Design and Development of Long-Term Care Management System Based on Internet of Things
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Microchip Technology Inc. Publication Sept/Oct 2017
A MICROCHIP TECHNOLOGY INC. PUBLICATION SEPT/OCT 2017 Secure Make It Looking 8 Connectivity 15 Smart 24 Ahead A MICROCHIP TECHNOLOGY INC. PUBLICATION SEPT/OCT 2017 COVER STORY NEW TOOLS 4 Going to Extremes 13 Curiosity for the IoT High-Performance PIC32MX Family of Microcontrollers Now Features eXtreme Low Power Technology DESIGN CORNER NEW PRODUCTS 15 Make It Smart 6 Boost Your Design Microchip Extends eXtreme Low Power PIC32MM 17 Perfect Timing Microcontroller Family 22 Removing Roadblocks Secure Connectivity 8 Coloring the Montreal Skyline Two New SAM Microcontroller Families Offer Power 23 Performance and Enhanced Security Features 24 Looking Ahead ® 10 Chain of Communication ® 27 Arduino /Genuino MKR1000 New MOST Technology Intelligent Network Interface Meets Python® Controller Enables Daisy-Chain Communication in Automotive Applications 11 Meeting the Grade ATA65xx is Industry’s First CAN Flexible Data-Rate and CAN Partial Networking Transceiver Family Including Automotive Grade 0 Qualified Parts 12 Lighten Up Next-Generation CL88020 Sequential Linear LED Driver is Designed for Offline Lighting contents The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A. -
XAMPP-Chapter
The following is a sample chapter from the upcoming Understanding MySQL and MariaDB, coming in 2020 from Andrew Comeau and Comeau Software Solutions. If you enjoy this preview, please check back at ComeauSoftware.com for more details and updates on anticipated release dates. https://www.comeausoftware.com/understanding-mysql-and-mariadb/ All material, Copyright 2019 – Andrew Comeau 3 Installing MariaDB with XAMPP Using MariaDB as part of a suite of web development tools In This Lesson … • Understand the purpose of an Apache - MySQL - PHP (AMP) software stack • Recognize the variations in AMP stack packages available for download • Install an AMP stack for use in developing databases and hosting web applications What is an AMP Stack? As powerful as MySQL is, it's rarely used on its own. Most developers will want additional tools such as programming languages and interface tools to escape the tedium of working on the command line all the time. This is one of the reasons that MySQL is often used in combination with other tools that will enable the design of user-friendly sites. This means either creating or downloading a ready-made AMP stack. AMP usually stands for "Apache-MySQL-PHP" although the P might also stand for Perl or Python. In general, it simply refers to one or more programming languages that are included with the software stack. An AMP stack is called a stack because each tool within it addresses a different aspect of database and web development and helps support the others. • Apache is a web server - software that can respond to requests for pages and other content within a website. -
WIMP Interfaces for Emerging Display Environments
Graz University of Technology Institute for Computer Graphics and Vision Dissertation WIMP Interfaces for Emerging Display Environments Manuela Waldner Graz, Austria, June 2011 Thesis supervisor Prof. Dr. Dieter Schmalstieg Referee Prof. Dr. Andreas Butz To Martin Abstract With the availability of affordable large-scale monitors and powerful projector hardware, an increasing variety of display configurations can be found in our everyday environments, such as office spaces and meeting rooms. These emerging display environments combine conventional monitors and projected displays of different size, resolution, and orientation into a common interaction space. However, the commonly used WIMP (windows, icons, menus, and pointers) user interface metaphor is still based on a single pointer operating multiple overlapping windows on a single, rectangular screen. This simple concept cannot easily capture the complexity of heterogeneous display settings. As a result, the user cannot facilitate the full potential of emerging display environments using these interfaces. The focus of this thesis is to push the boundaries of conventional WIMP interfaces to enhance information management in emerging display environments. Existing and functional interfaces are extended to incorporate knowledge from two layers: the physical environment and the content of the individual windows. The thesis first addresses the tech- nical infrastructure to construct spatially aware multi-display environments and irregular displays. Based on this infrastructure, novel WIMP interaction and information presenta- tion techniques are demonstrated, exploiting the system's knowledge of the environment and the window content. These techniques cover two areas: spatially-aware cross-display navigation techniques for efficient information access on remote displays and window man- agement techniques incorporating knowledge of display form factors and window content to support information discovery, manipulation, and sharing. -
Design Patterns and Frameworks for Developing WIMP User Interfaces
Design Patterns and Frameworks for Developing WIMP+ User Interfaces Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte Dissertation zur Erlangung des akademischen Grades der Doktor-Ingenieurin (Dr.-Ing.) vorgelegt von Yongmei Wu, M.Sc. geboren in Guizhou, China Referenten der Arbeit: Prof. Dr.-Ing. Hans-Jürgen Hoffmann Prof. Robert J.K. Jacob, Ph.D. Tag des Einreichens: 09.10.2001 Tag der mündlichen Prüfung: 11.12.2001 D17 Darmstädter Dissertation 2001 Abstract Abstract This work investigates the models and tools for support of developing a kind of future user interfaces, which are partially built upon the WIMP (Windows, Icons, Menus, and Pointing device: the mouse) interaction techniques and devices; and able to observe and leverage at least one controlled process under the supervision of their user(s). In this thesis, they are called WIMP+ user interfaces. There are a large variety of applications dealt with WIMP+ user interfaces, e.g., robot control, telecommunication, car driver assistant systems, distributed multi-user database systems, automation rail systems, etc. At first, it studies the evolution of user interfaces, deduces the innovative functions of future user interfaces, and defines WIMP+ user interfaces. Then, it investigates high level models for user interface realization. Since the most promising user-centered design methodology is a new emerging model, it is still short of modeling methodology and rules to support the concrete development process. Therefore, in this work, a universal modeling methodology, which picks up the design pattern application, is researched and used to structure different low level user interface models. And a framework, named Hot-UCDP, for aiding the development process, is proposed. -
Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm
Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Hans-Christian Jetter an der Universität Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Informatik und Informationswissenschaft Tag der mündlichen Prüfung: 22. März 2013 1. Referent: Prof. Dr. Harald Reiterer (Universität Konstanz) 2. Referent: Prof. Dr. Andreas Butz (LMU München) Prüfungsvorsitzender: Prof. Dr. Daniel Keim (Universität Konstanz) Konstanz, Dezember 2013 Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. rer. nat.) Presented by Hans-Christian Jetter at the University of Konstanz Faculty of Sciences Department of Computer and Information Science Date of the oral examination: March 22nd, 2013 1st Supervisor: Prof. Dr. Harald Reiterer (University of Konstanz) 2nd Supervisor: Prof. Dr. Andreas Butz (University of Munich, LMU) Chief Examiner: Prof. Dr. Daniel Keim (University of Konstanz) Konstanz, December 2013 i Zusammenfassung Post-WIMP (post-“Windows, Icons, Menu, Pointer”) interaktive Räume sind physische Umgebungen oder Räume für die kollaborative Arbeit, die mit Technologien des Ubiquitous Computing angereichert sind. Ihr Zweck ist es, eine computer-unterstützte Kollaboration mehrerer Benutzer zu ermöglichen, die auf einer nahtlosen Benutzung mehrerer Geräte und Bildschirme mittels „natürlicher“ post-WIMP Interaktion basiert. Diese Dissertation beantwortet die Forschungsfrage, wie Gestalter und Entwickler solcher Umgebungen dabei unterstützt werden können, gebrauchstaugliche interaktive Räume für mehrere Benutzer mit mehreren Geräten zu erschaffen, die eine kollaborative Wissensarbeit ermöglichen. Zu diesem Zweck werden zunächst Konzepte wie post-WIMP Interaktion, interaktive Räume und Wissensarbeit definiert. Die Arbeit formuliert dann das neue technologische Paradigma ZOIL (Zoomable Object-Oriented Information Landscape). -
Comparison of Dynamic Web Content Processing Language Performance Under a LAMP Architecture
Jafar, Anderson, and Abdullat Fri, Nov 7, 4:00 - 4:30, Pueblo C Comparison of Dynamic Web Content Processing Language Performance Under a LAMP Architecture Musa Jafar [email protected] Russell Anderson [email protected] Amjad Abdullat [email protected] CIS Department, West Texas A&M University Canyon, TX 79018 Abstract LAMP is an open source, web-based application solution stack. It is comprised of (1) an oper- ating system platform running Linux, (2) an Apache web server, (3) a MySQL database man- agement system, and (4) a Dynamic Web Content Processor (tightly coupled with Apache) that is a combination of one or more of Perl, Python and PHP scripting languages paired with their corresponding MySQL Database Interface Module. In this paper, we compare various performance measures of Perl, Python and PHP separately without a database interface and in conjunction with their MySQL Database Interface Modules within a LAMP framework. We per- formed our tests under two separate Linux, Apache and Dynamic Web Content environments: an SE Linux environment and a Redhat Enterprise Linux environment. A single MySQL data- base management system that resided on a separate Redhat Linux box served both environ- ments. We used a hardware appliance framework for our test configuration, generation and data gathering. An appliance framework is repeatable and easily configurable. It allows a performance engineer to focus effort on the design, configuration and monitoring of tests, and the analysis of test results. In all cases, whether database connectivity was involved or not, PHP outperformed Perl and Python. We also present the implementation of a mechanism to handle the propagation of database engine status-codes to the web-client, this is important when automatic client-based testing is performed, because the HTTP server is incapable of automatically propagating third-tier applications status-codes to the HTTP client. -
Zerynth ZM1-DB User Manual
ZM1-Development Board User Manual For more details, visit: www.zerynth.com This Document is the property of Zerynth (Zerynth S.r.l.). Duplication and reproduction are forbidden if not authorized. Contents of the present documentation refers to products and technologies described within. All technical data contained in this document may be modified without prior notice The content of this documentation is subject to periodic revision. Table of contents Overview 2 Modular Expansion System 2 zBUS 3 General Characteristics 3 Screw Description 4 Technical Specifications 4 Components’ Guide and Pin Map 5 Getting Started 8 Software 8 Zerynth SDK 8 Declaration of Conformity 9 Warnings 9 Instructions for safe use 10 1 Overview The ZM1 Development board is an industrially oriented, modular hardware development unit that facilitates the development of scalable, secure and connected IoT (Internet of Things) applications. The ZM1-DB uses the ZM1 module, a 32-bit dual Core MCU based on the ESP32-WROOM-32SE. The ZM1 Core features a clock frequency of 240 Mhz, an Embedded 16 MB SPI Flash memory, and integrates the ATECC608A crypto element allowing ultra-secure communication. The ZM1 Development Board can act as a Development Board for prototyping a product, and as a core for industrial applications thanks to the modular expansion system. The DB features I/O connectors (the zBUS) that allow connection in a cascade of different add-on modules to create specific industrial applications that fit into a DIN-RAIL case. Modular Expansion System Zerynth Development boards offer a game-changing way of connecting and adding functionalities to your application in a simple and easy way. -
ZERYNTH Infographic
1 zerynth.com [email protected] @zerynth Your Ideas. Embedded EVERYTHING WILL BE CONNECTED The embedded world in few clicks 2 WHAT IS ZERYNTH ENABLING INTERACTION DESIGN Zerynth allows designers and system integrators providing interactivity into objects and IoT-M2M Solutions EASY AND PERFORMANT SUITE Zerynth provides a complete set of high standard embedded development tools with mobile and cloud integration MULTI-BOARD COMPATIBLE Zerynth provides multi-compatible cross platform tools and tailor made solutions that scale with your needs ZERYNTH SUITE ZERYNTH STUDIO A powerful IDE for programming embedded devices in Python with cloud sync and board management features ZERYNTH Virtual Machine A multithreaded real-time OS that provides real hardware independence allowing code reuse on the entire ARM family ZERYNTH App A general purpose interface that turns any mobile into the controller and display for smart objects and IoT systems ZERYNTH Library A pre-cooked set of Python functions that makes your life easier. You don’t have to care about developing an algorithm for making sensor average or detecting a double touch ZERYNTH Smart Network It makes your project ready for the cloud! Carriots and Paraimpu are already included or you can easily add the service you prefer A CHANGE OF PARADIGM “ZERYNTH does not provide just a library for prototyping microcontrollers. It is a change of paradigm!” The recent revolution of Internet of Things (IoT) brought designers to create interactive objects that are able to communicate with the web, the cloud and with the social networks. Mac OS Sensors Windows Actuators Linux Devices All ARM32 Boards C/C++ Java html C# Social iOS Cloud Android IFTTT Windows With the ZERYNTH toolkit all these features will be available in just few lines of code. -
PHP and Mysql in I5/OS – New Stacks and New Solutions
The Omni User IBM System i™ PHP and MySQL in i5/OS – New Stacks and New Solutions Erwin Earley ([email protected]) System i Technology Center Open Community Technologies 8 Copyright IBM Corporation, 2006. All Rights Reserved. i want stress-free IT. This publication may refer to products that are not currently available in your country. IBM makes no commitment to make i want control. available any products referred to herein. i want an i. IBM System i The Omni User Agenda • Introduction • The iAMP Stack • The iADP Stack 2 i want an i. © 2006 IBM Corporation IBM System i The Omni User Web Development Stacks L A M P W I M P i A D P i A M P i p y H i I y H 5 p B H 5 p y H n a S P n S S P / a 2 P / a S P u c Q d Q O c O c Q x h L o L S h S h L e w e e s 3 i want an i. © 2006 IBM Corporation IBM System i The Omni User Introduction • The LAMP stack (Linux, Apache, MySQL, PHP) is being used by a growing number of developers to provide a low-cost, reliable platform for web-based applications. • The iAMP stack (i5/OS, Apache, MySQL, PHP) is the i5/OS native variant of the LAMP stack – it allows for development of web-based applications integrated with the MySQL open source database. – iAMP is well suited for those customers/environments that wish to leverage existing open source applications based on PHP and MySQL. -
Implement the Paas (Platform As a Service) on Windows Azure Cloud and Deploy a PHP-Mysql Cloud-Based Online Registration Web
Implement the PaaS (Platform as a Service) on Windows Azure Cloud and Deploy a PHP-MySQL Cloud-based Online Registration Web Application Using FTP Ryan Summit and Ming-Shan Su, Department of Chemistry, Computer and Physical Sciences, Southeastern Oklahoma State University Abstract : “Cloud Computing is changing the way businesses and users interact with computers and mobile devices.” – Kris Jamsa, President/CTO of Jamsa Media Group and Author. The Cloud is coming and coming big, even though we still don’t fully grasp its potential impact on our world. SaaS (Software as a Service), IaaS (Infrastructure as a Service), and PaaS (Platform as a Service) are the three major on demand Phase-5: Build and test the application locally after services being provided over the Cloud. With Microsoft’s enhancing the application by adding the delete and awarded Windows Azure Educator Grant, each of our data validation functions students was given an academic pass of worth $1,200 market value to use the Windows Azure platform to try out various on demand cloud services. In one of the projects in our Distributed Networks course, each student was asked to implement the Phase-2: Reset deployment credentials on the newly PaaS (Platform as a Service) on Windows Azure created website Cloud and deploy a PHP-MySQL cloud-based online registration web application using FTP . Phase-6: Get MySQL connection information and use it in all the PHP files. Summary : Upon the completion of the project, each student has learned the following: how to create a Windows Azure -
WIMP: Web Server Tool for Missing Data Imputation
c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 1247–1254 jo urnal homepage: www.intl.elsevierhealth.com/journals/cmpb ଝ WIMP: Web server tool for missing data imputation a,∗ a b a D. Urda , J.L. Subirats , P.J. García-Laencina , L. Franco , c a J.L. Sancho-Gómez , J.M. Jerez a Departamento de Lenguajes y Ciencias de la Computación, ETSI Informática, University of Málaga, Spain b Centro Universitario de la Defensa de San Javier, MDE-UPCT, Spain c Departamento de Tecnologías de la Información y las Comunicaciones, Universidad Politécnica de Cartagena, Spain a r t i c l e i n f o a b s t r a c t Article history: The imputation of unknown or missing data is a crucial task on the analysis of biomedical Received 11 November 2011 datasets. There are several situations where it is necessary to classify or identify instances Received in revised form given incomplete vectors, and the existence of missing values can much degrade the per- 30 July 2012 formance of the algorithms used for the classification/recognition. The task of learning Accepted 13 August 2012 accurately from incomplete data raises a number of issues some of which have not been completely solved in machine learning applications. In this sense, effective missing value Keywords: estimation methods are required. Different methods for missing data imputations exist but Imputation most of the times the selection of the appropriate technique involves testing several meth- Missing data ods, comparing them and choosing the right one. -
Let's Have a Blast! Laser Tag Department of Electrical Engineering and Computer Science University of Central Florida Group 1
Let’s Have a Blast! Laser Tag Department of Electrical Engineering and Computer Science University of Central Florida Group 10 Marco Montero - Electrical Engineering Anuj Yamdagni - Computer Engineering Shannon Fies - Electrical Engineering Karlie Brinthaupt - Electrical Engineering Table of Contents 1.0 Executive Summary 6 2.0 Project Summary 7 2.1 Motivation 7 2.2 Goals and Objectives 7 2.2.1 Stretch Goals 8 2.3 Project Milestones 9 2.3 Project Budget/Bill of Materials 11 2.4 Game Mechanics 13 2.4.1 Main Gameplay Goals 13 2.4.2 Possible Gameplay Upgrades 13 2.5 System Flowcharts 15 2.5.1 Software Flowchart 16 2.5.2 Hardware Block Diagram 16 2.6 House of Quality 19 2.7 House of Quality Breakdown 21 2.7.1 Marketing Requirements 21 2.7.2 Engineering Requirements and Targets for Engineering 22 2.7.3 Engineering Requirement Relations 24 2.8 Team Collaboration Tools 25 3.0 Project Research 27 3.1 Similar Project Research 27 3.1.1 Arduino Laser Tag 27 3.1.2 University of Florida “Laser Tag Gaming System” 29 3.1.3 Pulse Modulated Laser Tag Game 29 3.1.4 Desired Elements from Similar Projects 30 3.2 Power Supply Research 31 3.2.1 Battery Technology 32 3.2.2 USB Charging 35 3.2.3 Battery Level Measurement 36 3.2.4 Voltage Regulator 38 3.2.5 Microprocessor Efficiency 40 3.3 Communications Research 41 3.4 Thermal Considerations 43 3.5 Serial Communication Research 44 3.5.1 UART 45 3.5.2 I2C 46 3.5.3 SPI 48 3.6 Software Development Model Research 51 4.0 Design Constraints and Standards 52 4.1 PCB Development 52 1 4.1.1 Soldering 53 4.2 Wireless