Problems in Restoring Native Trees to Barren Tropical Pasture
Total Page:16
File Type:pdf, Size:1020Kb
Problems in restoring native trees to barren tropical pasture Lynn Carpenter, Doland Nichols, Eduver Sandi, and Grad students: Mary Anderson, Riley Pratt, Calen May- Tobin, Kristin Young Undergraduate students: Laura Antonie and Sotheary Son 1 Goals and approaches of our project in 1992 • Overall: Use native trees to reclaim extremely degraded pastureland – Reason: to provide future information when more farms reach that state – Goal 1: jump-start forest succession – Goal 2: restore economic value to farm • Our approach was two-fold – Basic science: • Test ecological concepts such as successional facilitation – Applied science: • Develop practical methods with minimal capital outlay for local farmers 2 Our 6-wk search for the perfect study site • Criteria: – Lack of topsoil as judged by color – Depth of cattle trails—to 2m – Extent of bare land— 50% • Site: southwestern Costa Rica – Comparable to other projects? 3 Finca Cantarana • 25 ha @ 1020m, 4400mm/yr rainfall • History: – Mid-1950’s: cleared for coffee – Mid-1970’s: converted to pasture, overgrazed • 1992: research began 4 Initial soil characteristics 5 Soil fertility and classification • Infertile compared to Finca Cantarana Las Alturas 18.00 other pasture sites in 16.00 CR 14.00 12.00 – Las Alturas (Holl 1999) & 10.00 Finca Cantarana (Nichols et 8.00 al. 2001) 6.00 • Ultisol with andic 4.00 2.00 Relevant units [(cmol(+)/L) or (%)] [(cmol(+)/L) units Relevant 0.00 influences pH Ca Mg K CEC Tot N OM – CIA – Five 2-m soil profiles 6 Initial soil chemistry in 1993 Means @ 0-15cm (n=45) pH Ca Mg K Acidity AL CICE P PO4 (cmol(+)/L) % sat. (cmol(+)/L) (mg/Kg) (ug/g) 5.0 5.3 1.4 0.13 3.3 33.5 10.2 1.6 0.64 OM N NH4 NO3 Cu Fe Mn Zn % % (ug/g) (ug/g) (mg/Kg) 5.4 0.28 7.2 54.7 12.8 435.3 145.6 1.25 B93 Experiment on Finca Cantarana. Depth 0-15cm. Analyses done by CIA: pH in water; bases in ammonium acetate; P Olsen, PO4 resin membrane 7 First step: What tree species can grow? “Ensayos” 1994, 1996, 1998 (species assayed are in blue on next slide) 98 96 94 8 List of species planted (Arboles de Costa Rica vols. I-III) Non-natives (3) Other natives (cont.) • Eucalyptus deglupta (Myrtaceae) • Annona muricata (Annonaceae) • Pinus tecunumanii (Pinaceae) • Aspidosperma spruceanum • Inga edulis (Fabaceae) (Apocynaceae)? ‘amargo’ Native legumes (10) • Astronium graveolens (Anacardiaceae) • I. spectabilis (Fabaceae) • Calophyllum brasiliense (Clusiaceae) • Albizia carbonaria (Fabaceae) • Carapa guianensis (Meliaceae) • Calliandra calothyrsus (Fabaceae) Cecropia obtusifolia (Cecropiaceae) • Diphysa robinioides (Fabaceae) • Cedrela odorata (Meliaceae) • Gliricidia sepium (Fabaceae) • C. tonduzii (Meliaceae) • Lonchocarpus sp. (Fabaceae) • Ceiba pentandra (Bombacaceae) ‘chaperno’ • Hyeronima oblonga (Euphorbiaceae) • Platymiscium pinnatum (Fabaceae) • Juglans olanchana (Juglandaceae) • Schizolobium parahyba • Minquartia guianensis (Olacaceae) (Caesalpinaceae) • Tabebuia chrysantha (Bignoniaceae) • Samanea saman (Fabaceae) • Tabebuia rosea (Bignoniaceae) ‘cenizaro’ • Terminalia amazonia (Combretaceae) • Zygia longifolia (Fabaceae) ‘soto caballo’ • Vochysia guatemalensis (Vochysiaceae) Other natives (19) • V. ferruginea (Vochysiaceae) • Anacardium excelsum (Anacardiaceae) ‘espavel’ • 2 species of unidentified Lauraceae (”bambito”, “aguacatillo”) 9 Ensayo Results: Mortality • Seedling and sapling mortality is high. “hueco de infierno” #2 10 Ensayo 1994 Mortality over 7yr 0.9 1 0.8 0.7 (n small for calculating growth) 0.6 Initial n = 87 of each species Proportion dead0.5 0.4 0.3 0.2 0.1 0 V. guatemalensis Pinus Terminalia Calophyllum Cedrela odorata (Eucalyptus) (Tabebuia chrysantha) 11 Ensayo 1996 Mortality over 9.5 yr 1.00 Initial n =( 90) small of each n for species, calculating except growth 0.80 Astronium 0.60 0.40 Proportion0.20 dead 0.00 , “bambito”, I. spect abilis Platymiscium V, ferruginea I. edulis Annona, (n= 21-63) Astronium Terminalia Aspidosperma Platymiscium (Annona) (Cedrela tonduzii) (bambito) 12 Initial n = 90 for 1 0.9 Ensayo 1998 Mortality over 11 yr 0.8 0.7 ( ) small for calculating growth 0.6 0.5 each species, except Proportion0.4 dead 0.3 0.2 0.1 0 Hyeronima Calliandra I. edulis and Terminalia Gliricidia Diphysa (n=45) Calliandra Schizolobium (Gliricidia) (Albizia) (Platymiscium) 13 Ensayo results: Growth Slow compared to the minimum values found in the literature 14 Ensayo 1994 Growth comparisons with other sites FC species @ 14yr Data for FC spp in ( ) are doubtful because of small n’s 600 ) 500 FC Other 400 300 200 100 Growth (cm/yr Growth 0 Pinus odorata Cedrela V. (Tabebuia chrysantha) Calophyllum (Eucalyptus) Terminalia93 guatemalensis 15 350 300 Ensayo Growth comparisons with other sites 250 Data for FC spp 200 150 Growth (cm/yr) 100 (FC spp @ 9.5 yr) 50 1996 0 in ( ) are doubtful because of small n’s V, ferruginea FC I. edulis LIT I. spectabilis Terminalia (Cedrela tonduzii) Aspidosperma (Annona) Astronium Platymiscium 16 Growth comparisons with other sites 500 Ensayo 450 400 350 300 250 200 Growth150 (cm/yr) FC spp @ 4yr 1998 100 50 0 FC Albizia Other Calliandra Hyeronima I. edulis Schizolobium Terminalia Diphysa Gliricidia Platymiscium 17 Mortality may worsen over time or nullify growth Note Schizolobium 120 100 80 ! (FC E98 @ 4yr growth) 60 Growth40 (cm/yr) 20 0 († ), Albizia Albizia Callia ndra Hyeronima I. edulis (!) Schizolobium Terminalia Diphysa 0.90 0.80 Ensayo 1998 Mortality over 4 yr Gliricidia 0.70 0.60 0.50 Platymiscium 0.40 Proportion0.30 dead 0.20 0.10 0.00 † Schizolobium I. edulis Hyeronima ! 1 Ensayo 1998 Mortality over 11 yr 0.9 Diphysa 0.8 ( ) small for calculating growth 0.7 Calliandra 0.6 0.5 Terminalia 0.4 Proportion dead 0.3 Albizia 0.2 0.1 Platymiscium 0 Gliricidia Hyeronima † I. edulis Terminalia Diphysa Calliandra Schizolobium (Gliricidia) (Albizia) (Platymiscium) 18 So, few natives establish and grow. Worse, terrain has been a factor Ridges > slopes > valleys 19 Soil characteristics of different terrains First, compare ridges and slopes. Then, slopes and valleys… 20 Soil on ridges and slopes Soil chemistry Ridges vs. slopes (Young and May-Tobin 2008) 12.00 ** 10.00 * 8.00 Ridge 6.00 ** ** Slope 4.00 * * cmol(+)/L mg/L mg/kg mg/L cmol(+)/L 2.00 ** 0.00 ** pH Ca Mg K CEC Cu P NO3- Measure 21 This student lost most trees in his four ridge blocks • (half the experiment). • No more grad student projects on ridges! 22 Soil on slopes and valleys (R. Pratt 2009) Also, AMF differed: Acaulospora on slopes, not valleys 23 Mortality and growth on different terrains Terminalia amazonia 24 1.00 0.90 0.80 0.70 Ensayo98: Mortality by location on slope 0.60 0.50 0.40 0.30 Bottom Proportion0.20 of mortality 0.10 0.00 Next Up • Albizia Nr ridge Tended to increase uphill: mortality was lowest Calliandra Ridge Top ridge Diphysa Gliricidia Hyeronima Hyeronima Inga showed noPlatymi pattern,scium and its Schizolobium Terminalia 25 16 14 12 Ensayo 98: Growth by location on slope 10 8 Mean dbh (cm) 6 Bottom 4 (species in () have small n’s) 2 Next up 0 (Albizia) • Near ridge • Hyeronima Some other legumes(Call showiandra the) trend but n’s Ridge Diphysa and Top Inga (Gliricidia) tended to decrease growth uphill. Hyeronima I. edulis (Platymiscium) (Schizolobium) are small. (Terminalia) 26 Soil moisture may be a factor • Two experiments over the dry season 27 Calophyllum brasiliense Growth (sig. different @ p<.001) Soil moisture (sig. different @ p<.001) Flats on black plastic Flats on black plastic 28 Inga spectabilis Growth (sig. different @ p<.001) Soil moisture (sig. different @ p<.001) Flats on black plastic Flats on black plastic 29 At this point, I’ll sum a few lessons we have learned … 30 Experimental design • Super-degraded sites • For example: require special – Ensayos had few trees per treatment per block (3) but consideration a good # of blocks (30) • Block the experiment – B93 had too few blocks (5) and too many trees per by terrain treatment per block (93) • Expect high mortality, so balance # blocks (reps) and # trees per treatment within blocks 31 Best species for Finca Cantarana (of 23) • Pinus tecunumanii • But their performance may worsen over longer time periods • Vochysia • All except pine grow guatemalensis comparatively slowly • V. ferruginea • None except pine can grow on • Hyeronima oblonga high ridges or in hellholes. • Inga spectabilis • I. edulis 32 One last question: Can these best species help others grow? Facilitation 33 The search for facilitator species • Inga spp (N-fixing legume, Fabaceae) – I. edulis increased N and growth in Terminalia (sig. @ p<.001) – No other legume genus so far has potential as facilitators • Vochysia spp – A priori arguments about P availability – Leaf mulch of V. guatemalensis increased growth in Astronium and Tabebuia (sig. @ p<.0001) – Other experiments with seedling Vochysia n.s.: may need more time to grow • Pinus tecunumanii – We can allay fears about mycorrhiza—pines did not inhibit AMF colonization (p>.28) – Preliminary data (n.s.) suggest that 12yr old pines may facilitate…. 34 Mean growth under 20.0 15.0 10.0 P. tecunumanii 5.0 Growth0.0 (cm/yr) V. guatemalensis and Tabebuia @ 3.5yr Calophyllum Platym iscium Control Important to test (Astronium) Vochysia for economic Pinus reasons: On FC, 1 ha @ 15yr (1 tree=$90) ≥ $90,000 35 In conclusion: returning to our 1992 goals • Can we restore economic value to these lands? – Pine may be the only option for the farmer when land is this bad • Can we jump-start natural succession? – Slopes and valleys are feasible – Establishing cover begins the process. – Legumes may facilitate. • Main conclusion: the sooner the intervention, the better A valley plot @ 12 years 36 Thanks to: • UCI, RAIN, Earthwatch, UREP, CIA, OTS for financial and logistical support. • Incredible ticos for field and lab assistance as well as discussions of scientific and cultural import: – Leonel Figueroa, Rolando Mendez, Diego Sandi, Yolanda Rojas, Ana Herra, Gloria Melendez, Carlos Henriquez, Luis Diego Gomez, and many others.