Atezolizumab Plus Nab-Paclitaxel As First-Line Treatment for Unresectable, Locally Advanced Or Metastatic Triple-Negative Breast

Total Page:16

File Type:pdf, Size:1020Kb

Atezolizumab Plus Nab-Paclitaxel As First-Line Treatment for Unresectable, Locally Advanced Or Metastatic Triple-Negative Breast Articles Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial Peter Schmid*, Hope S Rugo*, Sylvia Adams, Andreas Schneeweiss, Carlos H Barrios, Hiroji Iwata, Véronique Diéras, Volkmar Henschel, Luciana Molinero, Stephen Y Chui, Vidya Maiya, Amreen Husain, Eric P Winer, Sherene Loi, Leisha A Emens, for the IMpassion130 Investigators† Summary Lancet Oncol 2020; 21: 44–59 Background Immunotherapy in combination with chemotherapy has shown promising efficacy across many different Published Online tumour types. We report the prespecified second interim overall survival analysis of the phase 3 IMpassion130 study November 27, 2019 assessing the efficacy and safety of atezolizumab plus nab-paclitaxel in patients with unresectable, locally advanced or https://doi.org/10.1016/ metastatic triple-negative breast cancer. S1470-2045(19)30689-8 See Comment page 3 Methods In this randomised, placebo-controlled, double-blind, phase 3 trial, done in 246 academic centres and *Contributed equally community oncology practices in 41 countries, patients aged 18 years or older, with previously untreated, histologically †Investigators are listed in the documented, locally advanced or metastatic triple-negative breast cancer, and Eastern Cooperative Oncology Group appendix performance status of 0 or 1 were eligible. Patients were randomly assigned (1:1) using a permuted block method Barts Cancer Institute, Queen Mary University of London, (block size of four) and an interactive voice–web response system. Randomisation was stratified by previous taxane London, UK (Prof P Schmid MD); use, liver metastases, and PD-L1 expression on tumour-infiltrating immune cells. Patients received atezolizumab University of California 840 mg or matching placebo intravenously on day 1 and day 15 of every 28-day cycle and nab-paclitaxel 100 mg/m² of San Francisco Comprehensive body surface area intravenously on days 1, 8, and 15 until progression or unacceptable toxicity. Investigators, patients, Cancer Center, University of California, San Francisco, CA, and the funder were masked to treatment assignment. Coprimary endpoints were investigator-assessed progression- USA (Prof H S Rugo MD); free survival per Response Evaluation Criteria in Solid Tumors version 1.1 and overall survival, assessed in the Perlmutter Cancer Center, intention-to-treat population and in patients with PD-L1 immune cell-positive tumours (tumours with ≥1% PD-L1 New York University Langone expression). The final progression-free survival results were previously reported at the first interim overall survival Medical Center, New York, NY, USA (Prof S Adams MD); analysis. The prespecified statistical testing hierarchy meant that overall survival in the subgroup of PD-L1 immune National Center for Tumor cell-positive patients could only be formally tested if overall survival was significantly different between the treatment Diseases, Heidelberg University groups in the intention-to-treat population. This study is registered with ClinicalTrials.gov, NCT02425891. Hospital and German Cancer Research Center, Heidelberg, Germany Findings Between June 23, 2015, and May 24, 2017, 902 patients were enrolled, of whom 451 were randomly assigned (Prof A Schneeweiss MD); to receive atezolizumab plus nab-paclitaxel and 451 were assigned to receive placebo plus nab-paclitaxel (the intention- Centro de Pesquisa Clínica, to-treat population). Six patients from each group did not receive treatment. At the second interim analysis (data Hospital São Lucas, Pontifícia cutoff Jan 2, 2019), median follow-up was 18·5 months (IQR 9·6–22·8) in the atezolizumab group and 17·5 months Universidade Católica do Rio Grande do Sul, Porto (8·4–22·4) in the placebo group. Median overall survival in the intention-to-treat patients was 21·0 months (95% CI Alegre, Brazil (C H Barrios MD); 19·0–22·6) with atezolizumab and 18·7 months (16·9–20·3) with placebo (stratified hazard ratio [HR] 0·86, 95% CI Latin American Cooperative 0·72–1·02, p=0·078). In the exploratory overall survival analysis in patients with PD-L1 immune cell-positive tumours, Oncology Group, Porto Alegre, Brazil (C H Barrios); Grupo median overall survival was 25·0 months (95% CI 19·6–30·7) with atezolizumab versus 18·0 months (13·6–20·1) Oncoclínicas, Porto Alegre, with placebo (stratified HR 0·71, 0·54–0·94]). As of Sept 3, 2018 (the date up to which updated safety data were Brazil (C H Barrios); Aichi Cancer available), the most common grade 3–4 adverse events were neutropenia (38 [8%] of 453 patients in the atezolizumab Center Hospital, Nagoya, Japan group vs 36 [8%] of 437 patients in the placebo group), peripheral neuropathy (25 [6%] vs 12 [3%]), decreased neutrophil (Prof H Iwata MD); Department of Medical Oncology, Institut count (22 [5%] vs 16 [4%]), and fatigue (17 [4%] vs 15 [3%]). Treatment-related deaths occurred in two (<1%) patients in Curie, Paris, France the atezolizumab group (autoimmune hepatitis related to atezolizumab [n=1] and septic shock related to nab-paclitaxel (V Diéras MD); Department of [n=1]) and one (<1%) patient in the placebo group (hepatic failure). No new treatment-related deaths have been Medical Oncology, Centre reported since the primary clinical data cutoff date (April 17, 2018). Eugène Marquis, Rennes, France (V Diéras); F Hoffmann-La Roche, Basel, Interpretation Consistent with the first interim analysis, this second interim overall survival analysis of IMpassion130 Switzerland (V Henschel PhD, indicates no significant difference in overall survival between the treatment groups in the intention-to-treat population A Husain MD); Genentech, but suggests a clinically meaningful overall survival benefit with atezolizumab plus nab-paclitaxel in patients with South San Francisco, CA, USA (L Molinero PhD, S Y Chui MD, PD-L1 immune cell-positive disease. However, this positive result could not be formally tested due to the prespecified V Maiya MD); Dana-Farber statistical testing hierarchy. For patients with PD-L1 immune cell-positive metastatic triple-negative breast cancer, Cancer Institute, Boston, MA, atezolizumab plus nab-paclitaxel is an important therapeutic option in a disease with high unmet need. USA (Prof E P Winer MD); Peter MacCallum Cancer Funding F Hoffmann-La Roche and Genentech. 44 www.thelancet.com/oncology Vol 21 January 2020 Articles Copyright © 2019 Elsevier Ltd. All rights reserved. Centre, University of Melbourne, Melbourne, VIC, Introduction survival estimates of approximately 18 months or less Australia (Prof S Loi MD); and University of Pittsburgh Triple-negative breast cancer constitutes 15–20% of cases with available treatments. Because of the promising Medical Center Hillman Cancer of breast cancer and is defined by the absence of efficacy of checkpoint inhibition in other tumour types,9–13 Center, Pittsburgh, PA, USA oestrogen receptors, progesterone receptors, and over- inhibitors of PD-L1 and PD-1 as monotherapy or in (Prof L A Emens MD) expression or gene amplification of HER2 on the surface combination with chemotherapy have been investigated Correspondence to: of cancer cells.1 Until the first report of the IMpassion130 in triple-negative breast cancer.14–16 The higher prevalence Prof Peter Schmid, Barts Cancer Institute, 2 trial, chemo therapy was the standard of care for first-line of PD-L1 expression in triple-negative breast cancer Queen Mary University of systemic treatment for patients with triple-negative compared with hormone receptor-positive breast cancer London, London EC1M 6BQ, UK breast cancer that has advanced or metastasised.3–5 In subtypes further supports this therapeutic approach.17–21 [email protected] several countries, such as Japan, and in Europe, other The phase 3 study, IMpassion130,2 evaluated atezoli- See Online for appendix approved treatment options are bevacizumab in zumab, a monoclonal antibody targeting PD-L1, plus nab- combination with chemotherapy and poly (ADP-ribose) paclitaxel compared with placebo plus nab-paclitaxel as a polymerase inhibitors (eg, olaparib and talazoparib) for first-line treatment for patients with unresectable locally patients with BRCA-mutant, HER2-negative tumours.6–8 advanced or metastatic triple-negative breast cancer. At Prognoses remain poor, with reported median overall the time of primary analysis of IMpassion130, the final Research in context Evidence before this study improvement in median overall survival in patients with PD-L1 We searched PubMed for clinical trials published between immune cell-positive disease. This preplanned second interim June 30, 2009, and July 30, 2019, in any language using the overall survival analysis, which was done after 534 (59%) of search terms “PD-L1” or “PD-1” or “immunotherapy” or 902 deaths had occurred in the intention-to-treat population “immune checkpoint” in combination with “TNBC” or “triple- (80% information fraction) also showed no significant negative breast cancer”. We identified a feasibility study of a difference in overall survival between the groups in the personalised peptide vaccine and a phase 1–2 study planning to intention-to-treat population. Although the overall survival enrol patients with triple-negative breast cancer to evaluate an results provide evidence for the clinical benefit in patients with RNA vaccine. Several studies reported increased expression of PD-L1 immune cell-positive disease,
Recommended publications
  • Lung Cancer Drugs in the Pipeline
    HemOnc today | JANUARY 10, 2016 | Healio.com/HemOnc 5 Lung Cancer Drugs in the Pipeline HEMONC TODAY presents this guide to drugs in phase 2 or phase 3 development for lung cancer-related indications. Clinicians can use this chart as a quick reference to learn about the status of those drugs that may be clinically significant to their practice. Generic name (Brand name, Manufacturer) Indication(s) Development status abemaciclib (Eli Lilly) non–small cell lung cancer phase 3 ABP 215 (Allergan/Amgen) non–small cell lung cancer (advanced disease) phase 3 ACP-196 (Acerta Pharma) non–small cell lung cancer (advanced disease) phase 2 ado-trastuzumab emtansine (Kadcyla, Genentech) non–small cell lung cancer (HER-2–positive disease) phase 2 afatinib (Gilotrif, Boehringer Ingelheim) lung cancer (squamous cell carcinoma) phase 3 aldoxorubicin (CytRx) small cell lung cancer phase 2 alectinib (Alecensa, Genentech) non–small cell lung cancer (second-line treatment of ALK-positive disease) phase 2 non–small cell lung cancer (first-line treatment of ALK-positive disease); phase 3 alisertib (Takeda) malignant mesothelioma, small cell lung cancer phase 2 avelumab (EMD Serono/Pfizer) non–small cell lung cancer phase 3 AZD9291 (AstraZeneca) non–small cell lung cancer (first-line treatment of advancedEGFR -positive disease; phase 3 second-line treatment of advanced EGFR-positive, T790M-positive disease) bavituximab (Peregrine Pharmaceuticals) non–small cell lung cancer (previously treated advanced/metastatic disease) phase 3 belinostat (Beleodaq, Spectrum
    [Show full text]
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Radotinib Item No. 19923 CAS Registry No.: 926037-48-1 Formal Name: 4-methyl-N-[3-(4-methyl-1H-imidazol-1-yl)-5- (trifluoromethyl)phenyl]-3-[[4-(2-pyrazinyl)-2- N pyrimidinyl]amino]-benzamide H N Synonym: IY-5511 N N MF: C H F N O N N N 27 21 3 8 O FW: 530.5 H N Purity: ≥98% UV/Vis.: λmax: 215, 270 nm CF3 Supplied as: A crystalline solid Storage: -20°C Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Radotinib is supplied as a crystalline solid. A stock solution may be made by dissolving the radotinib in the solvent of choice. Radotinib is soluble in organic solvents such as DMSO and dimethyl formamide, which should be purged with an inert gas. The solubility of radotinib in these solvents is approximately 10 and 3 mg/ml, respectively. Description Radotinib is a selective second generation tyrosine kinase inhibitor that targets both the wild-type and mutant forms of Bcr-Abl, with an IC50 value of 30.6 nM in Ba/F3 human chronic myeloid leukemia cells expressing the wild-type form.1 Radotinib also inhibits platelet-derived growth factor receptors (PDGFRs) α 2,3 and β with IC50 values of 75.5 and 130 nM, respectively. Binding of radotinib to Bcr-Abl in vitro inhibits the phosphorylation of the downstream signaling mediator CrkL.3 In acute myeloid leukemia cells, in vitro treatment with radotinib at doses of 10-100 µM reduces viability, activates the mitochondrial apoptosis pathway, and promotes expression of the differentiation marker CD11b.2 References 1.
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • The Role of MET Inhibitor Therapies in the Treatment of Advanced Non-Small Cell Lung Cancer
    Journal of Clinical Medicine Review The Role of MET Inhibitor Therapies in the Treatment of Advanced Non-Small Cell Lung Cancer Ramon Andrade De Mello 1,2,3,* , Nathália Moisés Neves 2 , Giovanna Araújo Amaral 2, Estela Gudin Lippo 4, Pedro Castelo-Branco 1, Daniel Humberto Pozza 5 , Carla Chizuru Tajima 6 and Georgios Antoniou 7 1 Algarve Biomedical Centre, Department of Biomedical Sciences and Medicine University of Algarve (DCBM UALG), 8005-139 Faro, Portugal; [email protected] 2 Division of Medical Oncology, Escola Paulista de Medicina, Federal University of São Paulo (UNIFESP), São Paulo 04037-004, Brazil; [email protected] (N.M.N.); [email protected] (G.A.A.) 3 Precision Oncology and Health Economics Group (ONCOPRECH), Post-Graduation Program in Medicine, Nine of July University (UNINOVE), São Paulo 01525-000, Brazil 4 School of Biomedical Sciences, Santo Amaro University, São Paulo 01525-000, Brazil; [email protected] 5 Department of Biomedicine & I3S, Faculty of Medicine, University of Porto (FMUP), 4200-317 Porto, Portugal; [email protected] 6 Hospital São José & Hospital São Joaquim, A Beneficência Portuguesa de São Paulo, São Paulo 01323-001, Brazil; [email protected] 7 Division of Medical Oncology, Mount Vernon Cancer Center, London HA6 2RN, UK; [email protected] * Correspondence: [email protected] Received: 15 May 2020; Accepted: 10 June 2020; Published: 19 June 2020 Abstract: Introduction: Non-small cell lung cancer (NSCLC) is the second most common cancer globally. The mesenchymal-epithelial transition (MET) proto-oncogene can be targeted in NSCLC patients. Methods: We performed a literature search on PubMed in December 2019 for studies on MET inhibitors and NSCLC.
    [Show full text]
  • Radotinib Induces Apoptosis of Cd11b+ Cells Differentiated from Acute Myeloid Leukemia Cells
    RESEARCH ARTICLE Radotinib Induces Apoptosis of CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells Sook-Kyoung Heo1, Eui-Kyu Noh2, Dong-Joon Yoon1, Jae-Cheol Jo2, Yunsuk Choi2, SuJin Koh2, Jin Ho Baek2, Jae-Hoo Park3, Young Joo Min2, Hawk Kim1,2* 1 Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-060, Republic of Korea, 2 Department of Hematology and Oncology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, 682-714, Republic of Korea, 3 Department of Hematology and Oncology, Myongji Hospital, Gyeonggi-do, 412-270, Republic of Korea * [email protected] Abstract Radotinib, developed as a BCR/ABL tyrosine kinase inhibitor (TKI), is approved for the sec- OPEN ACCESS ond-line treatment of chronic myeloid leukemia (CML) in South Korea. However, therapeutic Citation: Heo S-K, Noh E-K, Yoon D-J, Jo J-C, Choi effects of radotinib in acute myeloid leukemia (AML) are unknown. In the present study, we Y, Koh S, et al. (2015) Radotinib Induces Apoptosis of demonstrate that radotinib significantly decreases the viability of AML cells in a dose-de- CD11b+ Cells Differentiated from Acute Myeloid Leukemia Cells. PLoS ONE 10(6): e0129853. pendent manner. Kasumi-1 cells were more sensitive to radotinib than NB4, HL60, or THP- doi:10.1371/journal.pone.0129853 1 cell lines. Furthermore, radotinib induced CD11b expression in NB4, THP-1, and Kasumi- Academic Editor: Rajasingh Johnson, University of 1 cells either in presence or absence of all trans-retinoic acid (ATRA). We found that radoti- Kansas Medical Center, UNITED STATES nib promoted differentiation and induced CD11b expression in AML cells by downregulating Received: March 30, 2015 LYN.
    [Show full text]
  • The Two Tontti Tudiul Lui Hi Ha Unit
    THETWO TONTTI USTUDIUL 20170267753A1 LUI HI HA UNIT ( 19) United States (12 ) Patent Application Publication (10 ) Pub. No. : US 2017 /0267753 A1 Ehrenpreis (43 ) Pub . Date : Sep . 21 , 2017 ( 54 ) COMBINATION THERAPY FOR (52 ) U .S . CI. CO - ADMINISTRATION OF MONOCLONAL CPC .. .. CO7K 16 / 241 ( 2013 .01 ) ; A61K 39 / 3955 ANTIBODIES ( 2013 .01 ) ; A61K 31 /4706 ( 2013 .01 ) ; A61K 31 / 165 ( 2013 .01 ) ; CO7K 2317 /21 (2013 . 01 ) ; (71 ) Applicant: Eli D Ehrenpreis , Skokie , IL (US ) CO7K 2317/ 24 ( 2013. 01 ) ; A61K 2039/ 505 ( 2013 .01 ) (72 ) Inventor : Eli D Ehrenpreis, Skokie , IL (US ) (57 ) ABSTRACT Disclosed are methods for enhancing the efficacy of mono (21 ) Appl. No. : 15 /605 ,212 clonal antibody therapy , which entails co - administering a therapeutic monoclonal antibody , or a functional fragment (22 ) Filed : May 25 , 2017 thereof, and an effective amount of colchicine or hydroxy chloroquine , or a combination thereof, to a patient in need Related U . S . Application Data thereof . Also disclosed are methods of prolonging or increasing the time a monoclonal antibody remains in the (63 ) Continuation - in - part of application No . 14 / 947 , 193 , circulation of a patient, which entails co - administering a filed on Nov. 20 , 2015 . therapeutic monoclonal antibody , or a functional fragment ( 60 ) Provisional application No . 62/ 082, 682 , filed on Nov . of the monoclonal antibody , and an effective amount of 21 , 2014 . colchicine or hydroxychloroquine , or a combination thereof, to a patient in need thereof, wherein the time themonoclonal antibody remains in the circulation ( e . g . , blood serum ) of the Publication Classification patient is increased relative to the same regimen of admin (51 ) Int .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub
    US 20170172932A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0172932 A1 Peyman (43) Pub. Date: Jun. 22, 2017 (54) EARLY CANCER DETECTION AND A 6LX 39/395 (2006.01) ENHANCED IMMUNOTHERAPY A61R 4I/00 (2006.01) (52) U.S. Cl. (71) Applicant: Gholam A. Peyman, Sun City, AZ CPC .......... A61K 9/50 (2013.01); A61K 39/39558 (US) (2013.01); A61K 4I/0052 (2013.01); A61 K 48/00 (2013.01); A61K 35/17 (2013.01); A61 K (72) Inventor: sham A. Peyman, Sun City, AZ 35/15 (2013.01); A61K 2035/124 (2013.01) (21) Appl. No.: 15/143,981 (57) ABSTRACT (22) Filed: May 2, 2016 A method of therapy for a tumor or other pathology by administering a combination of thermotherapy and immu Related U.S. Application Data notherapy optionally combined with gene delivery. The combination therapy beneficially treats the tumor and pre (63) Continuation-in-part of application No. 14/976,321, vents tumor recurrence, either locally or at a different site, by filed on Dec. 21, 2015. boosting the patient’s immune response both at the time or original therapy and/or for later therapy. With respect to Publication Classification gene delivery, the inventive method may be used in cancer (51) Int. Cl. therapy, but is not limited to such use; it will be appreciated A 6LX 9/50 (2006.01) that the inventive method may be used for gene delivery in A6 IK 35/5 (2006.01) general. The controlled and precise application of thermal A6 IK 4.8/00 (2006.01) energy enhances gene transfer to any cell, whether the cell A 6LX 35/7 (2006.01) is a neoplastic cell, a pre-neoplastic cell, or a normal cell.
    [Show full text]
  • Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib a C Ezra Y
    Published OnlineFirst October 20, 2020; DOI: 10.1158/1078-0432.CCR-20-2278 CLINICAL CANCER RESEARCH | RESEARCH BRIEFS: CLINICAL TRIAL BRIEF REPORT Overcoming MET-Dependent Resistance to Selective RET Inhibition in Patients with RET Fusion–Positive Lung Cancer by Combining Selpercatinib with Crizotinib A C Ezra Y. Rosen1, Melissa L. Johnson2, Sarah E. Clifford3, Romel Somwar4, Jennifer F. Kherani5, Jieun Son3, Arrien A. Bertram3, Monika A. Davare6, Eric Gladstone4, Elena V. Ivanova7, Dahlia N. Henry5, Elaine M. Kelley3, Mika Lin3, Marina S.D. Milan3, Binoj C. Nair5, Elizabeth A. Olek5, Jenna E. Scanlon3, Morana Vojnic4, Kevin Ebata5, Jaclyn F. Hechtman4, Bob T. Li1,8, Lynette M. Sholl9, Barry S. Taylor10, Marc Ladanyi4, Pasi A. Janne€ 3, S. Michael Rothenberg5, Alexander Drilon1,8, and Geoffrey R. Oxnard3 ABSTRACT ◥ Purpose: The RET proto-oncogene encodes a receptor tyrosine Results: MET amplification was identified in posttreatment kinase that is activated by gene fusion in 1%–2% of non–small biopsies in 4 patients with RET fusion–positive NSCLC treated with cell lung cancers (NSCLC) and rarely in other cancer types. selpercatinib. In at least one case, MET amplification was clearly Selpercatinib is a highly selective RET kinase inhibitor that has evident prior to therapy with selpercatinib. We demonstrate that recently been approved by the FDA in lung and thyroid cancers increased MET expression in RET fusion–positive tumor cells causes with activating RET gene fusions and mutations. Molecular resistance to selpercatinib, and this can be overcome by combining mechanisms of acquired resistance to selpercatinib are poorly selpercatinib with crizotinib. Using SPPs, selpercatinib with crizo- understood.
    [Show full text]
  • Early Subclinical Biomarkers in Onco-Cardiology to Prevent
    maco har log P y: r O la u p Yajun et al., Cardiovasc Pharm Open Access 2016, 5:3 c e n s a A v c o DOI: 10.4172/2329-6607.1000183 c i e d r s a s C Cardiovascular Pharmacology: Open Access ISSN: 2329-6607 Review Article OpenOpen Access Access Early Subclinical Biomarkers in Onco-Cardiology to Prevent Cardiac Death Yajun Gu1, Bumei Zhang2, Hongwei Fu1,3, Yichao Wang1 and Yunde Liu1* 1School of Medical Laboratory, Tianjin Medical University, Tianjin, China 2Department of Family Planning, the Second Hospital of Tianjin Medical University, Tianjin, China 3Tianjin Medical University General Hospital, Tianjin, China Abstract Recent oncologic treatment has been associated with cardiovascular complications, such as hypertension, metabolic derangements, thrombosis, arrhythmia, and even cardiac death. Careful attention to detailed cardiac evaluation is required to optimize the anticancer treatment and prevent heart failure of patients undergoing chemoradiotherapy. Classical cardiovascular biomarkers like ANP, BNP, ProANP, NT-ProBNP, hsTnI, hsTnT, adropin, copeptin, and ET-1 are indicative of toxic effects in cancer patients with radiation, chemotherapy, and neoadjuvant treatment. Recently, miRNAs (i.e., miR-29, miR-146, miR-208, and miR-216) in the peripheral blood or exosome- derived miRNAs are attractive as novel biomarkers for drug-induced cardiotoxicity due to their highly conserved sequence and stability in body fluids. The anticancer treatment could lead to detectable increases of miRNAs in the absence of traditional cardiac biomarkers or cardiac remodeling. Circulating cardiovascular biomarkers provide earlier detection of cardiotoxicity from cancer treatments before irreversible damage occurs. An increased understanding of the potential roles and mechanisms may help to reveal the crosstalk between cancer therapy and cardiac issues.
    [Show full text]
  • Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia
    cancers Review Protein Tyrosine Kinases: Their Roles and Their Targeting in Leukemia Kalpana K. Bhanumathy 1,*, Amrutha Balagopal 1, Frederick S. Vizeacoumar 2 , Franco J. Vizeacoumar 1,3, Andrew Freywald 2 and Vincenzo Giambra 4,* 1 Division of Oncology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (A.B.); [email protected] (F.J.V.) 2 Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; [email protected] (F.S.V.); [email protected] (A.F.) 3 Cancer Research Department, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada 4 Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, FG, Italy * Correspondence: [email protected] (K.K.B.); [email protected] (V.G.); Tel.: +1-(306)-716-7456 (K.K.B.); +39-0882-416574 (V.G.) Simple Summary: Protein phosphorylation is a key regulatory mechanism that controls a wide variety of cellular responses. This process is catalysed by the members of the protein kinase su- perfamily that are classified into two main families based on their ability to phosphorylate either tyrosine or serine and threonine residues in their substrates. Massive research efforts have been invested in dissecting the functions of tyrosine kinases, revealing their importance in the initiation and progression of human malignancies. Based on these investigations, numerous tyrosine kinase inhibitors have been included in clinical protocols and proved to be effective in targeted therapies for various haematological malignancies.
    [Show full text]
  • WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 43/00 (2006.01) A61K 31/33 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US2016/028383 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 20 April 2016 (20.04.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/154,426 29 April 2015 (29.04.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: KARDIATONOS, INC. [US/US]; 4909 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Lapeer Road, Metamora, Michigan 48455 (US).
    [Show full text]