What Is an Operating System IV 4.1 Components III. an Operating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparison of Contemporary Real Time Operating Systems
ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319 5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 4, Issue 11, November 2015 Comparison of Contemporary Real Time Operating Systems Mr. Sagar Jape1, Mr. Mihir Kulkarni2, Prof.Dipti Pawade3 Student, Bachelors of Engineering, Department of Information Technology, K J Somaiya College of Engineering, Mumbai1,2 Assistant Professor, Department of Information Technology, K J Somaiya College of Engineering, Mumbai3 Abstract: With the advancement in embedded area, importance of real time operating system (RTOS) has been increased to greater extent. Now days for every embedded application low latency, efficient memory utilization and effective scheduling techniques are the basic requirements. Thus in this paper we have attempted to compare some of the real time operating systems. The systems (viz. VxWorks, QNX, Ecos, RTLinux, Windows CE and FreeRTOS) have been selected according to the highest user base criterion. We enlist the peculiar features of the systems with respect to the parameters like scheduling policies, licensing, memory management techniques, etc. and further, compare the selected systems over these parameters. Our effort to formulate the often confused, complex and contradictory pieces of information on contemporary RTOSs into simple, analytical organized structure will provide decisive insights to the reader on the selection process of an RTOS as per his requirements. Keywords:RTOS, VxWorks, QNX, eCOS, RTLinux,Windows CE, FreeRTOS I. INTRODUCTION An operating system (OS) is a set of software that handles designed known as Real Time Operating System (RTOS). computer hardware. Basically it acts as an interface The motive behind RTOS development is to process data between user program and computer hardware. -
AMNESIA 33: How TCP/IP Stacks Breed Critical Vulnerabilities in Iot
AMNESIA:33 | RESEARCH REPORT How TCP/IP Stacks Breed Critical Vulnerabilities in IoT, OT and IT Devices Published by Forescout Research Labs Written by Daniel dos Santos, Stanislav Dashevskyi, Jos Wetzels and Amine Amri RESEARCH REPORT | AMNESIA:33 Contents 1. Executive summary 4 2. About Project Memoria 5 3. AMNESIA:33 – a security analysis of open source TCP/IP stacks 7 3.1. Why focus on open source TCP/IP stacks? 7 3.2. Which open source stacks, exactly? 7 3.3. 33 new findings 9 4. A comparison with similar studies 14 4.1. Which components are typically flawed? 16 4.2. What are the most common vulnerability types? 17 4.3. Common anti-patterns 22 4.4. What about exploitability? 29 4.5. What is the actual danger? 32 5. Estimating the reach of AMNESIA:33 34 5.1. Where you can see AMNESIA:33 – the modern supply chain 34 5.2. The challenge – identifying and patching affected devices 36 5.3. Facing the challenge – estimating numbers 37 5.3.1. How many vendors 39 5.3.2. What device types 39 5.3.3. How many device units 40 6. An attack scenario 41 6.1. Other possible attack scenarios 44 7. Effective IoT risk mitigation 45 8. Conclusion 46 FORESCOUT RESEARCH LABS RESEARCH REPORT | AMNESIA:33 A note on vulnerability disclosure We would like to thank the CERT Coordination Center, the ICS-CERT, the German Federal Office for Information Security (BSI) and the JPCERT Coordination Center for their help in coordinating the disclosure of the AMNESIA:33 vulnerabilities. -
Porting Embedded Systems to Uclinux
Porting Embedded Systems to uClinux António José da Silva Instituto Superior Técnico Av. Rovisco Pais 1049-001 Lisboa, Portugal [email protected] ABSTRACT Concerning response times, computer systems can be di- The emergence of embedded computing in our daily lives vided in soft and hard real time[26]. In soft real time sys- has made the design and development of embedded applica- tems, missing a deadline only degrades performance, unlike tions into one of the crucial factors for embedded systems. in hard real time systems. In hard real time systems, miss- Given the diversity of currently available applications, not ing a time constraint before giving an answer may be worse only for embedded, but also for general purpose systems, it than having no answer at all. An example of a soft real time will be important to easily reuse part, if not all, of these ap- system is a common DVD player. While good performance plications in future and current products. The widespread is desirable, missing time constraints in this type of system interest and enthusiasm generated by Linux's successful use only results in some frame loss, or some quirks in the user in a number of embedded systems has made it into a strong interface, but the system can continue to operate. This is candidate for defining a common development basis for em- not the case for hard real time systems. Missing a deadline bedded applications. In this paper, a detailed porting guide in a pace maker or in a nuclear plant's cooling system, for to uClinux using the XTran-3[20] board, an embedded sys- example, can lead to catastrophic scenarios! tem designed by Tecmic, is presented. -
Rtlinux and Embedded Programming
RTLinux and embedded programming Victor Yodaiken Finite State Machine Labs (FSM) RTLinux – p.1/33 Who needs realtime? How RTLinux works. Why RTLinux works that way. Free software and embedded. Outline. The usual: definitions of realtime. RTLinux – p.2/33 How RTLinux works. Why RTLinux works that way. Free software and embedded. Outline. The usual: definitions of realtime. Who needs realtime? RTLinux – p.2/33 Why RTLinux works that way. Free software and embedded. Outline. The usual: definitions of realtime. Who needs realtime? How RTLinux works. RTLinux – p.2/33 Free software and embedded. Outline. The usual: definitions of realtime. Who needs realtime? How RTLinux works. Why RTLinux works that way. RTLinux – p.2/33 Realtime software: switch between different tasks in time to meet deadlines. Realtime versus Time Shared Time sharing software: switch between different tasks fast enough to create the illusion that all are going forward at once. RTLinux – p.3/33 Realtime versus Time Shared Time sharing software: switch between different tasks fast enough to create the illusion that all are going forward at once. Realtime software: switch between different tasks in time to meet deadlines. RTLinux – p.3/33 Hard realtime 1. Predictable performance at each moment in time: not as an average. 2. Low latency response to events. 3. Precise scheduling of periodic tasks. RTLinux – p.4/33 Soft realtime Good average case performance Low deviation from average case performance RTLinux – p.5/33 The machine tool generally stops the cut as specified. The power almost always shuts off before the turbine explodes. Traditional problems with soft realtime The chips are usually placed on the solder dots. -
Embedded GNU/Linux and Real-Time an Executive Summary
Embedded GNU/Linux and Real-Time an executive summary Robert Berger Embedded Software Specialist Stratigou Rogakou 24, GR-15125 Polydrosso/Maroussi, Athens, Greece Phone : (+ 30) 697 593 3428, Fax: (+ 30) 210 684 7881 email: [email protected] Abstract What is real-time and how can it be added to a plain vanilla Linux kernel[1]? Two fundamentally different approaches are described here. One approach attempts to patch the vanilla Linux kernel (PREEMPT_RT[2]) to achieve real-time functionality, while the other one utilizes a dual kernel architecture (RTAI[3], RTLinux/GPL[4], Xenomai[5], XM/eRTL[6], Real-Time Core[7], XtratuM[8], seL4[9], PaRTiKle[10],...), where Linux runs as the idle process on top of the real- time kernel. How do those approaches compare? At the time I started my quest for the holy grail of real-time Linux I hoped that it would be a clear decision wether to use p-rt or dk, but things seem to be less black and white than I initially thought. Bear with me to find out what changed my initial believes. 1 Introduction I would like to thank Nicholas Mc Guire, Paulo Montegazza, Philippe Gerum1 and Jan Kiszka from the dual kernel (dk) camp and Thomas Gleixner from the preempt-rt (p-rt) side as well as Paul E. McKenney and Carsten Emde for sharing their precious time with me to provide valu- able input and to review this paper. 2 Real-Time Real-Time has to do with time (timeliness), but most of all with determinism (predictability, time and event determinism). -
Reactos-Devtutorial.Pdf
Developer Tutorials Developer Tutorials Next Developer Tutorials Table of Contents I. Newbie Developer 1. Introduction to ReactOS development 2. Where to get the latest ReactOS source, compilation tools and how to compile the source 3. Testing your compiled ReactOS code 4. Where to go from here (newbie developer) II. Centralized Source Code Repository 5. Introducing CVS 6. Downloading and configuring your CVS client 7. Checking out a new tree 8. Updating your tree with the latest code 9. Applying for write access 10. Submitting your code with CVS 11. Submitting a patch to the project III. Advanced Developer 12. CD Packaging Guide 13. ReactOS Architecture Whitepaper 14. ReactOS WINE Developer Guide IV. Bochs testing 15. Introducing Bochs 16. Downloading and Using Bochs with ReactOS 17. The compile, test and debug cycle under Bochs V. VMware Testing 18. Introducing VMware List of Tables 7.1. Modules http://reactos.com/rosdocs/tutorials/bk02.html (1 of 2) [3/18/2003 12:16:53 PM] Developer Tutorials Prev Up Next Chapter 8. Where to go from here Home Part I. Newbie Developer (newbie user) http://reactos.com/rosdocs/tutorials/bk02.html (2 of 2) [3/18/2003 12:16:53 PM] Part I. Newbie Developer Part I. Newbie Developer Prev Developer Tutorials Next Newbie Developer Table of Contents 1. Introduction to ReactOS development 2. Where to get the latest ReactOS source, compilation tools and how to compile the source 3. Testing your compiled ReactOS code 4. Where to go from here (newbie developer) Prev Up Next Developer Tutorials Home Chapter 1. Introduction to ReactOS development http://reactos.com/rosdocs/tutorials/bk02pt01.html [3/18/2003 12:16:54 PM] Chapter 1. -
AV Linux the Distro of Choice for Media Creators
DISTROHOPPER DISTROHOPPER Our pick of the latest releases will whet your appetite for new Linux distributions. ReactOS Like Windows, but open. K, this isn’t Linux – it’s not even based on Unix – but it is a free Ooperating system that you can try out. ReactOS is a clone of the Windows NT kernel used in Windows XP, and some of the API. This means that in theory, you should be able to use ReactOS just like a Windows system: install the same drivers, run the same software, etc. However, in practice, the implementation is not complete enough to allow you to do this. You can run the simple tools that come with the OS, but not much else. Wine offers a much better chance of being able to run Windows software without a full Windows install. Even though Wine and ReactOS share code, Wine has a much Don’t tell Linus we said this, but some games just don’t look right when running on Linux. better success rate. This is a shame, because if the team had Just because a project isn’t mainstream, Minesweeper, the game that killed millions of been able to create a fully working system that doesn’t mean it’s not interesting. man-hours worth of office-worker time in by the time Microsoft stopped support for Booting up ReactOS feels like taking a trip the last years of the previous millennium. Windows XP, they may have found many back in time – its visual style probably has Perhaps it’s not the best reason to get a new new users. -
Translate's Localization Guide
Translate’s Localization Guide Release 0.9.0 Translate Jun 26, 2020 Contents 1 Localisation Guide 1 2 Glossary 191 3 Language Information 195 i ii CHAPTER 1 Localisation Guide The general aim of this document is not to replace other well written works but to draw them together. So for instance the section on projects contains information that should help you get started and point you to the documents that are often hard to find. The section of translation should provide a general enough overview of common mistakes and pitfalls. We have found the localisation community very fragmented and hope that through this document we can bring people together and unify information that is out there but in many many different places. The one section that we feel is unique is the guide to developers – they make assumptions about localisation without fully understanding the implications, we complain but honestly there is not one place that can help give a developer and overview of what is needed from them, we hope that the developer section goes a long way to solving that issue. 1.1 Purpose The purpose of this document is to provide one reference for localisers. You will find lots of information on localising and packaging on the web but not a single resource that can guide you. Most of the information is also domain specific ie it addresses KDE, Mozilla, etc. We hope that this is more general. This document also goes beyond the technical aspects of localisation which seems to be the domain of other lo- calisation documents. -
L4-Linux Based System As a Platform for EPICS Ioccore
L4-Linux Based System As A Platform For EPICS iocCore J. Odagiri, N. Yamamoto and T. Katoh High Energy Research Accelerator Organization, KEK ICALEPCS 2001, Nov 28, San Jose Contents Backgrounds Causes of latency in Linux kernel Real-time Linux and EPICS iocCore L4-Linux as a real-time platform Conclusions Backgrounds iocCore portable to multi-platforms in EPICS 3.14 Linux promising candidate for running EPICS iocCore runs on Linux OS Interface libraries POSIX 1003.1c (Pthread) POSIX 1003.1b (real-time extension) However, … POSIX real-time extensions Unpredictable latency Not for hard real-time applications Possible rare misses to the deadline Causes Not in the libraries but in the Linux kernel Causes of Latency Non-preempt-able kernel Possibly up to 100 ms or more Disabling of interrupts Typically, several hundreds of µs Address Space Switching Tens of µs Non-preempt-able Kernel Interrupt Kernel Latency High Priority Process Low Priority Process Interrupt Disabling unsigned long flags; save_flags(flags); cli(); /* critical section */ restore_flags(flags); Address Space Switching Page Directory x86x86 Table User Page Space Table Physical Page Kernel Space Impacts on the Latency Non-preempt-able Kernel Interrupt Disabling Address Space Switching Two Different Approaches Kernel-level tasks / real-time scheduler RTLinux RTAI … User-level processes / low latency Linux Low latency patches Preempt-able kernel … RTLinux / RTAI Definitely shortest latency! Several tens of µs Free from all of the three obstacles -
Linux on the Move
Guest Editors’ Introduction What is Linux? And why should you care? This focus section has insights for both newcomers and diehard fans. Linux on the Move Terry Bollinger, The Mitre Corporation Peter Beckman, Los Alamos National Laboratory inux is a free, open-source operating system that looks like Unix, L except that it runs on PCs as well as other platforms. Linux was created by Linus Torvalds in 1991. Today, Linux is cooperatively improved by Torvalds and thousands of volunteers from around the world using open-source development methods. At this point in time, “Linux” generally refers to the entire suite of software in a distribution, from the operating system kernel to the Web server and graphical user interface. When we say that Linux is “free” we mean, well…free. You do not need to pay money to get a copy of it, although it is usually more convenient to buy an inexpen- sive CD-ROM copy than download an entire distribution over the Internet. Once you get a copy of Linux, you also have the right to make as many copies of it as you want. 30 IEEE Software January/February 1999 0740-7459/99/$10.00 © 1999 . DEFINING TERMS GETTING RESULTS By “open source”we mean that you also have the The only traditional software practice that open- right to get copies of all the source code from which source software developers do follow is peer review, Linux and its associated tools were originally com- and they do that with a vengeance. Each piece of piled. There are no magical, mysterious binary files, source code is placed on display in front of a global although you can of course get the Linux system precompiled if you prefer. -
Building Ethernet Drivers on Rtlinux-GPL1 1 Introduction
Building Ethernet Drivers on RTLinux-GPL1 Sergio P´erez, Joan Vila, Ismael Ripoll Department of Computer Engineering Universitat Polit`ecnica de Valencia Camino de Vera, s/n. 46022 Valencia,SPAIN fserpeal,jvila,[email protected] Abstract This paper describes how to port Linux Ethernet drivers to RTLinux-GPL (hereafter RTLinux). It presents an architecture that will let Linux and RTLinux to share the same driver while accessing an Ethernet card. This architecture will let real-time applications to access the network as a character device (i.e. using the standard open(), read(), close(), write() and ioctl() calls) and also would let Linux to use the driver as it always did (ifconfig, route, etc.). This paper also discusses some scheduling policies that will give to RTLinux the highest priority while accessing the Ethernet card. 1 Introduction munications won't be real-time. There are many real-time protocols based on Ethernet, such as RT- Nowadays, communication aspects in real-time sys- EP [1] (developed in the University of Cantabria), tems are a very important issue. Achieving interop- and others that are not real-time such as the well- erability and web-integration is becoming more and known TCP. But the focus of this paper is Ether- more a need in the actual real-time systems. CAN, net itself, and particularly, the paper is focused in PROFIBUS and other networks have been the solu- writing device drivers for Ethernet cards using the tion for the industrial and automation world during RTLinux platform. years, but now, that is changing. In it's 30-year an- niversary, Ethernet is the world's most dominant net- working technology (around the 85% of the world's This paper attempts to establish the steps for de- LANs today are Ethernet-based). -
Real-Time in Embedded Linux Systems
Linux and real-time Thomas Petazzoni Free Electrons 1 Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com Who am I ? Thomas Petazzoni Work for Free Electrons, an embedded Linux consulting and training company Development services (bootloader, kernel, drivers, system integration, boot time optimizations, power management, etc.) Training (documents freely available under CC-BY-SA) http://www.free-electrons.com And also Buildroot developer (embedded Linux build system) MapOSMatic developer (OpenStreetMap city map generator) Co-founder of Toulibre http://thomas.enix.org 2 Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com Real Time in Embedded Linux Systems Introduction 3 Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com Embedded Linux and real time Due to its advantages, Linux and the open-source softwares are more and more commonly used in embedded applications However, some applications also have real-time constraints They, at the same time, want to Get all the nice advantages of Linux: hardware support, components re-use, low cost, etc. Get their real-time constraints met ? 4 Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http://free-electrons.com Embedded Linux and real time Linux is an operating system part of the large Unix family It was originally designed as a time-sharing system The main goal is to get the best throughput from the available hardware, by making the best possible usage of resources (CPU, memory, I/O) Time determinism is not taken into account On the opposite, real-time constraints imply time determinism, even at the expense of lower global throughput Best throughput and time determinism are contradictory requirements 5 Free Electrons.