Small-Cell Lung Cancer: Evidence to Date Olivier Bylicki, Nicolas Paleiron, Jean-Baptiste Assié, Christos Chouaid

Total Page:16

File Type:pdf, Size:1020Kb

Small-Cell Lung Cancer: Evidence to Date Olivier Bylicki, Nicolas Paleiron, Jean-Baptiste Assié, Christos Chouaid Targeting the MET-Signaling Pathway in Non- Small-Cell Lung Cancer: Evidence to Date Olivier Bylicki, Nicolas Paleiron, Jean-Baptiste Assié, Christos Chouaid To cite this version: Olivier Bylicki, Nicolas Paleiron, Jean-Baptiste Assié, Christos Chouaid. Targeting the MET-Signaling Pathway in Non- Small-Cell Lung Cancer: Evidence to Date. OncoTargets and Therapy, Dove Medical Press, 2020, Volume 13, pp.5691-5706. 10.2147/OTT.S219959. hal-02886104 HAL Id: hal-02886104 https://hal.sorbonne-universite.fr/hal-02886104 Submitted on 1 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. OncoTargets and Therapy Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Targeting the MET-Signaling Pathway in Non- Small–Cell Lung Cancer: Evidence to Date This article was published in the following Dove Press journal: OncoTargets and Therapy Olivier Bylicki 1,2 Abstract: The c-MET proto-oncogene (MET) plays an important role in lung oncogenesis, Nicolas Paleiron1 affecting cancer-cell survival, growth and invasiveness. The MET receptor in non-small–cell – Jean-Baptiste Assié2 4 lung cancer (NSCLC) is a potential therapeutic target. The development of high-output next- fi Christos Chouaïd2,3 generation sequencing techniques has enabled better identi cation of anomalies in the MET pathway, like the MET exon-14 (METex14) mutation. Moreover, analyses of epidermal growth 1 Respiratory Disease Unit, HIA Sainte factor-receptor (EGFR) and mechanisms of resistance to tyrosine-kinase inhibitors (TKIs) demon- Anne, Toulon, France; 2University Paris– Est Créteil (UPEC), CEpiA (Clinical strated the importance of MET amplification as an escape mechanism in patients with TKI-treated Epidemiology and Ageing), EA 7376- EGFR-mutated NSCLCs. This review summarizes the laboratory findings on MET and its anoma- IMRB, UPEC, Créteil, France; fi 3Pneumology Department, Centre lies, trial results on METex14 alterations and MET ampli cationinnon-EGFRmutatedNSCLCs, Hospitalier Intercommunal De Créteil, andacquiredresistancetoTKIinEGFR-mutated NSCLCs. The outcomes of the first trials with 4 Créteil, France; Cordeliers Research anti-MET agents on non-selected NSCLC patients or those selected for MET overexpression were Center, Inserm, Functional Genomics of disappointing. Two situations seem the most promising today for the use of anti-METagents to treat For personal use only. Solid Tumors Laboratory, Sorbonne University, University of Paris, Paris, these patients: tumors harboring METex14 and those EGFR-sensitive mutation mutated under TKI- France EGFR with a MET-amplification mechanism of resistance or EGFR-resistance mutation. Keywords: non-small–cell lung cancer, MET exon 14, MET amplification, MET pathway Introduction Targeted therapies have profoundly modified the prognoses of lung cancers with onco- genic mutations, achieving notably improved progression-free (PFS) and overall survival (OS) rates compared to reference chemotherapy regimens. That is particularly true for first- or second-line treatment of metastatic non-small–cell lung cancers (NSCLCs) OncoTargets and Therapy downloaded from https://www.dovepress.com/ by 134.157.148.106 on 01-Jul-2020 harboring an epidermal growth factor-receptor (EGFR) mutation or anaplastic lymphoma kinase (ALK) translocation.1–5 Targeted therapies have also shown their efficacy in patients carrying the v-RAF murine sarcoma viral oncogene homolog B (BRAFV600E) mutation, tyrosine-protein kinase-1 protooncogene (ROS1) or rearranged-during- transfection (RET) translocation.6–8 More recently, the efficacy of targeting the neuro- trophic tropomyosin receptor kinase (NTRK) in all patients whose cancers express it (making it a marker for tumor-agnostic therapy) was demonstrated.9 In other contexts, knowledge remains more fragmented, despite a potentially oncogenic target, with thera- pies having only modest activities. That is the case for NSCLCs expressing human Correspondence: Olivier Bylicki epidermal growth factor receptor-2 (HER2), Kirsten rat-sarcoma viral oncogene Respiratory Disease Unit, HIA Sainte (KRAS) or those with c-MET proto-oncogene (MET) protooncogene-pathway Anne, BRCM Toulon, 2, Boulevard Saint- 10–12 Anne, Toulon 83000, France abnormalities. Tel +33(0)483162937 The MET pathway was identified in the 1980s and its carcinogenic role in lung Fax +33(0)483162461 13,14 Email [email protected] cancer has been recognized since the 1990s. It is a complex pathway, poorly submit your manuscript | www.dovepress.com OncoTargets and Therapy 2020:13 5691–5706 5691 DovePress © 2020 Bylicki et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. – http://doi.org/10.2147/OTT.S219959 php and incorporate the Creative Commons Attribution Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). Powered by TCPDF (www.tcpdf.org) 1 / 1 Bylicki et al Dovepress understood, with anomalies, ranging from MET overex- Immunohistochemistry (IHC) is able to detect MET or pression, rare translocations, amplifications, de novo or HGF overexpression with several antibodies that are com- acquired under tyrosine-kinase inhibitors of epidermal mercially available. growth factor-receptor (EGFR) (EGFR-TKIs) and, finally, mutations, particularly of MET exon-14 (METex14) muta- Rearrangement tions. Numerous molecules targeting this pathway or its The first MET rearrangement was described in the 1990s with ligand, hepatocyte growth factor (HGF), are at various the tryptophan (TRP) gene.30 Other rearrangements have stages of development. since been found, notably in NSCLCs: kinesin family mem- This review summarizes the data available on our under- ber 5B (KIF5B), F-actin–capping proteins bind in a Ca2+ standing of the different molecular MET alterations, the (CAPZA2 (2)), cluster of differentiation 47 membrane pro- results obtained with agents targeting this pathway and the tein (CD47 (2)), testin (TES), caveolin-1 (CAV1), integrin contribution of immunotherapy to treating these patients.15,16 subunit alpha-9 (ITGA9), human leukocyte antigen (HLA- DRB1), transcription factor EC (TFEC), cortactin-binding The MET Pathway and Its protein-2 (CTTNBP2), ankyrin-1 (ANK1), steroidogenic acute regulatory-related lipid-transfer domain containing Alterations three N-terminal–like proteins (STARD3NL).31 The MET gene is located at 7q21–q31 on chromosome 7. 17,18 It is comprised of ~125 kb and 21 exons. MET is Amplification a heterodimer tyrosine-kinase receptor with extracellular, Amplification is an increased gene-copy number (GCN), transmembrane, juxtamembrane and kinase domains.19,20 linked to the focal duplication of a gene via breakage– MET binding to its exclusive ligand, HGF, leads to homo- fusion–bridge mechanisms.32 A higher GCN can also be dimerization and phosphorylation of the intracellular tyrosine secondary to polysomia of chromosome 7 (caused by chro- residues.18 Receptor activation stimulates downstream signal- mosomal duplication, for example).33,34 MET amplification For personal use only. ing pathways, such as extracellular signal-regulated kinase deregulates the METsignaling pathway by overexpression of (ERK)/mitogen-activated protein kinase (MAPK), phosphati- the protein and constitutive activation of kinases.33 The dylinositol 3-kinase-Akt (PI3K)/protein kinase B pathways number of MET copies can be evaluated by fluorescence and JAK/STAT (Janus kinase/signal transducer and activator in situ hybridization (FISH) or quantitative polymerase of transcription).20 Those pathways are known to be involved chain reaction. When using FISH, the MET/CEP7 (centro- in cell proliferation, migration, motility angiogenesis, survival meric portion of chromosome 7) ratio remains unchanged, and the epithelial-to-mesenchymal transition.21,22 whereas, with amplification, the MET GCN increases at the During embryogenesis, MET and HGF favor the for- expense of the number of centromeres, which results in mation of trophoblasts and placental hepatocytes.23 In a higher MET/CEP7 ratio.33 adults, the two proteins are strongly expressed in a wide New techniques of hybridization capture-based next- OncoTargets and Therapy downloaded from https://www.dovepress.com/ by 134.157.148.106 on 01-Jul-2020 variety of tissues and can be regulated positively in generation sequencing (NGS) can analyze gene amplifica- response to a tissue lesion.18 tions. The GCN modifications can be identified by comparing Deregulation of the MET pathway in oncology can be tumor sequences in targeted regions to a normal diploid manifested in several ways: genetic mutation, amplifica- sample.35 Unlike FISH, NGS and multiplex
Recommended publications
  • Lung Cancer Drugs in the Pipeline
    HemOnc today | JANUARY 10, 2016 | Healio.com/HemOnc 5 Lung Cancer Drugs in the Pipeline HEMONC TODAY presents this guide to drugs in phase 2 or phase 3 development for lung cancer-related indications. Clinicians can use this chart as a quick reference to learn about the status of those drugs that may be clinically significant to their practice. Generic name (Brand name, Manufacturer) Indication(s) Development status abemaciclib (Eli Lilly) non–small cell lung cancer phase 3 ABP 215 (Allergan/Amgen) non–small cell lung cancer (advanced disease) phase 3 ACP-196 (Acerta Pharma) non–small cell lung cancer (advanced disease) phase 2 ado-trastuzumab emtansine (Kadcyla, Genentech) non–small cell lung cancer (HER-2–positive disease) phase 2 afatinib (Gilotrif, Boehringer Ingelheim) lung cancer (squamous cell carcinoma) phase 3 aldoxorubicin (CytRx) small cell lung cancer phase 2 alectinib (Alecensa, Genentech) non–small cell lung cancer (second-line treatment of ALK-positive disease) phase 2 non–small cell lung cancer (first-line treatment of ALK-positive disease); phase 3 alisertib (Takeda) malignant mesothelioma, small cell lung cancer phase 2 avelumab (EMD Serono/Pfizer) non–small cell lung cancer phase 3 AZD9291 (AstraZeneca) non–small cell lung cancer (first-line treatment of advancedEGFR -positive disease; phase 3 second-line treatment of advanced EGFR-positive, T790M-positive disease) bavituximab (Peregrine Pharmaceuticals) non–small cell lung cancer (previously treated advanced/metastatic disease) phase 3 belinostat (Beleodaq, Spectrum
    [Show full text]
  • Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment
    Biomedicines 2015, 3, 149-181; doi:10.3390/biomedicines3010149 OPEN ACCESS biomedicines ISSN 2227-9059 www.mdpi.com/journal/biomedicines/ Review Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment Yilong Zhang 1,*, Rajul K. Jain 2 and Min Zhu 1 1 Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA; E-Mail: [email protected] 2 Kite Pharma, Inc., 2225 Colorado Avenue, Santa Monica, CA 90404, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-805-447-7131; Fax: +1-805-376-1869. Academic Editor: Giulia Ricci Received: 22 January 2015 / Accepted: 3 March 2015 / Published: 19 March 2015 Abstract: The hepatocyte growth factor (HGF): MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed. Keywords: HGF; MET; cancer treatment; new therapeutic agents; biomarker 1.
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • MET Or NRAS Amplification Is an Acquired Resistance Mechanism to the Third-Generation EGFR Inhibitor Naquotinib
    www.nature.com/scientificreports OPEN MET or NRAS amplifcation is an acquired resistance mechanism to the third-generation EGFR inhibitor Received: 5 October 2017 Accepted: 16 January 2018 naquotinib Published: xx xx xxxx Kiichiro Ninomiya1, Kadoaki Ohashi1,2, Go Makimoto1, Shuta Tomida3, Hisao Higo1, Hiroe Kayatani1, Takashi Ninomiya1, Toshio Kubo4, Eiki Ichihara2, Katsuyuki Hotta5, Masahiro Tabata4, Yoshinobu Maeda1 & Katsuyuki Kiura2 As a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimeritnib is the standard treatment for patients with non-small cell lung cancer harboring the EGFR T790M mutation; however, acquired resistance inevitably develops. Therefore, a next-generation treatment strategy is warranted in the osimertinib era. We investigated the mechanism of resistance to a novel EGFR-TKI, naquotinib, with the goal of developing a novel treatment strategy. We established multiple naquotinib-resistant cell lines or osimertinib-resistant cells, two of which were derived from EGFR-TKI-naïve cells; the others were derived from geftinib- or afatinib-resistant cells harboring EGFR T790M. We comprehensively analyzed the RNA kinome sequence, but no universal gene alterations were detected in naquotinib-resistant cells. Neuroblastoma RAS viral oncogene homolog (NRAS) amplifcation was detected in naquotinib-resistant cells derived from geftinib-resistant cells. The combination therapy of MEK inhibitors and naquotinib exhibited a highly benefcial efect in resistant cells with NRAS amplifcation, but the combination of MEK inhibitors and osimertinib had limited efects on naquotinib-resistant cells. Moreover, the combination of MEK inhibitors and naquotinib inhibited the growth of osimertinib-resistant cells, while the combination of MEK inhibitors and osimertinib had little efect on osimertinib-resistant cells.
    [Show full text]
  • Crusader Newsletter Q2 2021 Research Edition
    Your resource for the latest research into the MET alteration. CRUSADER NEWSLETTER Q2 2021 RESEARCH EDITION MET Crusaders is a community of Lung Cancer patients and care givers collaborating with advocates and medical professionals collectively dedicated to helping patients with a MET alteration live normal lives. Come Join Us! www.metcrusaders.org Contact us at In this edition [email protected] Co-occurring MET amplification predicts ....... 2 MET amplification attenuates lung tumor ...... 9 inferior clinical response to first line erlotinib in response to immunotherapy by inhibiting STING advanced stage EGFR-mutated NSCLC patients Once-daily savolitinib in Chinese patients .... 10 Tepotinib in patients with NSCLC harbouring .... 3 with pulmonary sarcomatoid carcinomas and MET exon 14 skipping: Japanese subset other non-small-cell lung cancers harbouring EDITOR analysis from the Phase II VISION study MET exon 14 skipping alterations: a multicentre, single-arm, open-label, phase 2 study Jessica McKernan, PharmD A Phase II Study of Telisotuzumab Vedotin ..... 4 Atrium Health, Charlotte, NC in Patients With c-MET-positive Stage IV or Phase I results of S49076 plus gefitinib in ...... 11 Recurrent Squamous Cell Lung Cancer patients with EGFR TKI-resistant non-small cell (LUNG-MAP Sub-study S1400K, NCT03574753) lung cancer harbouring MET/AXL dysregulation CONTRIBUTING EDITORS Julia Stevens, PharmD Durvalumab consolidation therapy in a ............ 5 Case Report: High-Level MET Amplification .... 12 patient with stage IIIB unresectable NSCLC as a Resistance Mechanism of ROS1-Tyrosine Beth Israel Deaconess harboring a MET exon 14 splice site alteration Kinase Inhibitors in ROS1-Rearranged Medical Center, Boston, MA Non-Small Cell Lung Cancer Early Alectinib Resistance From MET ..............
    [Show full text]
  • Monovalent Antibody Design and Mechanism of Action of Onartuzumab, a MET Antagonist with Anti-Tumor Activity As a Therapeutic Ag
    Monovalent antibody design and mechanism of PNAS PLUS action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent Mark Merchanta,1,2, Xiaolei Mab,2,3, Henry R. Maunc,2, Zhong Zhenga,2,4, Jing Penga, Mally Romeroa,5, Arthur Huangd,6, Nai-ying Yanga, Merry Nishimuraa, Joan Grevee, Lydia Santellc, Yu-Wen Zhangf, Yanli Suf, Dafna W. Kaufmanf, Karen L. Billecig, Elaine Maih, Barbara Moffatg,7, Amy Limi, Eileen T. Duenasi, Heidi S. Phillipsa, Hong Xiangj, Judy C. Youngh, George F. Vande Woudef, Mark S. Dennisd, Dorothea E. Reillyk, Ralph H. Schwalla,8, Melissa A. Starovasnikb, Robert A. Lazarusc, and Daniel G. Yansurad Departments of aTranslational Oncology, bStructural Biology, cEarly d e Discovery Biochemistry, Antibody Engineering, Biomedical Imaging, fi gProtein Chemistry, hBiochemical and Cellular Pharmacology, iPurification Signi cance Development, jPharmacokinetic and Pharmacodynamic Sciences, and kEarly Stage Cell Culture, Genentech, Inc., South San Francisco, CA 94080; and Therapeutic antibodies have revolutionized the treatment of hu- fLaboratory of Molecular Oncology, Van Andel Research Institute, Grand Rapids, MI 49503 man disease. Despite these advances, antibody bivalency limits their utility against some targets. Here, we describe the de- Edited by Richard A. Lerner, The Scripps Research Institute, La Jolla, CA, and velopment of a one-armed (monovalent) antibody, onartuzumab, approved June 3, 2013 (received for review February 15, 2013) targeting the receptor tyrosine kinase MET. While initial screening Binding of hepatocyte growth factor (HGF) to the receptor tyrosine of bivalent antibodies produced agonists of MET, engineering kinase MET is implicated in the malignant process of multiple can- them into monovalent antibodies produced antagonists instead.
    [Show full text]
  • Tumor Genomic Profiling Guides Patients with Metastatic Gastric Cancer to Targeted Treatment: the VIKTORY Umbrella Trial
    Published OnlineFirst July 17, 2019; DOI: 10.1158/2159-8290.CD-19-0442 RESEARCH ARTICLE Tumor Genomic Profiling Guides Patients with Metastatic Gastric Cancer to Targeted Treatment: The VIKTORY Umbrella Trial Jeeyun Lee1, Seung Tae Kim1, Kyung Kim1, Hyuk Lee2, Iwanka Kozarewa3, Peter G.S. Mortimer4, Justin I. Odegaard5, Elizabeth A. Harrington3, Juyoung Lee1, Taehyang Lee1, Sung Yong Oh6, Jung-Hun Kang7, Jung Hoon Kim8, Youjin Kim9, Jun Ho Ji9, Young Saing Kim10, Kyoung Eun Lee11, Jinchul Kim1, Tae Sung Sohn12, Ji Yeong An12, Min-Gew Choi12, Jun Ho Lee12, Jae Moon Bae12, Sung Kim12, Jae J. Kim2, Yang Won Min2, Byung-Hoon Min2, Nayoung K.D. Kim13,4, Sally Luke3, Young Hwa Kim4, Jung Yong Hong1, Se Hoon Park1, Joon Oh Park1, Young Suk Park1, Ho Yeong Lim1, AmirAli Talasaz5, Simon J. Hollingsworth14, Kyoung-Mee Kim15, and Won Ki Kang1 Downloaded from cancerdiscovery.aacrjournals.org on October 2, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst July 17, 2019; DOI: 10.1158/2159-8290.CD-19-0442 ABSTRACT The VIKTORY (targeted agent eValuation In gastric cancer basket KORea) trial was designed to classify patients with metastatic gastric cancer based on clinical sequencing and focused on eight different biomarker groups (RAS aberration, TP53 mutation, PIK3CA mutation/amplification, MET amplification, MET overexpression, all negative,TSC2 deficient, orRIC - TOR amplification) to assign patients to one of the 10 associated clinical trials in second-line (2L) treatment. Capivasertib (AKT inhibitor), savolitinib (MET inhibitor), selumetinib (MEK inhibitor), ada- vosertib (WEE1 inhibitor), and vistusertib (TORC inhibitor) were tested with or without chemotherapy. Seven hundred seventy-two patients with gastric cancer were enrolled, and sequencing was success- fully achieved in 715 patients (92.6%).
    [Show full text]
  • Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy
    cancers Review Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy Laura Boyero 1 , Amparo Sánchez-Gastaldo 2, Miriam Alonso 2, 1 1,2,3, , 1,2, , José Francisco Noguera-Uclés , Sonia Molina-Pinelo * y and Reyes Bernabé-Caro * y 1 Institute of Biomedicine of Seville (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Seville, Spain; [email protected] (L.B.); [email protected] (J.F.N.-U.) 2 Medical Oncology Department, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; [email protected] (A.S.-G.); [email protected] (M.A.) 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain * Correspondence: [email protected] (S.M.-P.); [email protected] (R.B.-C.) These authors contributed equally to this work. y Received: 16 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Simple Summary: Immuno-oncology has redefined the treatment of lung cancer, with the ultimate goal being the reactivation of the anti-tumor immune response. This has led to the development of several therapeutic strategies focused in this direction. However, a high percentage of lung cancer patients do not respond to these therapies or their responses are transient. Here, we summarized the impact of immunotherapy on lung cancer patients in the latest clinical trials conducted on this disease. As well as the mechanisms of primary and acquired resistance to immunotherapy in this disease. Abstract: After several decades without maintained responses or long-term survival of patients with lung cancer, novel therapies have emerged as a hopeful milestone in this research field.
    [Show full text]
  • 2018 Interim Results
    2018 Interim Results AIM/Nasdaq: HCM July 27, 2018 Safe harbor statement & disclaimer The performance and results of operations of the Chi-Med Group contained within this presentation are historical in nature, and past performance is no guarantee of future results. This presentation contains forward-looking statements within the meaning of the “safe harbor” provisions of the U.S. Private Securities Litigation Reform Act of 1995. These forward-looking statements can be identified by words like “will,” “expects,” “anticipates,” “future,” “intends,” “plans,” “believes,” “estimates,” “pipeline,” “could,” “potential,” “believe,” “first-in-class,” “best-in-class,” “designed to,” “objective,” “guidance,” “pursue,” or similar terms, or by express or implied discussions regarding potential drug candidates, potential indications for drug candidates or by discussions of strategy, plans, expectations or intentions. You should not place undue reliance on these statements. Such forward-looking statements are based on the current beliefs and expectations of management regarding future events, and are subject to significant known and unknown risks and uncertainties. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those set forth in the forward-looking statements. There can be no guarantee that any of our drug candidates will be approved for sale in any market, or that any approvals which are obtained will be obtained at any particular time, or that
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • Phase I Study of the Anti-HGF Monoclonal Antibody, Ficlatuzumab, and Cetuximab in Cetuximab-Resistant, Recurrent/Metastatic Head and Neck Cancer Abstract 6038 Julie E
    Phase I study of the anti-HGF monoclonal antibody, ficlatuzumab, and cetuximab in cetuximab-resistant, recurrent/metastatic head and neck cancer Abstract 6038 Julie E. Bauman, Umamaheswar Duvvuri, Robert L. Ferris, James Ohr, William E. Gooding, Seungwon Kim, Jonas T. Johnson, Jennifer R. Grandis, and Laura P. Stabile University of Arizona Cancer Center, Tucson, AZ; University of Pittsburgh Cancer Institute, Pittsburgh, PA; University of California San Francisco, San Francisco, CA BACKGROUND METHODS DEFINITION OF DOSE LIMITING TOXICITY RESULTS BIOMARKERS Background: Cetuximab, an anti-EGFR monoclonal antibody, Study Design: Narayana k-in-a-row adaptive phase I design with • Any ≥ Grade 3 non hematologic toxicity except the following • From Sept 2015-June 2016, 12 patients enrolled and were Waterfall Plot: Best Response by Veristrat Status is approved for patients with recurrent/metastatic (R/M) head k set to 2 for a target DLT rate of ≤ 33%. If 8 patients are treated grade 3 toxicities: rash; infusion reaction; nausea, vomiting or treated (3 at dose tier 1; 9 at dose tier 2). 60 diarrhea lasting < 48 hours; isolated AST or ALT elevation; and neck squamous cell carcinoma (HNSCC) but only a without DLT (2+6 on tiers 1 and 3), the upper 90% confidence • No DLTs were observed at any dose tier. 40 Veristrat Poor minority benefit. Median progression-free survival (PFS) and bound for the estimated DLT rate at dose tier 2 is 0.32. asymptomatic electrolyte abnormality Veristrat Good • The RP2D is ficlatuzumab 20 mg/kg and cetuximab 500 overall response rate (ORR) for cetuximab monotherapy are 2.3 • Grade 3 neutropenia with fever 20 PD Key Eligibility Criteria mg/m2 every 2 weeks.
    [Show full text]
  • The Role of MET Inhibitor Therapies in the Treatment of Advanced Non-Small Cell Lung Cancer
    Journal of Clinical Medicine Review The Role of MET Inhibitor Therapies in the Treatment of Advanced Non-Small Cell Lung Cancer Ramon Andrade De Mello 1,2,3,* , Nathália Moisés Neves 2 , Giovanna Araújo Amaral 2, Estela Gudin Lippo 4, Pedro Castelo-Branco 1, Daniel Humberto Pozza 5 , Carla Chizuru Tajima 6 and Georgios Antoniou 7 1 Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine University of Algarve (DCBM UALG), 8005-139 Faro, Portugal; [email protected] 2 Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil; [email protected] (N.M.N.); [email protected] (G.A.A.) 3 Precision Oncology and Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil 4 School of Biomedical Sciences, Santo Amaro University, São Paulo 01525-000, Brazil; [email protected] 5 Department of Biomedicine & I3S, Faculty of Medicine, University of Porto (FMUP), 4200-317 Porto, Portugal; [email protected] 6 Hospital São José & Hospital São Joaquim, A Beneficência Portuguesa de São Paulo, São Paulo 01323-001, Brazil; [email protected] 7 Division of Medical Oncology, Mount Vernon Cancer Center, London HA6 2RN, UK; [email protected] * Correspondence: [email protected] Received: 15 May 2020; Accepted: 10 June 2020; Published: 19 June 2020 Abstract: Introduction: Non-small cell lung cancer (NSCLC) is the second most common cancer globally. The mesenchymal-epithelial transition (MET) proto-oncogene can be targeted in NSCLC patients. Methods: We performed a literature search on PubMed in December 2019 for studies on MET inhibitors and NSCLC.
    [Show full text]