Shinji Matsuda Hiroshima University Toshihisa Kawai Nova Southeastern University Noriyoshi Mizuno Hiroshima University 1 Tsuyoshi Fujita Hiroshima University Shintaro Hirata Hiroshima University Kotaro Tanimoto Hiroshima University Koji Nakayama Nagasaki University Hiroyuki Kishi University of Toyama Eiji Sugiyama Hiroshima University Hidemi Kurihara Hiroshima University DOI: 10.21203/rs.2.20521/v1 SUBJECT AREAS Rheumatology KEYWORDS Porphyromonas gingivalis, Rheumatoid Arthritis, Periodontitis, Citrullinated protein, Dysbiosis 2 Abstract Background : Porphyromonas gingivalis (Pg) infection causes periodontal disease and is one of the causative bacteria of rheumatoid arthritis (RA) exacerbation. Gut microbiota dysbiosis has shown strong associations with systemic diseases, including RA, diabetes mellitus, and inflammatory bowel disease, and inoculation of periodontopathogenic bacteria (i.e. Pg) can alter gut microbiota composition. Therefore, this study investigated dysbiosis-mediated arthritis exacerbation by Pg oral inoculation in an experimental arthritis model mouse. Methods : Pg inoculation in the oral cavity twice a week for 6 weeks was performed to induce periodontitis in SKG mice. Concomitantly, a single intraperitoneal (i.p.) injection of laminarin (LA) was administered to induce experimental arthritis (Pg-LA mouse). Citrullinated protein (CP) and IL-6 levels in periodontal, intestinal, and joint tissues, and serum were measured by ELISA.
    [Show full text]
  • Microbiota and Obesogens: Environmental Regulators of Fat Storage
    Microbiota and obesogens: environmental regulators of fat storage John F. Rawls, Ph.D. Department of Molecular Genetics & Microbiology Center for Genomics of Microbial Systems Duke University School of Medicine Seminar outline 1. Introduction to the microbiota 2. Microbiota as environmental factors in obesity 3. Obesogens as environmental factors in obesity Seeing and understanding the unseen Antonie van Leewenhoek 1620’s: Described differences between microbes associated with teeth & feces during health & disease. Louis Pasteur 1850’s: Helps establish the “germ theory” of disease. 1885: Predicts that germ-free animals can not survive without “common microorganisms”. Culture-independent analysis of bacterial communities using 16S rRNA gene sequencing 16S rRNA 16S SSU rRNA 16S rRNA gene V1 V2 V3 V4 V5 V6 V7 V8 V9 Culture-independent analysis of bacterial communities using 16S rRNA gene sequencing plantbiology.siu.edu Phylogenetic analysis of 16S rRNA genes revealed 3 domains and a vast unappreciated diversity of microbial life You are here Carl Woese Glossary • Microbiota / microflora: the microorganisms of a particular site, habitat, or period of time. • Microbiome: the collective genomes of the microorganisms within a microbiota. • Germ-free / axenic: of a culture that is free from living organisms other than the host species. • Gnotobiotic: of an environment for rearing organisms in which all the microorganisms are either excluded or known. Current techniques for microbiome profiling Microbial community Morgan et al. (2012) Trends in
    [Show full text]
  • THE HUMAN MICROBIOTA: the ROLE of MICROBIAL COMMUNITIES in HEALTH and DISEASE La Microbiota Humana: Comunidades Microbianas En La Salud Y En La Enfermedad
    ACTA BIOLÓGICA COLOMBIANA http://www.revistas.unal.edu.co/index.php/actabiol SEDE BOGOTÁ FACULTAD DE CIENCIAS ARTÍCULODEPARTAMENTO DE DE REVISIÓN BIOLOGÍA INVITADO / INVITED REVIEW THE HUMAN MICROBIOTA: THE ROLE OF MICROBIAL COMMUNITIES IN HEALTH AND DISEASE La microbiota humana: comunidades microbianas en la salud y en la enfermedad Luz Elena BOTERO1,2, Luisa DELGADO-SERRANO3,4, Martha Lucía CEPEDA HERNÁNDEZ3, Patricia DEL PORTILLO OBANDO3, María Mercedes ZAMBRANO EDER3. 1 Facultad de Medicina, Universidad Pontificia Bolivariana. Calle 78B no. 72A-109, Bloque B, Piso 5. Medellín, Colombia. 2 Unidad de Bacteriología y Micobacterias, Corporación para Investigaciones Biológicas, Unidad Pontificia Bolivariana. Carrera 72A no. 78B-141. Medellín, Colombia. 3 Corporación Corpogen. Carrera 5 no. 66A-34. Bogotá D.C., Colombia. 4 Centro de Bioinformática y Biología Computacional- BIOS. Carrera 15B no. 161. Manizales, Colombia. For correspondence. [email protected] Received: 22nd March 2015, Returned for revision: 14th April 2015, Accepted: 10th July 2015. Associate Editor: Nubia Estela Matta Camacho. Citation / Citar este artículo como: Botero LE, Delgado-Serrano L, Cepeda ML, Del Portillo P, Zambrano MM. The human microbiota: the role of microbial communities in health and disease. Acta biol. Colomb. 2016;21(1):5-15. doi: http://dx.doi.org/10.15446/abc.v21n1.49761 ABSTRACT During the last decade, there has been increasing awareness of the massive number of microorganisms, collectively known as the human microbiota, that are associated with humans. This microbiota outnumbers the host cells by approximately a factor of ten and contains a large repertoire of microbial genome-encoded metabolic processes. The diverse human microbiota and its associated metabolic potential can provide the host with novel functions that can influence host health and disease status in ways that still need to be analyzed.
    [Show full text]
  • The Influence of Microbiome Dysbiosis and Bacterial Biofilms On
    International Journal of Molecular Sciences Review The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier Function in Atopic Dermatitis—An Update Leszek Blicharz 1,*, Lidia Rudnicka 1, Joanna Czuwara 1, Anna Wa´skiel-Burnat 1, Mohamad Goldust 2 , Małgorzata Olszewska 1 and Zbigniew Samochocki 1 1 Department of Dermatology, Medical University of Warsaw, 02-008 Warsaw, Poland; [email protected] (L.R.); [email protected] (J.C.); [email protected] (A.W.-B.); [email protected] (M.O.); [email protected] (Z.S.) 2 Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Atopic dermatitis (AD) is a common inflammatory dermatosis affecting up to 30% of children and 10% of adults worldwide. AD is primarily driven by an epidermal barrier defect which triggers immune dysregulation within the skin. According to recent research such phenomena are closely related to the microbial dysbiosis of the skin. There is growing evidence that cutaneous microbiota and bacterial biofilms negatively affect skin barrier function, contributing to the onset and exacerbation of AD. This review summarizes the latest data on the mechanisms leading to microbiome dysbiosis and biofilm formation in AD, and the influence of these phenomena on skin barrier function. Citation: Blicharz, L.; Rudnicka, L.; Keywords: atopic dermatitis; biofilms; microbiome; staphylococci; skin barrier Czuwara, J.; Wa´skiel-Burnat,A.; Goldust, M.; Olszewska, M.; Samochocki, Z. The Influence of Microbiome Dysbiosis and Bacterial Biofilms on Epidermal Barrier 1.
    [Show full text]
  • Aquatic Microbial Ecology 79:1
    Vol. 79: 1–12, 2017 AQUATIC MICROBIAL ECOLOGY Published online March 28 https://doi.org/10.3354/ame01811 Aquat Microb Ecol Contribution to AME Special 6 ‘SAME 14: progress and perspectives in aquatic microbial ecology’ OPENPEN ACCESSCCESS REVIEW Exploring the oceanic microeukaryotic interactome with metaomics approaches Anders K. Krabberød1, Marit F. M. Bjorbækmo1, Kamran Shalchian-Tabrizi1, Ramiro Logares2,1,* 1University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, 0316 Oslo, Norway 2Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, Barcelona, Spain ABSTRACT: Biological communities are systems composed of many interacting parts (species, populations or single cells) that in combination constitute the functional basis of the biosphere. Animal and plant ecologists have advanced substantially our understanding of ecological inter- actions. In contrast, our knowledge of ecological interaction in microbes is still rudimentary. This represents a major knowledge gap, as microbes are key players in almost all ecosystems, particu- larly in the oceans. Several studies still pool together widely different marine microbes into broad functional categories (e.g. grazers) and therefore overlook fine-grained species/population-spe- cific interactions. Increasing our understanding of ecological interactions is particularly needed for oceanic microeukaryotes, which include a large diversity of poorly understood symbiotic rela- tionships that range from mutualistic to parasitic. The reason for the current state of affairs is that determining ecological interactions between microbes has proven to be highly challenging. How- ever, recent technological developments in genomics and transcriptomics (metaomics for short), coupled with microfluidics and high-performance computing are making it increasingly feasible to determine ecological interactions at the microscale.
    [Show full text]
  • The Human Gut Microbiota: a Dynamic Interplay with the Host from Birth to Senescence Settled During Childhood
    Review nature publishing group The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood Lorenza Putignani1, Federica Del Chierico2, Andrea Petrucca2,3, Pamela Vernocchi2,4 and Bruno Dallapiccola5 The microbiota “organ” is the central bioreactor of the gastroin- producing immunological memory (2). Indeed, the intestinal testinal tract, populated by a total of 1014 bacteria and charac- epithelium at the interface between microbiota and lymphoid terized by a genomic content (microbiome), which represents tissue plays a crucial role in the mucosa immune response more than 100 times the human genome. The microbiota (2). The IS ability to coevolve with the microbiota during the plays an important role in child health by acting as a barrier perinatal life allows the host and the microbiota to coexist in a against pathogens and their invasion with a highly dynamic relationship of mutual benefit, which consists in dispensing, in modality, exerting metabolic multistep functions and stimu- a highly coordinated way, specific immune responses toward lating the development of the host immune system, through the biomass of foreign antigens, and in discriminating false well-­organized programming, which influences all of the alarms triggered by benign antigens (2). The failure to obtain growth and aging processes. The advent of “omics” technolo- or maintain this complex homeostasis has a negative impact gies (genomics, proteomics, metabolomics), characterized by on the intestinal and systemic health (2). Once the balance complex technological platforms and advanced analytical and fails, the “disturbance” causes the disease, triggering an abnor- computational procedures, has opened new avenues to the mal inflammatory response as it happens, for example, for the knowledge of the gut microbiota ecosystem, clarifying some inflammatory bowel diseases in newborns (2).
    [Show full text]
  • Alm-Dysbiosis-Preprint.Pdf
    Dysbiosis is not an answer The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Olesen, Scott W., and Eric J. Alm. “Dysbiosis Is Not an Answer.” Nature Microbiology, vol. 1, no. 12, Dec. 2016. As Published https://doi.org/10.1038/nmicrobiol.2016.228 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/118383 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Dysbiosis is not an answer Scott W. Olesen and Eric J. Alm Dysbiosis, an imbalance in the microbiota, has been a major organizing concept in microbiome science and medicine. Here, we discuss how the balance concept, a holdover from prescientific thought, is irrelevant to—and may even distract from— useful research about the microbiome. Throughout most of Western medical history, it was believed that the digestion of foods produced humors: mostly invisible liquids that were transformed into the materials that make up the body. Humoral theory dictated that diseases were caused by imbalances in these humors. A doctor's role was to help the body correct this imbalance, either by altering a patient's diet—thus changing the intake of humors—or by expelling excess humors, for example, by bloodletting1. Now, with modern DNA sequencing technology, we know our digestive systems are actually filled with mostly invisible microorganisms that respond to our diet. We have found that altering diet, ingesting probiotics, and wholesale replacement of the microbial community can improve our health.
    [Show full text]
  • Optimize the Plant Microbiota to Increase Plant Growth and Health
    July 2019 POSITION PAPER Optimize the plant microbiota to increase plant growth and health Barret M. (INRA, IRHS), Dufour P. (RAGT), Durand-Tardif M. (GIS BV), Mariadassou M. (INRA, MaIAGE), Mougel C. (INRA, IGEPP), Perez P. (Limagrain), Roumagnac P. (Cirad, BGPI), Sanguin H. (Cirad, BGPI), Steinberg C. (INRA, Agroécologie), Szambien M. (GIS BV) The “Groupement d’Intérêt Scientifique Biotechnologies Vertes” (GIS BV) organized on November 13th, 2018 in Paris, a scientific workshop on “Metagenomics for agro-ecosystems management and plant breeding”. Thirty-four scientists, including eight from the private sector attended the workshop. General discussion was organized around the presentations related to plant, seeds and soil microbiota, and data treatment to reconstruct interaction networks. This article gathers the current French research strengths, relative to the international context and highlights the research priorities between the public and the private sectors, using plant genetics and plant-microbiota interactions for the benefit of future agricultures. plant productivity. Hence, over recent years a Socio-economic context, scientific number of research groups explored the impact of challenges and opportunities environmental factors and host genetic variation on the composition and dynamics of plant microbiota [12–19]. Overall, these studies Plants live in association with a wide diverse and acknowledged an important influence of the complex assembly of viruses and microorganisms environment on plant microbiota composition and including
    [Show full text]