Let's Have a Blast! Laser Tag Department of Electrical Engineering and Computer Science University of Central Florida Group 1

Total Page:16

File Type:pdf, Size:1020Kb

Let's Have a Blast! Laser Tag Department of Electrical Engineering and Computer Science University of Central Florida Group 1 Let’s Have a Blast! Laser Tag Department of Electrical Engineering and Computer Science University of Central Florida Group 10 Marco Montero - Electrical Engineering Anuj Yamdagni - Computer Engineering Shannon Fies - Electrical Engineering Karlie Brinthaupt - Electrical Engineering Table of Contents 1.0 Executive Summary 6 2.0 Project Summary 7 2.1 Motivation 7 2.2 Goals and Objectives 7 2.2.1 Stretch Goals 8 2.3 Project Milestones 9 2.3 Project Budget/Bill of Materials 11 2.4 Game Mechanics 13 2.4.1 Main Gameplay Goals 13 2.4.2 Possible Gameplay Upgrades 13 2.5 System Flowcharts 15 2.5.1 Software Flowchart 16 2.5.2 Hardware Block Diagram 16 2.6 House of Quality 19 2.7 House of Quality Breakdown 21 2.7.1 Marketing Requirements 21 2.7.2 Engineering Requirements and Targets for Engineering 22 2.7.3 Engineering Requirement Relations 24 2.8 Team Collaboration Tools 25 3.0 Project Research 27 3.1 Similar Project Research 27 3.1.1 Arduino Laser Tag 27 3.1.2 University of Florida “Laser Tag Gaming System” 29 3.1.3 Pulse Modulated Laser Tag Game 29 3.1.4 Desired Elements from Similar Projects 30 3.2 Power Supply Research 31 3.2.1 Battery Technology 32 3.2.2 USB Charging 35 3.2.3 Battery Level Measurement 36 3.2.4 Voltage Regulator 38 3.2.5 Microprocessor Efficiency 40 3.3 Communications Research 41 3.4 Thermal Considerations 43 3.5 Serial Communication Research 44 3.5.1 UART 45 3.5.2 I2C 46 3.5.3 SPI 48 3.6 Software Development Model Research 51 4.0 Design Constraints and Standards 52 4.1 PCB Development 52 1 4.1.1 Soldering 53 4.2 Wireless Local Area Network (WLAN) Implementation 56 4.3 Realistic Constraints 58 4.3.1 Economic 58 4.3.2 Environmental 59 4.3.3 Social and Political 59 4.3.4 Health and Safety 60 4.3.5 Manufacturability 61 4.3.6 Sustainability 61 4.3.7 Ethical 61 4.3.8 Summary of Realistic Constraints 62 4.4 C++ Standards 62 4.5 Battery Standards 65 5.0 Project Design 70 5.1 Initial Parts Research and Design 70 5.1.1 Voltage Regulator Research 70 5.1.2 Battery Research 73 5.1.4 Vibration Motor 75 5.1.5 Trigger 77 5.1.6 LEDs 79 5.1.7 Display 80 5.1.8 Microcontroller vs FPGA 82 5.1.9 Microcontroller Selection 85 5.1.10 Audio Hardware Design 86 5.1.11 Peripheral Enable Line 87 5.2 Firmware design 88 5.2.1 IDE Software Options 88 5.2.2 Multitasking Implementation 89 5.2.3 Infrared Communication 91 5.2.4 Infrared Encoding 92 5.2.5 Wifi Mesh Networking 93 5.2.6 User Interface 94 5.2.7 Display Writing Algorithm 96 5.2.8 Serial Updating of Firmware 97 5.2.9 WiFi Based Updating of Firmware 97 5.2.10 Serial Based Debugging Interface 98 5.2.11 Standby Mode 99 5.3 ESP32 Pin Diagram 100 6.0 System Housing 104 6.1 Material 104 6.1.1 Shore Hardness 104 6.1.2 TPU (ThermoPlastic Polyurethane) 104 2 6.1.3 ABS (Acrylonitrile Butadiene Styrene) 105 6.1.4 PLA (Polylactic Acid) 105 6.1.5 PETG (Polyethylene Terephthalate - Glycol Modified) 105 6.2 3D Modeling Software 106 ​ 6.3 3D Model Design 107 7.0 System Testing and Demonstration 108 8.0 Prototyping 110 8.1 PCB Overview 110 8.1.1 Software and Manufacturer Choice 110 8.1.2 PCB Design 112 8.1.3 Final PCB Model 112 8.1.4 PCB Assembly Considerations 113 8.1.5 Terminology 114 8.2 Prototype Testing and Expectations 116 8.2.1 Hardware Testing and Expectations 116 8.2.2 Software Testing and Expectations 119 8.3 Component Testing 119 8.3.1 Power 120 8.3.2 Trigger 121 8.3.3 LED 122 8.3.4 Haptic Feedback 123 8.3.5 Infrared Transmitter and Receiver 123 8.3.6 Buzzer 124 8.3.7 Accelerometer and Display 124 8.3.8 Microcontroller 124 8.3.9 Wifi Mesh 125 8.4 Unit Testing 125 9.0 Conclusion 127 10.0 Appendix 130 10.1 Permission 134 3 Figure Index Figure 1 - Software Logic Flowchart………………………………………………..16 Figure 2 - Hardware Block Diagram ………………………………………………..17 Figure 3 - Group Breakdown………………………………………………………..18 Figure 4 - House of Quality…………………………………………………………..20 Figure 5 - RC Filter Circuit…………………………………………………………..27 Figure 6 - Amplifier Circuit…………………………………………………………...28 Figure 7 - Sensor Circuit……………………………………………………………..28 Figure 8 - UART Timing Diagram……………………………………….....………..45 Figure 9 - UART Serial Interface…………………...………………………..……...46 Figure 10 - I2C Timing Diagram……………………………………………………..46 Figure 11 - I2C Serial Interface……………………………………………………...47 Figure 12 - SPI Full Duplex Communication……………………………………….48 Figure 13 - SPI Interface with Individual Slaves…………………………………...49 Figure 14 - SPI Interface with Daisy-Chained Slaves……………………….…….49 Figure 15 - IPC Standards Tree…………………………………………………......53 Figure 16 - Holtek Voltage Voltage Regulator Application Circuit………….…....73 Figure 17 - TP4056 Application Circuit……………………………………………..75 Figure 18 - DW10A Application Circuit From PCB………………..…………...….75 Figure 19 - Vibration Motor………………...………………………………………...76 Figure 20 - Vibration Motor Application Circuit From PCB………………………..77 Figure 21 - Application Circuit of Trigger Mechanism from PCB……………..…..79 Figure 22 - LED Array Application Circuit From PCB……………………………...80 Figure 23 - OLED Application Circuit From PCB………………………………......82 Figure 24 - Speaker Application Circuit From PCB……………………………......87 Figure 25 - Bullet Encoding Layout………………………………………………….93 Figure 26 - Accelerometer Application Circuit From PCB……………………..….95 Figure 27 - ESP32 Development Board Pinout………………………………...…101 Figure 28 - 3D Model of Gun…………..……….…………………………………...107 Figure 29 - 3D Models of Trigger…………………………………………….....…..107 Figure 30 - Final PCB Layout………...………………………………………….….112 Figure 31 - Breadboard Testing………………………………………………….….125 Figure 32 - Protoboard Testing………………………………………………….…..126 4 Table List Table 1 - Senior Design 1 Milestones…………………………………………..…...10 Table 2 - Senior Design 2 Milestones……………………………………………….11 Table 3 - Budget/Bill of Materials…………………………………………………….12 Table 4 - Battery Type Comparison………………………………………………....35 Table 5 - Advantages and Disadvantages of Protocols…………………………...50 Table 6 - 3.3 V Voltage Regulator Voltage Characteristics……………………….71 Table 7 - 3.3 V Voltage Regulator Current Characteristics……………………….72 Table 8 - Rechargeable Lithium Battery Initial Parts Comparisons……………...73 Table 9 - Specifications of WS2812…………………………………………………80 Table 10 - Display Comparison…………………………………..………………….81 Table 11 - MCU vs FPGA Comparison……………………………………………..84 Table 12 - Microcontroller Comparison……………………………………………..85 Table 13 - Accelerometer Comparison……………………………………………..95 Table 14 - Requirements for Fusion 360………………………………………….106 Table 15 - Price Comparison of PCB Manufacturers…………………………….111 Table 16 - PCB Development Timeline……………………………………………118 5 1.0 Executive Summary As videogames and electronic devices become more and more popular, physical activity in kids is on the decline. Traditional games of tag or playgrounds can not compete with the allure of modern technology within videogames. Our team hopes to bridge that gap by combining technology with physical activity. Laser Tag has been a favorite of kids and adults alike, however it always seems to be limited to expensive arcades with limited game time. This project seeks to make laser tag available to more users at a lower price. By creating a cheap, standalone system that is easy to use, we can bring a fun technology that incorporates indoor and outdoor play. Our intended audience are kids and adults who are looking for casual entertainment that is not too expensive or difficult to set up. This sets up the project for several different requirements. The laser tag blaster will need to be a light, portable blaster so that it is easy to carry around and use. All the technology should be housed within the blaster, so that the blaster can be taken anywhere. Since kids will be using this blaster in outdoor settings, the outer shell of the blaster should be clearly identifiable as a toy and not a real weapon. Laser Tag is meant to be played with multiple people, thus the blasters should be able to synchronize with each other using a standalone network. The network should be a mesh network so that the group of players are not tied to any one location. The networking should allow the synchronization of game events such as the start and end of the game, as well as communicating the team score across to each player. Another important aspect of this project will be to include an easy to use User Interface (UI). This will allow users to create and join games easily and better immerse themselves in the gameplay. The blaster should include a small embedded display to show players information about the game, as well as a menu for setup. The blaster should include buttons for interacting with the menu. 6 2.0 Project Summary This section will go through an overview of the project and includes the following topics: ● Motivation ● Goals and Objectives ● Game Mechanics ● System Flowcharts ● House of Quality ● House of Quality Breakdown 2.1 Motivation Laser tag has been a favorite for kids and adults for many years, however there has been little development in the game to keep up with modern technology. Advances in smartphone technology has driven significant advances in embedded electronics, including networking, batteries, sensors and onboard computing power. However none of these advances in the smartphone technology have been applied to the game of laser tag. Not only has embedded technology significantly advanced over the past decade, the cost of embedded electronics has significantly dropped. We believe we can apply these advances to bring the game of laser tag up to date while making it much cheaper for people to play. 2.2 Goals and Objectives Hardware: Each gun’s electronics should be all contained onto a single PCB that ​ will be mounted within the shell of the gun.This will make assembly of the gun much simpler for mass production, as well as making testing each board easier as it will not require full assembly of the gun.
Recommended publications
  • A Microchip Technology Inc. Publication Sept/Oct 2017
    A MICROCHIP TECHNOLOGY INC. PUBLICATION SEPT/OCT 2017 Secure Make It Looking 8 Connectivity 15 Smart 24 Ahead A MICROCHIP TECHNOLOGY INC. PUBLICATION SEPT/OCT 2017 COVER STORY NEW TOOLS 4 Going to Extremes 13 Curiosity for the IoT High-Performance PIC32MX Family of Microcontrollers Now Features eXtreme Low Power Technology DESIGN CORNER NEW PRODUCTS 15 Make It Smart 6 Boost Your Design Microchip Extends eXtreme Low Power PIC32MM 17 Perfect Timing Microcontroller Family 22 Removing Roadblocks Secure Connectivity 8 Coloring the Montreal Skyline Two New SAM Microcontroller Families Offer Power 23 Performance and Enhanced Security Features 24 Looking Ahead ® 10 Chain of Communication ® 27 Arduino /Genuino MKR1000 New MOST Technology Intelligent Network Interface Meets Python® Controller Enables Daisy-Chain Communication in Automotive Applications 11 Meeting the Grade ATA65xx is Industry’s First CAN Flexible Data-Rate and CAN Partial Networking Transceiver Family Including Automotive Grade 0 Qualified Parts 12 Lighten Up Next-Generation CL88020 Sequential Linear LED Driver is Designed for Offline Lighting contents The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.
    [Show full text]
  • Gaming Guns Will Travel 64
    — 1 — “Right on Target: how to start, have fun, & make money with a live gaming business” Published by Lander Publishing 1/6 Graham St Underwood QLD 4119, Australia Www.BattlefieldSports.com First published April 2007 Second Edition August 2007 Third Edition, September 2010 Copyright © 2007, 2010, 2013 Nicole Lander & Peter Lander All rights reserved. No part of this book may be reproduced without the permission of the copy‐ right owners. Disclaimer. The material in this publication is of a general nature, and neither purports nor intends to be advice. Readers should not act on the basis of any matter in this publication without taking professional advice from a licensed Account‐ ant or Financial Planner, and or legal attorney, with due regard to their own particular circumstances. The authors and publisher expressly disclaim all and any liability to any person, whether a purchaser of this publication or not, in respect of anything and of the consequences of anything done or omitted to be done by any such person in reliance, whether whole or in part, upon the whole or any part of the contents of this publication. Battlefield Live® and Battlefield Sports® are trademarks or pending trade‐ marks registered by Scapequest Pty Ltd and is used with its permission. Designed and typeset by Nicole Lander ISBN: 978‐0‐9803671‐1‐9 — 2 — Acknowledgements Photography: Nicole ‘Zev‐va’ Lander, Canditta ‘Angel’ Anderson, Suzette ‘Agent Starling’ Castle, Lt Col Trevor Browne, Commandant, Barbados Cadet Corps, Donna ‘Shutter’ Pre‐ ston, Ivy ‘Horse’ Grcic, Nick ‘Guerrero’ Evans, Jerry ‘Firepower’ Munsie, Lee ‘Arbalest’ Bargwanna, Leigh Lalonde, Rebecca Stallworthy, Robyn Daniels, Cameron ‘Brat’ Boyle, Paul ‘Dogsbody’ Diamond, and Robert ‘Bear’ Lander.
    [Show full text]
  • Copyrighted Material
    Index Figures are indicated in italics. Operation Enduring Freedom 278 overthrow of Taliban government 3-D (2001) 84, 262 “3-D ink” writing methods xiv and satellite bandwidth 132 soldiers’ 3-D glasses 63 soil mechanics 1 ultrasound scans of unborn child 62–63 Soviet withdrawal from 270, 274 9/11 Commission 219, 221 Stinger missiles 169 unmanned aerial vehicles deployed AAE 33 in 195 AASM 85 US forces’ consumption of fuel 44 Aaviksoo, Jaak 174 Afghanistan, Emir of 91 Abbottabad, Pakistan 80 Agent 99 software 225 “Abuthaabit” (Waseem Mughal) 199, 200, Ahmed, Syed 201 201 air: the third domain of warfare 1, 181 accelerometer xiv Air Force Research Institute 113 Access 209 Air Force Research Laboratory 224 Achtelik, Michael 42 air-freight inspection 241–42 acoustic cloak 54, 55 Air Ministry (British) 106 “active control” 122 air policing 273 active-protection systems 28 air power Adams, Colonel John 7, 9, 80 air supremacy provides no assurance of adaptive camoufl age 32–33 victory 82, 90–95 add-on guidance systems 85 displayed over Baghlan 96 Advanced Tactical Laser (ATL) 18 disruption of an enemy’s fi ghting ADVISE pattern-detection programme 262 system xi Aegis intercept missiles 15 from aircraft carriers 106 Aerodyne Research 34 “synthetic aperture” radar systems xi Aerostar International 116 Air Tractor 113 aerostats see blimps airbags 120 Afghan air force 80 Airborne Laser (ABL) 17–18 Afghanistan Airborne Laser Programme Offi ce, Kirtland adaptive camoufl age tested 32 Air Force Base, New Mexico 18 blimps in 116 Airbus 62, 123 cluster bombs
    [Show full text]
  • Zerynth ZM1-DB User Manual
    ZM1-Development Board User Manual For more details, visit: www.zerynth.com This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized. Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision. Table of contents Overview 2 Modular Expansion System 2 zBUS 3 General Characteristics 3 Screw Description 4 Technical Specifications 4 Components’ Guide and Pin Map 5 Getting Started 8 Software 8 Zerynth SDK 8 Declaration of Conformity 9 Warnings 9 Instructions for safe use 10 1 Overview The ZM1 Development board is an industrially oriented, modular hardware development unit that facilitates the development of scalable, secure and connected IoT (Internet of Things) applications. The ZM1-DB uses the ZM1 module, a 32-bit dual Core MCU based on the ESP32-WROOM-32SE. The ZM1 Core features a clock frequency of 240 Mhz, an Embedded 16 MB SPI Flash memory, and integrates the ATECC608A crypto element allowing ultra-secure communication. The ZM1 Development Board can act as a Development Board for prototyping a product, and as a core for industrial applications thanks to the modular expansion system. The DB features I/O connectors (the zBUS) that allow connection in a cascade of different add-on modules to create specific industrial applications that fit into a DIN-RAIL case. Modular Expansion System Zerynth Development boards offer a game-changing way of connecting and adding functionalities to your application in a simple and easy way.
    [Show full text]
  • Design and Development of Long-Term Care Management System Based on Internet of Things
    Sensors and Materials, Vol. 33, No. 6 (2021) 1883–1895 1883 MYU Tokyo S & M 2581 Design and Development of Long-term Care Management System Based on Internet of Things Yu-Qiang Yang,1 Chien-Yu Lu,1 Hsiu-Ying Hsieh,1 Tsung-Chieh Chang,1 and Te-Jen Su2,3* 1Department of Industrial Education and Technology, National Changhua University of Education, Changhua City 500, Taiwan ROC 2Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan ROC 3Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan ROC (Received December 30, 2020; accepted May 24, 2021) Keywords: database, biomedical module, blog system, IoT development board The aim of this study is to design and establish a long-term care management system with the functions of data acquisition, data access, and website management for a long-term care center, along with the utilization of an Internet of Things (IoT) demo board and router to transmit the measurement parameters of biomedical sensor modules to the server database, including blood pressure, body temperature, and heart rate modules, for physiological information measurement by the system. The interface for information browsing is simple and user-friendly. This system uses Windows 10 as its operating system and uses Apache to create a Hypertext Transfer Protocol (HTTP) server, as well as the MySQL relational database management system and WordPress.com blog services. WordPress.com is also utilized to design a web interface so that the family of the person in long-term care can instantly access their physiological information, and the hierarchical webpage architecture enables administrators to manage the information regarding long-term care.
    [Show full text]
  • ZERYNTH Infographic
    1 zerynth.com [email protected] @zerynth Your Ideas. Embedded EVERYTHING WILL BE CONNECTED The embedded world in few clicks 2 WHAT IS ZERYNTH ENABLING INTERACTION DESIGN Zerynth allows designers and system integrators providing interactivity into objects and IoT-M2M Solutions EASY AND PERFORMANT SUITE Zerynth provides a complete set of high standard embedded development tools with mobile and cloud integration MULTI-BOARD COMPATIBLE Zerynth provides multi-compatible cross platform tools and tailor made solutions that scale with your needs ZERYNTH SUITE ZERYNTH STUDIO A powerful IDE for programming embedded devices in Python with cloud sync and board management features ZERYNTH Virtual Machine A multithreaded real-time OS that provides real hardware independence allowing code reuse on the entire ARM family ZERYNTH App A general purpose interface that turns any mobile into the controller and display for smart objects and IoT systems ZERYNTH Library A pre-cooked set of Python functions that makes your life easier. You don’t have to care about developing an algorithm for making sensor average or detecting a double touch ZERYNTH Smart Network It makes your project ready for the cloud! Carriots and Paraimpu are already included or you can easily add the service you prefer A CHANGE OF PARADIGM “ZERYNTH does not provide just a library for prototyping microcontrollers. It is a change of paradigm!” The recent revolution of Internet of Things (IoT) brought designers to create interactive objects that are able to communicate with the web, the cloud and with the social networks. Mac OS Sensors Windows Actuators Linux Devices All ARM32 Boards C/C++ Java html C# Social iOS Cloud Android IFTTT Windows With the ZERYNTH toolkit all these features will be available in just few lines of code.
    [Show full text]
  • Set the Pin Attached to the LED
    Set the pin attached to the LED Zerynth - Confidential | © 2018 www.zerynth.com 50 Blink two LEDs Zerynth - Confidential | © 2018 www.zerynth.com 51 Example ‘Multi-Blink’ Zerynth - Confidential | © 2018 www.zerynth.com Search and clone the ‘Multi Blink’ Example Zerynth - Confidential | © 2018 www.zerynth.com 53 Let’s take a look at the code Zerynth - Confidential | © 2018 www.zerynth.com 54 Check the board pinout Zerynth - Confidential | © 2018 www.zerynth.com 55 Set the pin attached to the LEDs Zerynth - Confidential | © 2018 www.zerynth.com 56 Python vs C/C++ Zerynth - Confidential | © 2018 www.zerynth.com 57 Reading a Digital Sensor Zerynth - Confidential | © 2018 www.zerynth.com Reading a digital sensor Weather click https://www.mikroe.com/weather-click Weather click carries BME280 integrated environmental unit from Bosch. It’s a sensor that detects humidity, pressure, and temperature, specifically designed for low current consumption and long-term stability. The click is designed to work on a 3.3V power supply. It communicates with the target microcontroller over SPI or I2C interface. Zerynth - Confidential | © 2018 www.zerynth.com 59 Search for BME280 Zerynth - Confidential | © 2018 www.zerynth.com 60 Open the doc of BME280 Zerynth - Confidential | © 2018 www.zerynth.com Open the doc of BME280 Zerynth - Confidential | © 2018 www.zerynth.com Copy/Paste and edit the code Zerynth - Confidential | © 2018 www.zerynth.com Getting Started with Xinabox and Zerynth Zerynth - Confidential | © 2018 www.zerynth.com Getting Started https://www.zerynth.com/blog/getting-started-with-xinabox-and-zerynth-fast-tracked-iot-development/
    [Show full text]
  • Product Innovation Datasheet
    Product Innovation datasheet For more details, visit: www.zerynth.com This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized. Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision. Overview The Product Innovation Kit gives developers all of the necessary components to develop innovative and scalable IoT products. The package includes DB-ZM1: Powerful, efficient, and secure development board that features ZM1 (SoM). EXP-IO: Control actuator and industrial machines using solid-state relays can acquire industrial sensor data, EXP-SER: Communicate with industrial sensors, devices, MCUs and boards over industrial communication channels EXP-RELAY: Control of high voltage actuators, pumps and machines EXP-PROTO: Easily interface any sensor, display or device. DIN power supply USB Type C cable 12 Module Box Components Guide ZM1-DB The ZM1 Development board is an industrially oriented, modular hardware development unit that facilitates the development of scalable, secure and connected IoT (Internet of Things) applications. The ZM1-DB uses the ZM1 module, a 32-bit dual Core MCU based on the ESP32-WROOM-32SE. The ZM1 Core features a clock frequency of 240 Mhz, an Embedded 16 MB SPI Flash memory, and integrates the ATECC608A crypto element allowing ultra-secure communication. The ZM1 Development Board can act as a Development Board for prototyping a product, and as a core for industrial applications thanks to the modular expansion system.
    [Show full text]
  • 4Zerobox User Manual Part Number: IND-4ZB-09-F016
    4ZeroBox User Manual Part Number: IND-4ZB-09-F016 For more details, visit: www.zerynth.com This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized. Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision. Table of contents General Specification 2 General Characteristics 4 Screw Description 5 Technical Specifications 8 Dip-Switches 14 Switch SW1 15 Switch SW2 16 Typical setups of Switches 17 Pinmap 19 Warnings and Safety Use 22 1 General Specification 4ZeroBox is a modular hardware electronic unit that simplifies the development of Industrial IoT applications allowing rapid integration with sensors, actuators, and Cloud services. 4ZeroBox mounts a powerful ESP32 Microcontroller by Espressif Systems (240MHz, 16Mb Flash, 512KB SRAM) and provides many onboard features like: a DIN-rail mountable case with industrial grade sensor channels, support for Wi-fi, Bluetooth, Ethernet, LoRa, CAN, RS485, RS232, SD Card, JTAG, I2C, SPI; the crypto element ATECC608A from Microchip has been integrated to handle secure connections in an easy manner, exchanging certificates and keys, encrypting messages over TLS protocol and using secure authentication procedures. 4ZeroBox lets the user choose the best installation strategy, adapting it to the specific industrial environment. While allowing to acquire data from the PLC via digital ports - filtering the data onboard to avoid bandwidth overload and waste of cloud resources - it also enables the installation and management of external sensors, for a full Industrial IoT experience.
    [Show full text]
  • Master Thesis in Embedded Computing System
    [1] University Of Pisa Department of information Engineering Master Thesis In Embedded Computing System PORTING OF FREERTOS ON A PYTHON VIRTUAL MACHINE FOR EMBEDDED AND IOT DEVICES Supervisor : Prof. Enzo Mingozzi Co-Supervisor : Prof. Carlo Valatti Ext-Supervisor : Dr. Daniele Mazzei Student: Nisar Ahmad Academic year: 2014-2015 [2] To my Family in Pakistan, To you, Afsheen [3] Abstract The fourth industrial revolution, The Industry 4.0, puts emphasis on the need of “Smart” and “Connected” objects through the use of services provided by Internet of Things, cyber-physical systems and cloud computing to optimize the cost, development time and remote connectivity. Development of highly scalable and flexible IoT applications is the need of time. These solutions require connectivity, less development time, time-to-market and at the same time offers a high performance and great reliability. Zerynth, a small company, provides its full stack for IoT solutions. Zerynth Virtual Machine is the core component among other components in stack which allow the programmers to code in python or hybrid C/Python coding with multithreaded Real Time OS with negligible memory footprint. The Python layer, Application Layer, is totally agnostic of underlying RTOS and hardware abstraction layer. This layered software architecture of Zerynth VM makes it totally compatible with new Industry 4.0 standard. The Hardware abstraction layer, VHAL, abstracts the hardware features of supported MCU and its peripherals while RTOS layer, VOSAL, uses the features of underlying Real Time OS. Zerynth VM can be ported with different Real Time OS and various hardware platforms depending upon the application’s cost, features and other relevant parameters.
    [Show full text]
  • 4Zerobox DATASHEET
    4ZeroBox DATASHEET 4ZeroBox is a modular hardware electronic unit that simplifies the development of Industrial IoT applications allowing rapid integration with sensors, actuators, and Cloud services. 4ZeroBox mounts a powerful ESP32 Microcontroller by Espressif Systems (240MHz, 4Mb Flash, 512KB SRAM) and provides many onboard features like: a DIN-rail mountable case with industrial grade sensor channels, support for Wi-fi, Bluetooth, Ethernet, LoRa, CAN, RS485, RS232, SD Card, JTAG, I2C, SPI; last but not least, there are 2 on-board MikroBUS sockets to extend the 4ZeroBox with hundreds of MikroElektronika click boards (see “MikroBus Slots” section). 4ZeroBox lets the user choose the best installation strategy, adapting it to the specific industrial environment. While allowing to acquire data from the PLC via digital ports - filtering the data onboard to avoid bandwidth overload and waste of cloud resources - it also enable the installation and management of external sensors, for a full Industrial IoT experience. 4ZeroBox is programmable in Python (or hybrid C/Python) thanks to the Zerynth software. 4ZeroBox Datasheet www.zerynth.com/4zerobox TECHNICAL SPECIFICATIONS Maximum expandability with hundreds of Click Boards available GSM GPS Crypto LoRa Weather Module Module Module Module Module Module Module Module Module Module Module Micro USB Micro SD Connector MikroBUS slot 1 B A Rx Tx GND Probe1- Probe1+ Probe2- Probe2+ Probe3- Probe4- Probe4+ 24V GND CANH CANL D0 D1 D2 Out2 Out1 Probe3+ Lipo battery socket with charger Power Led S1 S2
    [Show full text]
  • Lasers 50Th Aw
    Lasers in our lives 50 years of impact Lasers in our lives 50 years of impact The information in this brochure is just a sample of the significant social and economic impact that lasers have had on our lives over the past 50 years. Because of the collaborative nature of research many of the experiments, projects, R&D programmes, and applications that have led to the ubiquitous nature of lasers, have been joint efforts between research councils, academia and industry. The Science and Technology Facilities Council (STFC), through its Central Laser Facility based at the Rutherford Appleton Laboratory (RAL), continues to play a leading role in the development of lasers and operation of high- power laser facilities. The Engineering and Physical Sciences Research Council (EPSRC) is also a key funder of laser research and technology in the UK. This brochure was co-funded by STFC and EPSRC. Project Manager: Connor Curtis, STFC Design and layout: Ampersand Design Production: STFC Media Services Introduction What are lasers? Light Amplification by Stimulated Emission of Radiation 1 Lasers are concentrated A brief history Introduction beams of electromagnetic The conception of the laser traces back to a theory proposed by radiation (light) travelling in Albert Einstein in 1917. a particular direction. It was Einstein’s theoretical understanding of the interactions between light and matter that paved the way for the first laser. However, it was not until The defining properties of laser 1960 that the first working optical ruby laser was built by Theodore light are that the light waves are Maiman. Over the past 50 years, the laser has evolved considerably, and coherent (all travelling in harmony many new varieties have been developed.
    [Show full text]