A Microchip Technology Inc. Publication Sept/Oct 2017

Total Page:16

File Type:pdf, Size:1020Kb

A Microchip Technology Inc. Publication Sept/Oct 2017 A MICROCHIP TECHNOLOGY INC. PUBLICATION SEPT/OCT 2017 Secure Make It Looking 8 Connectivity 15 Smart 24 Ahead A MICROCHIP TECHNOLOGY INC. PUBLICATION SEPT/OCT 2017 COVER STORY NEW TOOLS 4 Going to Extremes 13 Curiosity for the IoT High-Performance PIC32MX Family of Microcontrollers Now Features eXtreme Low Power Technology DESIGN CORNER NEW PRODUCTS 15 Make It Smart 6 Boost Your Design Microchip Extends eXtreme Low Power PIC32MM 17 Perfect Timing Microcontroller Family 22 Removing Roadblocks Secure Connectivity 8 Coloring the Montreal Skyline Two New SAM Microcontroller Families Offer Power 23 Performance and Enhanced Security Features 24 Looking Ahead ® 10 Chain of Communication ® 27 Arduino /Genuino MKR1000 New MOST Technology Intelligent Network Interface Meets Python® Controller Enables Daisy-Chain Communication in Automotive Applications 11 Meeting the Grade ATA65xx is Industry’s First CAN Flexible Data-Rate and CAN Partial Networking Transceiver Family Including Automotive Grade 0 Qualified Parts 12 Lighten Up Next-Generation CL88020 Sequential Linear LED Driver is Designed for Offline Lighting contents The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM. net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries. The LoRa name and associated logo are registered trademarks of Semtech Corporation or its subsidiaries. USB Type-C™ is a trademark of USB Implementers Forum. ARM and Cortex are registered trademarks of ARM Ltd. in the EU and other countries. All other trademarks mentioned herein are property of their respective companies. © 2017, Microchip Technology Incorporated, All Rights Reserved. 2 EDITOR’S NOTE Who Are You Going to Call? We know that developing embedded designs can be challenging. Whether you are A MICROCHIP TECHNOLOGY INC. PUBLICATION SEPT/OCT 2017 relatively new to the process or a seasoned professional, there will be times when you need some sort of technical support using our products, software and devel- opment tools. Who are you going to call when you can’t find an answer to your question in our documentation, forums or other online support resources? To guide you through the process of getting in touch with a member of our Technical Support team, we have created an online ticket system that is managed through our myMicrochip portal. If you are a new customer, you will first need to create an account. Once your account is activated, you can then submit a request for technical support. Go to our Technical Support website and use the “My Support” link in the upper right corner to create your myMicrochip account and submit a Secure Make It Looking support ticket. 8 Connectivity 15 Smart 24 Ahead After you have completed and submitted your support ticket, you will be assigned Don’t Miss the Next Issue of a case number and a phone access number. This information will typically be sent MicroSolutions within a day to the email address you provide in your support ticket. It’s very import- ant that you use an active email address and check it for this incoming email from Published six times a year, our support team. If you do not have access to your email, your Case Issue contains MicroSolutions is a valuable resource for product and technology news this information under the “System Information” section. Look for the “Customer about Microchip’s innovative Call-in Info” area. You will also find a list of contact phone numbers by country solutions. Subscribe today to receive under the “My Support” link. Find your country and then use the phone number email notifications when each new indicated to place your call. If our support team is busy, you can leave a message issue of MicroSolutions is ready. Use and someone will call you back at the telephone number you provide. the link below: If you have any questions about our support system, you’ll find a number of helpful CLICK TO SUBSCRIBE articles on the Technical Support site. Of course we hope your design process goes smoothly, but we are ready to help if you need us. As always, we would be happy to get your feedback on MicroSolutions. Feel free to email us at [email protected]. Find Us on These Social Channels Microchip Technology Inc. 2355 W. Chandler Blvd. | Chandler, AZ 85224 | www.microchip.com 3 COVER STORY GOING TO EXTREMES High-Performance PIC32MX Family of Microcontrollers Now Features eXtreme Low Power Technology Low-Cost PIC32MX1/2 XLP Devices Deliver Increased Performance at Lower Operating, Sleep and Deep Sleep Currents Energy conservation is a major concern to developers of today’s connected applica- tions. Wearable technology, wireless sensor networks and other smart connected devices need to consume as little power as possible and, in extreme cases, need to be able to run from a single battery for 20 years or longer. To enable these types of applications, Microchip offers a range of microcontrollers (MCUs) with eXtreme Low Power (XLP) technology. These devices offer the industry’s lowest currents for Run and Sleep, where extreme low-power applications spend 90–99 percent of their time. (continued on page 5) 4 If you have been successfully using our 32-bit PIC32MX family, you can now take advantage of XLP technology for your COVER STORY wearable and other low-power connected designs. The new PIC32MX1/2 XLP family offers you an easy migration path, ® with little code rework needed to achieve higher performance at is fully supported by MPLAB X Integrated Development ® much lower power. These MCUs deliver increased functionality Environment (IDE). The starter kit also supports Bluetooth as well as longer battery life in portable applications. Low Energy connectivity, and it comes with a 9-axis accelerometer, light sensor and barometric sensor to enable XLP technology enables Sleep and Deep Sleep shutdown the development of a variety of Internet of Things (IoT) and states on the PIC32MX1/2 XLP MCUs, with Deep Sleep cur- other low-power applications. The on-board mikroBUS™ rents as low as 673 nA. As a result, these new MCUs offer over expansion socket allows you to easily add a variety of click 40 percent higher performance than devices in the existing boards™ from MicroElektronika to expand the functionality of PIC32MX1/2 portfolio, while reducing average run currents by your design, while the Microchip X32 header will help accelerate 50 percent. your prototype development. The low-cost family also offers a range of memory configura- tions with 128/256 KB Flash and 32/64 KB of RAM in packages ranging from 28 to 44 pins. They also include a diverse set of peripherals including I2S for digital audio, 116 DMIPS perfor- mance for executing audio and advanced control applications, a 10-bit 1 Msps 13-channel ADC, mTouch® capacitive touch-sensing and serial communications peripherals. The PIC32MX2 series also supports USB-device, host and OTG PIC32MX with XLP Technology functionality. M4K 32-bit Core ● 72 MHz, 1.65 DMIPS/MHz ● 5 Stage Pipeline, 32-bit ALU Trace 32 Core PIC32MX XLP Starter Kit (DM320105) Registers USB 32-bit OTG HW Mul/Div JTAG Shadow DMA 2 Ch. Set 4 Ch. DMA The PIC32MX1/MX2 XLP MCUs are also supported by the InstructionData Bus Matrix MPLAB Harmony Software Development Framework, which simplifies development cycles by integrating the license, resale Prefetch 64 KB Interrupt GPIO 256 KB VREG 2-Wire Buffer Flash SRAM Controller (35) Debug and support of Microchip and third-party middleware, drivers, Cache libraries and RTOSs. Our readily available software packages Peripheral Bus such as Bluetooth audio development suites, audio equalizer Output filter libraries, decoders (including AAC, MP3, SBC), sample rate 16-bit 13 Ch. 10-bit Input Capture 16-bit Timers Capacitive (5) Compare/PWM (5) Touch Parallel Port ADC (5) conversion libraries and USB stacks will significantly reduce RTCC I2C UART I2S/SPI Analog your development time in creating digital audio, consumer, (2) (2) (2) Comparators (3) industrial and general-purpose embedded control applications. Block Diagram for PIC32MX Family with XLP Technology If you are ready to take your connected design to the extreme, the PIC32MX1/2 XLP MCUs can be ordered today from microchipDIRECT or from Microchip’s worldwide Development Support distribution network. You can jump start your low-power application development with the PIC32MX XLP Starter Kit (DM320105).
Recommended publications
  • Zerynth ZM1-DB User Manual
    ZM1-Development Board User Manual For more details, visit: www.zerynth.com This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized. Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision. Table of contents Overview 2 Modular Expansion System 2 zBUS 3 General Characteristics 3 Screw Description 4 Technical Specifications 4 Components’ Guide and Pin Map 5 Getting Started 8 Software 8 Zerynth SDK 8 Declaration of Conformity 9 Warnings 9 Instructions for safe use 10 1 Overview The ZM1 Development board is an industrially oriented, modular hardware development unit that facilitates the development of scalable, secure and connected IoT (Internet of Things) applications. The ZM1-DB uses the ZM1 module, a 32-bit dual Core MCU based on the ESP32-WROOM-32SE. The ZM1 Core features a clock frequency of 240 Mhz, an Embedded 16 MB SPI Flash memory, and integrates the ATECC608A crypto element allowing ultra-secure communication. The ZM1 Development Board can act as a Development Board for prototyping a product, and as a core for industrial applications thanks to the modular expansion system. The DB features I/O connectors (the zBUS) that allow connection in a cascade of different add-on modules to create specific industrial applications that fit into a DIN-RAIL case. Modular Expansion System Zerynth Development boards offer a game-changing way of connecting and adding functionalities to your application in a simple and easy way.
    [Show full text]
  • Design and Development of Long-Term Care Management System Based on Internet of Things
    Sensors and Materials, Vol. 33, No. 6 (2021) 1883–1895 1883 MYU Tokyo S & M 2581 Design and Development of Long-term Care Management System Based on Internet of Things Yu-Qiang Yang,1 Chien-Yu Lu,1 Hsiu-Ying Hsieh,1 Tsung-Chieh Chang,1 and Te-Jen Su2,3* 1Department of Industrial Education and Technology, National Changhua University of Education, Changhua City 500, Taiwan ROC 2Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 807618, Taiwan ROC 3Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan ROC (Received December 30, 2020; accepted May 24, 2021) Keywords: database, biomedical module, blog system, IoT development board The aim of this study is to design and establish a long-term care management system with the functions of data acquisition, data access, and website management for a long-term care center, along with the utilization of an Internet of Things (IoT) demo board and router to transmit the measurement parameters of biomedical sensor modules to the server database, including blood pressure, body temperature, and heart rate modules, for physiological information measurement by the system. The interface for information browsing is simple and user-friendly. This system uses Windows 10 as its operating system and uses Apache to create a Hypertext Transfer Protocol (HTTP) server, as well as the MySQL relational database management system and WordPress.com blog services. WordPress.com is also utilized to design a web interface so that the family of the person in long-term care can instantly access their physiological information, and the hierarchical webpage architecture enables administrators to manage the information regarding long-term care.
    [Show full text]
  • ZERYNTH Infographic
    1 zerynth.com [email protected] @zerynth Your Ideas. Embedded EVERYTHING WILL BE CONNECTED The embedded world in few clicks 2 WHAT IS ZERYNTH ENABLING INTERACTION DESIGN Zerynth allows designers and system integrators providing interactivity into objects and IoT-M2M Solutions EASY AND PERFORMANT SUITE Zerynth provides a complete set of high standard embedded development tools with mobile and cloud integration MULTI-BOARD COMPATIBLE Zerynth provides multi-compatible cross platform tools and tailor made solutions that scale with your needs ZERYNTH SUITE ZERYNTH STUDIO A powerful IDE for programming embedded devices in Python with cloud sync and board management features ZERYNTH Virtual Machine A multithreaded real-time OS that provides real hardware independence allowing code reuse on the entire ARM family ZERYNTH App A general purpose interface that turns any mobile into the controller and display for smart objects and IoT systems ZERYNTH Library A pre-cooked set of Python functions that makes your life easier. You don’t have to care about developing an algorithm for making sensor average or detecting a double touch ZERYNTH Smart Network It makes your project ready for the cloud! Carriots and Paraimpu are already included or you can easily add the service you prefer A CHANGE OF PARADIGM “ZERYNTH does not provide just a library for prototyping microcontrollers. It is a change of paradigm!” The recent revolution of Internet of Things (IoT) brought designers to create interactive objects that are able to communicate with the web, the cloud and with the social networks. Mac OS Sensors Windows Actuators Linux Devices All ARM32 Boards C/C++ Java html C# Social iOS Cloud Android IFTTT Windows With the ZERYNTH toolkit all these features will be available in just few lines of code.
    [Show full text]
  • Let's Have a Blast! Laser Tag Department of Electrical Engineering and Computer Science University of Central Florida Group 1
    Let’s Have a Blast! Laser Tag Department of Electrical Engineering and Computer Science University of Central Florida Group 10 Marco Montero - Electrical Engineering Anuj Yamdagni - Computer Engineering Shannon Fies - Electrical Engineering Karlie Brinthaupt - Electrical Engineering Table of Contents 1.0 Executive Summary 6 2.0 Project Summary 7 2.1 Motivation 7 2.2 Goals and Objectives 7 2.2.1 Stretch Goals 8 2.3 Project Milestones 9 2.3 Project Budget/Bill of Materials 11 2.4 Game Mechanics 13 2.4.1 Main Gameplay Goals 13 2.4.2 Possible Gameplay Upgrades 13 2.5 System Flowcharts 15 2.5.1 Software Flowchart 16 2.5.2 Hardware Block Diagram 16 2.6 House of Quality 19 2.7 House of Quality Breakdown 21 2.7.1 Marketing Requirements 21 2.7.2 Engineering Requirements and Targets for Engineering 22 2.7.3 Engineering Requirement Relations 24 2.8 Team Collaboration Tools 25 3.0 Project Research 27 3.1 Similar Project Research 27 3.1.1 Arduino Laser Tag 27 3.1.2 University of Florida “Laser Tag Gaming System” 29 3.1.3 Pulse Modulated Laser Tag Game 29 3.1.4 Desired Elements from Similar Projects 30 3.2 Power Supply Research 31 3.2.1 Battery Technology 32 3.2.2 USB Charging 35 3.2.3 Battery Level Measurement 36 3.2.4 Voltage Regulator 38 3.2.5 Microprocessor Efficiency 40 3.3 Communications Research 41 3.4 Thermal Considerations 43 3.5 Serial Communication Research 44 3.5.1 UART 45 3.5.2 I2C 46 3.5.3 SPI 48 3.6 Software Development Model Research 51 4.0 Design Constraints and Standards 52 4.1 PCB Development 52 1 4.1.1 Soldering 53 4.2 Wireless
    [Show full text]
  • Set the Pin Attached to the LED
    Set the pin attached to the LED Zerynth - Confidential | © 2018 www.zerynth.com 50 Blink two LEDs Zerynth - Confidential | © 2018 www.zerynth.com 51 Example ‘Multi-Blink’ Zerynth - Confidential | © 2018 www.zerynth.com Search and clone the ‘Multi Blink’ Example Zerynth - Confidential | © 2018 www.zerynth.com 53 Let’s take a look at the code Zerynth - Confidential | © 2018 www.zerynth.com 54 Check the board pinout Zerynth - Confidential | © 2018 www.zerynth.com 55 Set the pin attached to the LEDs Zerynth - Confidential | © 2018 www.zerynth.com 56 Python vs C/C++ Zerynth - Confidential | © 2018 www.zerynth.com 57 Reading a Digital Sensor Zerynth - Confidential | © 2018 www.zerynth.com Reading a digital sensor Weather click https://www.mikroe.com/weather-click Weather click carries BME280 integrated environmental unit from Bosch. It’s a sensor that detects humidity, pressure, and temperature, specifically designed for low current consumption and long-term stability. The click is designed to work on a 3.3V power supply. It communicates with the target microcontroller over SPI or I2C interface. Zerynth - Confidential | © 2018 www.zerynth.com 59 Search for BME280 Zerynth - Confidential | © 2018 www.zerynth.com 60 Open the doc of BME280 Zerynth - Confidential | © 2018 www.zerynth.com Open the doc of BME280 Zerynth - Confidential | © 2018 www.zerynth.com Copy/Paste and edit the code Zerynth - Confidential | © 2018 www.zerynth.com Getting Started with Xinabox and Zerynth Zerynth - Confidential | © 2018 www.zerynth.com Getting Started https://www.zerynth.com/blog/getting-started-with-xinabox-and-zerynth-fast-tracked-iot-development/
    [Show full text]
  • Product Innovation Datasheet
    Product Innovation datasheet For more details, visit: www.zerynth.com This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized. Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision. Overview The Product Innovation Kit gives developers all of the necessary components to develop innovative and scalable IoT products. The package includes DB-ZM1: Powerful, efficient, and secure development board that features ZM1 (SoM). EXP-IO: Control actuator and industrial machines using solid-state relays can acquire industrial sensor data, EXP-SER: Communicate with industrial sensors, devices, MCUs and boards over industrial communication channels EXP-RELAY: Control of high voltage actuators, pumps and machines EXP-PROTO: Easily interface any sensor, display or device. DIN power supply USB Type C cable 12 Module Box Components Guide ZM1-DB The ZM1 Development board is an industrially oriented, modular hardware development unit that facilitates the development of scalable, secure and connected IoT (Internet of Things) applications. The ZM1-DB uses the ZM1 module, a 32-bit dual Core MCU based on the ESP32-WROOM-32SE. The ZM1 Core features a clock frequency of 240 Mhz, an Embedded 16 MB SPI Flash memory, and integrates the ATECC608A crypto element allowing ultra-secure communication. The ZM1 Development Board can act as a Development Board for prototyping a product, and as a core for industrial applications thanks to the modular expansion system.
    [Show full text]
  • 4Zerobox User Manual Part Number: IND-4ZB-09-F016
    4ZeroBox User Manual Part Number: IND-4ZB-09-F016 For more details, visit: www.zerynth.com This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized. Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision. Table of contents General Specification 2 General Characteristics 4 Screw Description 5 Technical Specifications 8 Dip-Switches 14 Switch SW1 15 Switch SW2 16 Typical setups of Switches 17 Pinmap 19 Warnings and Safety Use 22 1 General Specification 4ZeroBox is a modular hardware electronic unit that simplifies the development of Industrial IoT applications allowing rapid integration with sensors, actuators, and Cloud services. 4ZeroBox mounts a powerful ESP32 Microcontroller by Espressif Systems (240MHz, 16Mb Flash, 512KB SRAM) and provides many onboard features like: a DIN-rail mountable case with industrial grade sensor channels, support for Wi-fi, Bluetooth, Ethernet, LoRa, CAN, RS485, RS232, SD Card, JTAG, I2C, SPI; the crypto element ATECC608A from Microchip has been integrated to handle secure connections in an easy manner, exchanging certificates and keys, encrypting messages over TLS protocol and using secure authentication procedures. 4ZeroBox lets the user choose the best installation strategy, adapting it to the specific industrial environment. While allowing to acquire data from the PLC via digital ports - filtering the data onboard to avoid bandwidth overload and waste of cloud resources - it also enables the installation and management of external sensors, for a full Industrial IoT experience.
    [Show full text]
  • Master Thesis in Embedded Computing System
    [1] University Of Pisa Department of information Engineering Master Thesis In Embedded Computing System PORTING OF FREERTOS ON A PYTHON VIRTUAL MACHINE FOR EMBEDDED AND IOT DEVICES Supervisor : Prof. Enzo Mingozzi Co-Supervisor : Prof. Carlo Valatti Ext-Supervisor : Dr. Daniele Mazzei Student: Nisar Ahmad Academic year: 2014-2015 [2] To my Family in Pakistan, To you, Afsheen [3] Abstract The fourth industrial revolution, The Industry 4.0, puts emphasis on the need of “Smart” and “Connected” objects through the use of services provided by Internet of Things, cyber-physical systems and cloud computing to optimize the cost, development time and remote connectivity. Development of highly scalable and flexible IoT applications is the need of time. These solutions require connectivity, less development time, time-to-market and at the same time offers a high performance and great reliability. Zerynth, a small company, provides its full stack for IoT solutions. Zerynth Virtual Machine is the core component among other components in stack which allow the programmers to code in python or hybrid C/Python coding with multithreaded Real Time OS with negligible memory footprint. The Python layer, Application Layer, is totally agnostic of underlying RTOS and hardware abstraction layer. This layered software architecture of Zerynth VM makes it totally compatible with new Industry 4.0 standard. The Hardware abstraction layer, VHAL, abstracts the hardware features of supported MCU and its peripherals while RTOS layer, VOSAL, uses the features of underlying Real Time OS. Zerynth VM can be ported with different Real Time OS and various hardware platforms depending upon the application’s cost, features and other relevant parameters.
    [Show full text]
  • 4Zerobox DATASHEET
    4ZeroBox DATASHEET 4ZeroBox is a modular hardware electronic unit that simplifies the development of Industrial IoT applications allowing rapid integration with sensors, actuators, and Cloud services. 4ZeroBox mounts a powerful ESP32 Microcontroller by Espressif Systems (240MHz, 4Mb Flash, 512KB SRAM) and provides many onboard features like: a DIN-rail mountable case with industrial grade sensor channels, support for Wi-fi, Bluetooth, Ethernet, LoRa, CAN, RS485, RS232, SD Card, JTAG, I2C, SPI; last but not least, there are 2 on-board MikroBUS sockets to extend the 4ZeroBox with hundreds of MikroElektronika click boards (see “MikroBus Slots” section). 4ZeroBox lets the user choose the best installation strategy, adapting it to the specific industrial environment. While allowing to acquire data from the PLC via digital ports - filtering the data onboard to avoid bandwidth overload and waste of cloud resources - it also enable the installation and management of external sensors, for a full Industrial IoT experience. 4ZeroBox is programmable in Python (or hybrid C/Python) thanks to the Zerynth software. 4ZeroBox Datasheet www.zerynth.com/4zerobox TECHNICAL SPECIFICATIONS Maximum expandability with hundreds of Click Boards available GSM GPS Crypto LoRa Weather Module Module Module Module Module Module Module Module Module Module Module Micro USB Micro SD Connector MikroBUS slot 1 B A Rx Tx GND Probe1- Probe1+ Probe2- Probe2+ Probe3- Probe4- Probe4+ 24V GND CANH CANL D0 D1 D2 Out2 Out1 Probe3+ Lipo battery socket with charger Power Led S1 S2
    [Show full text]
  • 4Zerobox the Iot Platform for Industry 4.0 Solutions
    4ZeroBox The IoT Platform for Industry 4.0 Solutions QUICK GUIDE TOI s.r.l. Galleria G. B. Gerace, 14 56126 Pisa, Italy VAT: IT02188290502 www.zerynth.com This Document is property of Zerynth (TOI s.r.l.). Duplication and reproduction are forbidden, if not authorized. Contents of the present documentation refers to products and technologies described in it. All technical data contained in the document may be modified without prior notice Content of this documentation is subject to periodical revision. 4ZeroBox Quick Guide 1 GENERAL SPECIFICATIONS 4ZeroBox is a modular hardware electronic unit that simplifies the development of Industrial IoT applications allowing rapid integration with sensors, actuators, and Cloud services. 4ZeroBox mounts a powerful ESP32 Microcontroller by Espressif Systems (240MHz, 4Mb Flash, 512KB SRAM) and provides many onboard features like: a DIN-rail mountable case with industrial grade sensor channels, support for Wi-fi, Bluetooth, Ethernet, LoRa, CAN, RS485, RS232, SD Card, JTAG, I2C, SPI; last but not least, there are 2 on-board MikroBUS sockets to extend the 4ZeroBox with hundreds of MikroElektronika click boards (see “MikroBus Slots” section). 4ZeroBox lets the user choose the best installation strategy, adapting it to the specific industrial environment. While allowing to acquire data from the PLC via digital ports - filtering the data onboard to avoid bandwidth overload and waste of cloud resources - it also enable the installation and management of external sensors, for a full Industrial IoT experience.
    [Show full text]
  • Zerynth Virtual Machine
    www.zerynth.com [email protected] @zerynth www.zerynth.com INTRODUCING ZERYNTH Zerynth is the first set of tools for designing embedded applications and IoT connected devices using any 32bit microcontroller and cloud architecture. All in Python language. Zerynth Introduction - Copyright 2017 www.zerynth.com ZERYNTH STACK Zerynth features a full stack solution going from embedded hardware cross-platform programming to cloud data visualization, analytics and mobile integration Zerynth Introduction - Copyright 2017 www.zerynth.com ZERYNTH STACK Zerynth features a full stack solution going from embedded hardware cross-platform programming to cloud data visualization, analytics and mobile integration ZERYNTH IS AGNOSTIC Zerynth Introduction - Copyright 2017 www.zerynth.com Zerynth is ready for the Cloud! Already supported AWS Connection Example: Coming soon Zerynth Introduction - Copyright 2017 www.zerynth.com ZERYNTH UNIQUENESS TIME TO MARKET FLEXIBILITY SCALABILITY REDUCTION Zerynth reduces the development Zerynth allows the generation of The Zerynth-powered IoT solutions and industrialization time thanks to multiple IoT solutions with grow with your needs, thanks to faster coding and ready-to-use different hardware and cloud code transferring and over-the-air features architectures updates Zerynth Introduction - Copyright 2017 www.zerynth.com LICENSING Zerynth Studio: Free vs. PRO Zerynth VM Production packs Pre-paid Unit Package name Pricing VMs Price Included with Zerynth Welcome Pack 50 Free Studio Pro Development Pack 200 $900 $4.95 Free
    [Show full text]
  • Software Developer Iot Development Tools and Embedded Applications
    Software Developer IoT development tools and embedded applications Overview We are looking for an IoT software developer. You will join a collaborative team to develop, test and maintain the Zerynth Virtual Machine (VM) and the related tools of the Zerynth software Stack. You will be responsible for software development during all phases of the development cycle, including requirements, design, implementation, testing, integration, and documentation. Location Zerynth R&D Office: Pisa, Italy ​ Responsibilities ● Extending the architectures and device set supported by the Zerynth VM; ● Designing, developing, and testing drivers and middlewares to extend the peripherals set supported by the Zerynth VM; ● Maintaining new and existing software to enhance feature sets and to consistently improve stability and quality; Experience and Requirements Passion in embedded software development, focused on 32 bit microcontrollers from different architectures (Cortex-M preferred). Additional experience developing bare-metal firmware with microcontrollers is desirable. The ideal candidate is highly motivated, self-starting, enthusiastic, fast-learning and can perform autonomously. ● Master Degree in computer science, computer engineering, electronics engineering or equivalent degree required. BSc in such fields will be considered too, also for initial internship positions; ● Fluent in written and verbal english; ● Knowledge in the area of communication protocols at all layers, such as I2C, SPI, USART, BLE, and TCP/IP protocols; ● Competency developing in C language; ● Knowledge of high level languages and concepts, preferably Python; ● Familiarity with major stages of the software development cycle, including requirements generation, design, implementation, and testing; TOOLS: ● Experience with embedded RTOS development (FreeRTOS preferred); ● Experience with open-source environments and development tools, such as Linux, GNU cross-compiler toolchains, Makefiles; Company Zerynth is a dynamic and fast growing company headquartered in Pisa (Italy) and New York City (US).
    [Show full text]