Synergistic Inhibition of Erbb Signaling by Combined Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Synergistic Inhibition of Erbb Signaling by Combined Treatment Cancer Therapy: Preclinical Synergistic Inhibition of ErbB Signaling by Combined Treatment with Seliciclib and ErbB-Targeting Agents IanN.Fleming,MoragHogben,SheelaghFrame,StevenJ.McClue,andSimonR.Green Abstract Purpose: The aims of this studywere to investigate whether the cyclin-dependent kinase inhi- bitor seliciclib could synergize with agents that target ErbB receptors and to elucidate the mole- cular mechanism of the observed synergy. Experimental Design: Synergy between seliciclib and ErbB receptor targeted agents was in- vestigated in various cell lines using the Calcusyn median effect model.The molecular mechanism of the observed synergy was studied in cultured cells, and the combination of seliciclib and the epidermal growth factor receptor (EGFR) inhibitor erlotinib was evaluated in an H358 xenograft model. Results: Seliciclib synergized with the anti-HER2 antibody trastuzumab in a breast cancer cell line, which overexpresses the HER2 receptor, and with the erlotinib analogue AG1478 in non ^ small cell lung cancer cell lines. In the H358 non ^ small cell lung cancer cell line, synergy involved decreased signaling from the EGFR, with AG1478 directlyinhibiting kinase activitywhile seliciclib decreased the levels of keycomponents of the receptor signaling pathway,resulting in enhanced loss of phosphorylated extracellular signal-regulated kinase and cyclin D1.The combination of seliciclib and erlotinib was evaluated further in an H358 xenograft and shown to be significantly more active than either agent alone. An enhanced loss of cyclin D1was also seen in vivo. Conclusions: This is the first report that investigates combining seliciclib with an EGFR inhibitor. The combination decreased signaling from the EGFR in vitro and in vivo and was effective in cell lines containing either wild-type or mutant EGFR, suggesting that it may expand the range of tumors that respond to erlotinib, and therefore, such combinations are worth exploring in the clinic. Protein kinases are key regulators of essential cellular ErbB receptor tyrosine kinase signaling has been documented processes, many of which are involved in the pathogenesis of in a number of human cancers, including overexpression of cancer. This important role in tumorigenesis, together with the HER2 (ErbB2) in up to 30% of breast cancer patients (4), fact that kinases contain a distinct active site, which is amenable whereas epidermal growth factor receptor (EGFR; ErbB1) is for targeting with small molecules, has made kinases an overexpressed in ovarian carcinomas (35-60%), head and neck attractive area for drug discovery (1). However, it was not until tumors (70-100%), and non–small cell lung cancer (NSCLC; the successful clinical development of imatinib, a small 50-90%; refs. 5, 6). Two main approaches have been pursued molecule inhibitor of BCR-ABL, that the first targeted protein for the development of drugs that target the ErbB family. kinase inhibitor became an established cancer treatment (2). Humanized monoclonal antibodies, such as trastuzumab and Members of the ErbB family, like many other growth factor cetuximab, bind to the HER2 and EGFRs, respectively, thereby receptors, dimerize upon ligand stimulation and undergo blocking receptor dimerization/activation and facilitating re- autophosphorylation through their cytoplasmic tyrosine kinase moval of these proteins from the cell surface (3). In contrast, domains. Once activated, the ErbB kinases transduce their erlotinib and gefitinib are small molecules that bind directly to signals via a number of cellular protein kinases, including the EGFR ATP-binding active site, blocking tyrosine kinase extracellular signal-regulated kinase (ERK) and protein kinase activity (7). For each of these agents, the subsequent loss of B, to ultimately result in up-regulation of cyclin D1 levels mitogenic signaling results in the cessation of cellular proli- leading to activation of cyclin-dependent kinases (CDK) and feration. the initiation of cellular proliferation (3). Overstimulation of The CDKs are a second kinase family that have attracted a considerable amount of interest from a drug discovery perspective; with the three most advanced compounds, Authors’ Affiliation: Cyclacel Ltd., Dundee, United Kingdom seliciclib (CYC202, R-roscovitine), alvocidib (flavopiridol), Received 10/15/07; revised 2/6/08; accepted 4/2/08. and SNS-032 (formerly BMS-387032), all currently in phase Requests for reprints: Ian N. Fleming, Cyclacel Ltd., 1 James Lindsay Place, II clinical development (8, 9). Through their key role of Dundee, DD15JJ, United Kingdom. Phone: 44-1382-206062; Fax: 44-1382- 206067; E-mail: [email protected]. phosphorylating proteins involved in the regulation of cell F 2008 American Association for Cancer Research. cycle checkpoints, CDKs control the orderly progression of the doi:10.1158/1078-0432.CCR-07-4633 cell division cycle (8). In cancer cells, activation of CDKs, Clin Cancer Res 2008;14(13) July 1, 2008 4326 www.aacrjournals.org Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2008 American Association for Cancer Research. Synergy between Seliciclib and ErbB-Targeting Agents mainly by overexpression of their cognate partners, the cyclins, After drug treatment, the number of viable cells in each well was or loss of the endogenous inhibitors, such as p16, leads estimated by incubating in media containing 10% alamar blue (Roche) to inappropriate proliferation of cells containing genetic and measuring the absorbance at 488 to 595 nm. Drug interactions alterations, cells which would normally be arrested and either were analyzed using the Calcusyn software package (BioSoft), which is based on the median effect model of Chou and Talalay (22). A repaired or induced to undergo apoptosis at specific cell cycle combination index (CI) of 1 indicated an additive drug interaction, checkpoints (10). In addition to controlling the cell cycle, some whereas a CI of >1 was antagonistic and a score lower than 1 was CDKs, such as CDK7 and CDK9, regulate transcription by synergistic. phosphorylating the carboxy-terminal domain of RNA poly- Western blot analysis. Cells were seeded at f8 Â 105 per plate on merase II. Seliciclib, alvocidib, and SNS-032 all inhibit CDK7 10 cm plates and left to settle overnight. Compounds were added to the and/or CDK9, thereby leading to inhibition of transcription plates, and cells were incubated for the indicated times. Media were and down-regulation of proteins, such as Mcl-1 and cyclin D1 removed from each of the wells and centrifuged at 1,000 Â g for 5 min (11, 12), which have short half-lives (13, 14). to pellet any cells that had become detached from the plate surface. Inhibitors of both kinase families have shown some clinical Cells that remained attached to the plate were washed once with ice- activity, erlotinib in NSCLC (15), trastuzumab in breast cancer cold buffer A [50 mmol/L HEPES (pH 7.0), containing 20 mmol/L NaCl, 1 mmol/L DTT, and protease inhibitor cocktail (Merck)] and (16, 17), and alvocidib in B-cell chronic lymphocytic leukemia then scraped into 0.35 mL buffer B (buffer A containing 10 mmol/L (18). However, most agents will be used in the clinic ultimately sodium PPi, 10 mmol/L sodium fluoride, and 1 mmol/L sodium in combination with other anticancer drugs. It was recently orthovanadate). The resuspended cells were then pooled with the shown that the combination of trastuzumab and alvocidib was appropriate media cell pellet and lysed by sonication (2 Â 3 bursts synergistically cytotoxic in HER2-overexpressing breast cancer using Sanyo Soniprep 150 at 5 A). The protein concentration of each cell lines (19–21). To initially ascertain whether seliciclib could lysate was determined using the bicinchoninic acid assay (Perbio also be combined synergistically with trastuzumab, the Science). Lysates (20-30 Ag protein/well) were resolved on 3% to 8% combination was evaluated in the SkBr3 breast cancer cell line acrylamide Tris-acetate gels or 10% acrylamide Bis-Tris gels (Invitro- that overexpresses the HER2 receptor. These studies were then gen), and the proteins were transferred to nitrocellulose membranes extended to determine whether seliciclib could act synergisti- (Schleicher & Schuell) using the Invitrogen wet transfer system. Membranes were blocked for 1 h at room temperature in PBS cally in combination with agents, such as AG1478 and containing 0.02% (v/v) Tween 20 (PBST) and 5% (w/v) fat-free dried erlotinib, which target the EGFR, a second member of the ErbB milk. Primary antibody incubations were carried out overnight at 2 to family. The results from these studies showed that seliciclib 8jCin PBST containing 3% (w/v) dried milk, using the following synergized with trastuzumab in SkBr3 cells and with AG1478 in primary antibodies: HER2 and EGFR (Calbiochem), phosphorylated the NSCLC cell lines H358, H292, and H1650, which express Tyr1068 EGFR (New England Biolabs), cyclin D1 (Lab Vision), ERK2, wild-type or mutant EGFR. In each case, synergy involved and phosphorylated ERK1/ERK2 (Abcam), phosphorylated Ser473 inhibition of the ErbB signaling pathway, which could be protein kinase B (Upstate), Asp-214 cleaved poly(ADP)-ribose poly- shown both in vitro and in vivo in an NSCLC xenograft model. merase (BD PharMingen), Mcl-1 (Santa Cruz), CTD RNA polymerase II phosphorylated Ser2 (Covance), and h-actin. Membranes were washed thrice in PBST and then incubated for 1 h with the appropriate horseradish peroxidase–conjugated secondary antibody (Perbio) at Materials
Recommended publications
  • Discovery and Development of Seliciclib. How Systems Biology
    Journal of Biotechnology 202 (2015) 40–49 Contents lists available at ScienceDirect Journal of Biotechnology j ournal homepage: www.elsevier.com/locate/jbiotec Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance a b c a a,∗ Hilal S. Khalil , Vanio Mitev , Tatyana Vlaykova , Laura Cavicchi , Nikolai Zhelev a CMCBR, SIMBIOS, School of Science, Engineering and Technology, Abertay University, Dundee DD1 1HG, Scotland, UK b Department of Chemistry and Biochemistry, Medical University of Sofia, 1431 Sofia, Bulgaria c Department of Chemistry and Biochemistry, Medical Faculty, Trakia University, Stara Zagora, Bulgaria a r t i c l e i n f o a b s t r a c t Article history: Seliciclib (R-Roscovitine) was identified as an inhibitor of CDKs and has undergone drug development and Received 10 August 2014 clinical testing as an anticancer agent. In this review, the authors describe the discovery of Seliciclib and Received in revised form 26 February 2015 give a brief summary of the biology of the CDKs Seliciclib inhibits. An overview of the published in vitro Accepted 27 February 2015 and in vivo work supporting the development as an anti-cancer agent, from in vitro experiments to animal Available online 6 March 2015 model studies ending with a summary of the clinical trial results and trials underway is presented. In addition some potential non-oncology applications are explored and the potential mode of action of Keywords: Seliciclib in these areas is described. Finally the authors argue that optimisation of the therapeutic effects Seliciclib of kinase inhibitors such as Seliciclib could be enhanced using a systems biology approach involving Systems biology CDK mathematical modelling of the molecular pathways regulating cell growth and division.
    [Show full text]
  • Targeting Fibrosis in the Duchenne Muscular Dystrophy Mice Model: an Uphill Battle
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Title: Targeting fibrosis in the Duchenne Muscular Dystrophy mice model: an uphill battle 2 Marine Theret1#, Marcela Low1#, Lucas Rempel1, Fang Fang Li1, Lin Wei Tung1, Osvaldo 3 Contreras3,4, Chih-Kai Chang1, Andrew Wu1, Hesham Soliman1,2, Fabio M.V. Rossi1 4 1School of Biomedical Engineering and the Biomedical Research Centre, Department of Medical 5 Genetics, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada 6 2Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Minia 7 University, Minia, Egypt 8 3Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 9 Darlinghurst, NSW, 2010, Australia 10 4Departamento de Biología Celular y Molecular and Center for Aging and Regeneration (CARE- 11 ChileUC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8331150 12 Santiago, Chile 13 # Denotes Co-first authorship 14 15 Keywords: drug screening, fibro/adipogenic progenitors, fibrosis, repair, skeletal muscle. 16 Correspondence to: 17 Marine Theret 18 School of Biomedical Engineering and the Biomedical Research Centre 19 University of British Columbia 20 2222 Health Sciences Mall, Vancouver, British Columbia 21 Tel: +1(604) 822 0441 fax: +1(604) 822 7815 22 Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.20.427485; this version posted January 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Two Inhibitors of Yeast Plasma Membrane Atpase 1 (Scpma1p): Toward the Development of Novel Antifungal Therapies Sabine Ottilie1†, Gregory M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by D-Scholarship@Pitt Ottilie et al. J Cheminform (2018) 10:6 https://doi.org/10.1186/s13321-018-0261-3 RESEARCH ARTICLE Open Access Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies Sabine Ottilie1†, Gregory M. Goldgof1,4†, Andrea L. Cheung1, Jennifer L. Walker2, Edgar Vigil1, Kenneth E. Allen3, Yevgeniya Antonova‑Koch1, Carolyn W. Slayman3^, Yo Suzuki4 and Jacob D. Durrant2* Abstract Given that many antifungal medications are susceptible to evolved resistance, there is a need for novel drugs with unique mechanisms of action. Inhibiting the essential proton pump Pma1p, a P-type ATPase, is a potentially efective therapeutic approach that is orthogonal to existing treatments. We identify NSC11668 and hitachimycin as structur‑ ally distinct antifungals that inhibit yeast ScPma1p. These compounds provide new opportunities for drug discovery aimed at this important target. Keywords: Antifungal, PMA1, P-type ATPase, Computer modeling, Saccharomyces cerevisiae, In vitro evolution, Drug resistance Background sterol-C-24-methyltransferase and the fungal cell mem- Antifungal medications are in high demand, but low brane directly [8]. efcacy, host toxicity, and emerging resistance among Only a few approved antimycotics have mecha- clinical strains [1, 2] complicate their use. Tere is an nisms that are unrelated to ergosterol biosynthesis. urgent need for novel antimycotic therapeutics with For example, the highly efective echinocandins inhibit unique mechanisms of action. Te purpose of the cur- 1,3-β-glucan synthase, hindering production of the criti- rent work is to describe two novel antifungals: 4-N,6- cal cell-wall component β-glucan [9, 10]; and the terato- N-bis(3-chlorophenyl)-1-methylpyrazolo[3,4-d] genic compound fucytosine interferes with eukaryotic pyrimidine-4,6-diamine (NSC11668), and hitachimycin RNA/DNA synthesis [11, 12].
    [Show full text]
  • New Contributions in Undergraduate Research
    PSU McNair Scholars Online Journal Volume 11 Issue 1 Without Borders: Original Contributions Article 6 in Undergraduate Research 2017 Wings Outstretched: New Contributions in Undergraduate Research Follow this and additional works at: https://pdxscholar.library.pdx.edu/mcnair Let us know how access to this document benefits ou.y Recommended Citation (2017) "Wings Outstretched: New Contributions in Undergraduate Research," PSU McNair Scholars Online Journal: Vol. 11: Iss. 1, Article 6. https://doi.org/10.15760/mcnair.2017.01 This open access Full Issue is distributed under the terms of the Creative Commons Attribution-NonCommercial- ShareAlike 4.0 International License (CC BY-NC-SA 4.0). All documents in PDXScholar should meet accessibility standards. If we can make this document more accessible to you, contact our team. Portland State University McNair Research Journal 2017 Without Borders: Original Contributions in Undergraduate Research 2017 Ronald E. McNair Scholars Journal Portland State University 1 About the Program The Portland State University (PSU) Ronald E. McNair Scholars Program at Portland State University works with motivated and talented undergraduates who want to pursue PhDs. It introduces juniors and seniors who are first-generation and low income, and/or members of under-represented groups to academic research and to effective strategies for getting into and graduating from PhD programs. The McNair Scholars Program has academic-year activities and a full-time summer research internship. Scholars take academic and skills-building seminars and workshops during the year, and each scholar works closely with a faculty mentor on original research in the summer. Scholars present their research findings at the McNair Summer Symposium and at other conferences, and are encouraged to publish their papers in the McNair Journal and other scholarly publications.
    [Show full text]
  • Chronic Lymphocytic Leukemia
    Amsterdam, the Netherlands, June 14 – 17, 2012 Chronic lymphocytic leukemia - Clinical 1 assumed efficacy especially in high-risk situations (early relapse, unfavourable prognostic markers), was used in 202 patients. The overall survival in the CHOP-collective was significantly shorter than in the comparative group (p<0.0001) although median observation time was not significantly differ - 0144 ent. However, this observation might reflect a bias in the selection of high risk patients for this relapse treatment. No influence on survival was INFLUENCE OF DIFFERENT TREATMENT REGIMENS ON SURVIVAL IN observed in patients receiving a mitoxantrone-containing regimen at any PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA - A META-ANALY - time during the treatment course. Summary and Conclusions. This meta- SIS OF THE GERMAN CLL STUDY GROUP (GCLLSG) analysis shows that the advances in the development of strategies for first- S Isfort 1, P Cramer 2, J Bahlo 2, R Busch 3, K Fischer 2, AM Fink 2, V Goede 2, T line therapies result in prolongation of treatment-free and overall survival Elter 2, M Bergmann 4, M Stauch 5, S Stilgenbauer 4, CM Wendtner 6, M Hallek 2, for patients with CLL and need of treatment. Chemoimmunotherapies pro - B Eichhorst 2 long the survival independently of the time point of chemoimmunotherapy 1Department of Medicine IV, University Hospital Aachen, Aachen, Germany administration (for first-line therapy or relapse). 2Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany 3 Institute for Medical Statistic and Epidemiology, Technical University Munich, 0145 Munich, Germany 4 Department III of Internal Medicine, University Hospital Ulm, Ulm, Germany A SINGLE-ARM MULTI-CENTER TRIAL OF BENDAMUSTINE GIVEN 5 Private practice and day time clinic for Hematology and Oncology, Kronach, WITH OFATUMUMAB (BENDOFA) IN PATIENTS WITH REFRACTORY OR Kronach, Germany RELAPSED CHRONIC LYMPHOCYTIC LEUKEMIA.
    [Show full text]
  • National Cancer Institute Cancer National
    DIVISION OF CANCER TREATMENT AND DIAGNOSIS National Cancer Institute Cancer National PROGRAM ACCOMPLISHMENTS 2006 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health TABLE OF CONTENTS Foreword . iii Division of Cancer Treatment and Diagnosis Overview . .1 Major Ongoing Initiatives and Accomplishments . .7 Biometric Research Branch Overview . 11 Partnerships and Collaborations . 12 Scientific Advances . 17 Other Biostatistical Research . 24 Tools, Products, and Resources . 27 Cancer Diagnosis Program Overview . 29 Major Ongoing Initiatives . 30 Current Funding Opportunities . 34 Partnerships and Collaborations . 36 Scientific Advances . 39 Tools, Products, and Resources . 41 Cancer Imaging Program Overview . 45 Major Ongoing Initiatives . 47 Current Funding Opportunities . 54 Partnerships and Collaborations . 57 Scientific Advances . 61 Tools, Products, and Resources . 63 Cancer Therapy Evaluation Program Overview . 65 Major Ongoing Initiatives . 67 Significant Ongoing Clinical Trials . 71 Current Funding Opportunities . 73 Partnerships and Collaborations . 75 Scientific Advances . 79 Tools, Products, and Resources . 92 TABLE OF CONTENTS ■ i Developmental Therapeutics Program Overview . 95 New Initiatives . 97 Major Ongoing Initiatives . .100 Current Funding Opportunities . .104 Tools, Products, and Resources . .105 History-Marking Event . .114 Scientific Advances . .115 Radiation Research Program Overview . .119 Partnerships and Collaborations . .121 Scientific Advances . .127 Tools, Products, and Resources . .129
    [Show full text]
  • Roscovitine-Treated Hela Cells Finalize Autophagy Later Than Apoptosis by Downregulating Bcl-2
    1968 MOLECULAR MEDICINE REPORTS 11: 1968-1974, 2015 Roscovitine-treated HeLa cells finalize autophagy later than apoptosis by downregulating Bcl-2 AJDA COKER-GURKAN1, ELIF DAMLA ARISAN1, PINAR OBAKAN1, PELIN OZFILIZ1, BETSI KOSE1, GUVEN BICKICI1,2 and NARCIN PALAVAN-UNSAL1 1Department of Molecular Biology and Genetics, Istanbul Kultur University, Istanbul 34156, Turkey; 2Department of Life and Sport Sciences, School of Science, University of Greenwich, Kent, UK Received December 4, 2013; Accepted May 30, 2014 DOI: 10.3892/mmr.2014.2902 Abstract. The cell cycle is tightly regulated by the family of by roscovitine treatment. The expression levels of different cyclin-dependent kinases (CDKs). CDKs act as regulatory Bcl-2 family members determined whether apoptosis or factors on serine and threonine residues by phosphorylating autophagy were induced following incubation with roscovitine their substrates and cyclins. CDK-targeting drugs have previ- for different time periods. Downregulation of pro-apoptotic ously demonstrated promising effects as cancer therapeutics Bcl-2 family members indicated induction of apoptosis, while both in vitro and in vivo. Roscovitine, a purine-derivative the downregulation of anti-apoptotic Bcl-2 family members and specific CDK inhibitor, has been demonstrated to arrest rapidly induced autophagosome formation in HeLa cells. the cell cycle and induce apoptosis in a number of different cancer cell lines, including HeLa cervical cancer cells. In the Introduction present study, roscovitine was able to decrease both the cell viability and cell survival as well as induce apoptosis in a Cyclin-dependent kinases (CDKs) strictly orchestrate the cell dose-dependent manner in HeLa cells by modulating the mito- cycle machinery through the binding to their specific cyclin chondrial membrane potential.
    [Show full text]
  • Supporting Information
    Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures.
    [Show full text]
  • Draft COMP Agenda 16-18 January 2018
    12 January 2018 EMA/COMP/818236/2017 Inspections, Human Medicines Pharmacovigilance and Committees Committee for Orphan Medicinal Products (COMP) Draft agenda for the meeting on 16-18 January 2018 Chair: Bruno Sepodes – Vice-Chair: Lesley Greene 16 January 2018, 09:00-19:30, room 2F 17 January 2018, 08:30-19:30, room 2F 18 January 2018, 08:30-18:30, room 2F Health and safety information In accordance with the Agency’s health and safety policy, delegates are to be briefed on health, safety and emergency information and procedures prior to the start of the meeting. Disclaimers Some of the information contained in this agenda is considered commercially confidential or sensitive and therefore not disclosed. With regard to intended therapeutic indications or procedure scopes listed against products, it must be noted that these may not reflect the full wording proposed by applicants and may also vary during the course of the review. Additional details on some of these procedures will be published in the COMP meeting reports once the procedures are finalised. Of note, this agenda is a working document primarily designed for COMP members and the work the Committee undertakes. Note on access to documents Some documents mentioned in the agenda cannot be released at present following a request for access to documents within the framework of Regulation (EC) No 1049/2001 as they are subject to on- going procedures for which a final decision has not yet been adopted. They will become public when adopted or considered public according to the principles stated in the Agency policy on access to documents (EMA/127362/2006).
    [Show full text]
  • Peptide-Functionalized Nanoparticles-Encapsulated Cyclin-Dependent Kinases Inhibitor Seliciclib in Transferrin Receptor Overexpressed Cancer Cells
    nanomaterials Article Peptide-Functionalized Nanoparticles-Encapsulated Cyclin-Dependent Kinases Inhibitor Seliciclib in Transferrin Receptor Overexpressed Cancer Cells Guan Zhen He 1 and Wen Jen Lin 1,2,* 1 School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan; [email protected] 2 Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan * Correspondence: [email protected]; Tel.: +886-2-33668765; Fax: +886-2-23919098 Abstract: Seliciclib, a broad cyclin-dependent kinases (CDKs) inhibitor, exerts its potential role in cancer therapy. For taking advantage of overexpressive transferrin receptor (TfR) on most cancer cells, T7 peptide, a TfR targeting ligand, was selected as a targeting ligand to facilitate nanoparticles (NPs) internalization in cancer cells. In this study, poly(D,L-lactide-co-glycolide) (PLGA) was conju- gated with maleimide poly(ethylene glycol) amine (Mal-PEG-NH2) to form PLGA-PEG-maleimide copolymer. The synthesized copolymer was used to prepare NPs for encapsulation of seliciclib which was further decorated by T7 peptide. The result shows that the better cellular uptake was achieved by T7 peptide-modified NPs particularly in TfR-high expressed cancer cells in order of MDA-MB-231 breast cancer cells > SKOV-3 ovarian cancer cells > U87-MG glioma cells. Both SKOV-3 and U87-MG cells are more sensitive to encapsulated seliciclib in T7-decorated NPs than to free seliciclib, and that Citation: He, G.Z.; Lin, W.J. IC50 values were lowered for encapsulated seliciclib. Peptide-Functionalized Nanoparticles-Encapsulated Keywords: seliciclib; T7 peptide; nanoparticles; TfR-overexpressed cancer cells Cyclin-Dependent Kinases Inhibitor Seliciclib in Transferrin Receptor Overexpressed Cancer Cells.
    [Show full text]
  • Roscovitine in Cancer and Other Diseases
    Review Article Page 1 of 12 Roscovitine in cancer and other diseases Jonas Cicenas1,2,3, Karthik Kalyan2,4, Aleksandras Sorokinas2, Edvinas Stankunas2,5, Josh Levy2,6, Ingrida Meskinyte7, Vaidotas Stankevicius2,8,9, Algirdas Kaupinis3, Mindaugas Valius3 1CALIPHO Group, Swiss Institute of Bioinformatics, Geneva, Switzerland; 2MAP Kinase Resource, Bern, Switzerland; 3Proteomics Centre, Vilnius University Institute of Biochemistry, Vilnius, Lithuania; 4Systems Biomedicine Division and Department of Virology and Immunology, Haffkine Institute for Training Research and Testing, Mumbai, India; 5Department of Biochemistry, Vilnius University, Vilnius, Lithuania; 6RTI International, Research Triangle Park, NC, USA; 7Lithuanian Centre of Non-Formal Youth Education Vilnius, Lithuania; 8National Cancer Institute, Vilnius, Lithuania; 9Vilnius University, Vilnius, Lithuania Correspondence to: Jonas Cicenas. Swiss Institute of Bioinformatics, CALIPHO Group, CMU-1, rue Michel Servet’ CH-1211, Geneva 4, Switzerland. Email: [email protected]. Abstract: Roscovitine [CY-202, (R)-Roscovitine, Seliciclib] is a small molecule that inhibits cyclin-dependent kinases (CDKs) through direct competition at the ATP-binding site. It is a broad-range purine inhibitor, which inhibits CDK1, CDK2, CDK5 and CDK7, but is a poor inhibitor for CDK4 and CDK6. Roscovitine is widely used as a biological tool in cell cycle, cancer, apoptosis and neurobiology studies. Moreover, it is currently evaluated as a potential drug to treat cancers, neurodegenerative diseases, inflammation, viral infections, polycystic kidney disease and glomerulonephritis. This review focuses on the use of roscovitine in the disease model as well as clinical model research. Keywords: Cyclin-dependent kinases (CDK); small molecule inhibitor; roscovitine; cancer; neurodegeneration; kidney diseases Submitted Dec 16, 2014. Accepted for publication Mar 16, 2015.
    [Show full text]
  • In Combination with Cytotoxic Agents in Human Uterine Sarcoma Cell Lines
    ANTICANCER RESEARCH 27: 273-278 (2007) Seliciclib (CYC202; r-Roscovitine) in Combination with Cytotoxic Agents in Human Uterine Sarcoma Cell Lines HELEN M. COLEY, CHRISTINE F. SHOTTON and HILARY THOMAS Postgraduate Medical School, University of Surrey, Guildford, Surrey GU2 7WG, U.K. Abstract. Background: Inhibition of cyclin-dependent kinases the cell cycle as an approach to treat cancer. Seliciclib (CDKs) has recently emerged as an interesting approach to treat (CYC202), the r-enantiomer of the cell cycle inhibitory human malignancies. This was explored in human leiomyo- agent roscovitine has been developed as a potent CDK2 sarcoma (LMS) lines, which represent a tumour associated with inhibitor and is currently in phase II clinical trials. poor survival, chemo-unresponsiveness and deregulation of cell Preclinical studies involving other CDK inhibitors, such as cycle components. Materials and Methods: Using isobologram flavopiridol have demonstrated their interaction with a analysis with MTT chemosensitivity testing, the effects of the CDK number of different cytotoxic agents in a synergistic manner inhibitor seliciclib (CYC202, R-roscovitine) when used alone or (5). We have explored this approach by examining the in combination with paclitaxel was studied in uterine cancer cell effects of seliciclib combined with paclitaxel in three human lines. Apoptotic endpoints were also examined via Annexin V uterine sarcoma cell line models in terms of any synergy and assay using flow cytometry and Western blotting. Results: Overall effects on apoptosis. seliciclib combined with paclitaxel proved synergistic for all cell lines. This was concomitant with an enhanced apoptotic effect Materials and Methods and downregulation of the IAP survivin. Conclusion: Our data support the use of seliciclib as part of combination therapy for Chemicals and reagents.
    [Show full text]